1
|
Bhadane P, Roul K, Belemkar S, Kumar D. Immunotherapeutic approaches for Alzheimer's disease: Exploring active and passive vaccine progress. Brain Res 2024; 1840:149018. [PMID: 38782231 DOI: 10.1016/j.brainres.2024.149018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegeneration having non-effective treatments. Vaccines or monoclonal antibodies are two typical immunotherapies for AD. Due to Aβ neurotoxicity, most of the treatments target its generation and deposition. However, therapies that specifically target tau protein are also being investigated. UB311 vaccine generates N-terminal anti-Aβ antibodies, that neutralize Aβ toxicity and promote plaque clearance. It is designed to elicit specific B-cell and wide T-cell responses. ACC001 or PF05236806 vaccine has the same Aβ fragment and QS21 as an adjuvant. CAD106 stimulates response against Aβ1-6. However, Nasopharyngitis and injection site erythema are its side effects. AN1792, the first-generation vaccine was formulated in proinflammatory QS21 adjuvant. However, T-cell epitopes are omitted from the developed epitope AD vaccine with Aβ1-42B-cell epitopes. The first-generation vaccine immune response was immensely successful in clearing Aβ, but it was also sufficient to provoke meningoencephalitis. Immunotherapies have been at the forefront of these initiatives in recent years. The review covers the recent updates on active and passive immunotherapy for AD.
Collapse
Affiliation(s)
- Priyanshu Bhadane
- School of Pharmacy & Technology Management, SVKM's NMIMS University, Mukesh Patel Technology Park, Shirpur 425405, India
| | - Krishnashish Roul
- School of Pharmacy & Technology Management, SVKM's NMIMS University, Mukesh Patel Technology Park, Shirpur 425405, India
| | - Sateesh Belemkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile Parle (W) Mumbai 400 056, India
| | - Devendra Kumar
- School of Pharmacy & Technology Management, SVKM's NMIMS University, Mukesh Patel Technology Park, Shirpur 425405, India.
| |
Collapse
|
2
|
Chang HY, Wu S, Li Y, Guo L, Li Y, Shah DK. Effect of the Size of Protein Therapeutics on Brain Pharmacokinetics Following Systematic Administration. AAPS J 2022; 24:62. [DOI: 10.1208/s12248-022-00701-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
|
3
|
Sun ZT, Ma C, Li GJ, Zheng XY, Hao YT, Yang Y, Wang X. Application of Antibody Fragments Against Aβ With Emphasis on Combined Application With Nanoparticles in Alzheimer's Disease. Front Pharmacol 2021; 12:654611. [PMID: 33967797 PMCID: PMC8100690 DOI: 10.3389/fphar.2021.654611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and accumulating evidences suggest a key role of amyloid-β (Aβ) peptide in the pathogenesis of AD. According to the amyloid cascade hypothesis, the imbalance of producing and clearing Aβ is the beginning of neurodegeneration and dementia. Consequently, immunotherapy becomes popular through using antibodies against Aβ. However, many studies of monoclonal antibodies were stopped because adverse effects appeared or there were no evident benefits observed. Some antibody fragments have many advantages over monoclonal antibodies, such as small sizes, lack of the crystallizable fraction (Fc) and so on. There are three main antibody fragments, including single chain variable fragments (scFvs), Fab fragments and single-domain antibody fragments. Nanoparticles can facilitate the entry of drug molecules across the blood-brain barrier, making them become excellent carriers. Various kinds of nanoparticles have been applied in the treatment of AD. The combination of nanoparticles and antibody fragments against amyloid-β can be used in the diagnosis and treatment of Alzheimer’s disease. In this review, we summarize the progress of antibody fragments against amyloid-β in AD, focusing on the combined application with nanoparticles in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhi-Ting Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Chi Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Guang-Jian Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yi-Tong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5295. [PMID: 32722559 PMCID: PMC7432158 DOI: 10.3390/ijms21155295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), with related studies examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs have various effects in the CNS; these effects are associated with the prevention of neurodegeneration, as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.
Collapse
Affiliation(s)
| | | | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (K.-Y.S.); (K.C.I.)
| |
Collapse
|
5
|
Katsinelos T, Tuck BJ, Mukadam AS, McEwan WA. The Role of Antibodies and Their Receptors in Protection Against Ordered Protein Assembly in Neurodegeneration. Front Immunol 2019; 10:1139. [PMID: 31214163 PMCID: PMC6554282 DOI: 10.3389/fimmu.2019.01139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/07/2019] [Indexed: 02/01/2023] Open
Abstract
Ordered assemblies of proteins are found in the postmortem brains of sufferers of several neurodegenerative diseases. The cytoplasmic microtubule associated protein tau and alpha-synuclein (αS) are found in an assembled state in Alzheimer's disease and Parkinson's disease, respectively. An accumulating body of evidence suggests a "prion-like" mechanism of spread of these assemblies through the diseased brain. Under this hypothesis, assembled variants of these proteins promote the conversion of native proteins to the assembled state. This likely inflicts pathology on cells of the brain through a toxic gain-of-function mechanism. Experiments in animal models of tau and αS pathology have demonstrated that the passive transfer of anti-tau or anti-αS antibodies induces a reduction in the levels of assembled proteins. This is further accompanied by improvements in neurological function and preservation of brain volume. Immunotherapy is therefore considered one of the brightest hopes as a therapeutic avenue in an area currently without disease-modifying therapy. Following a series of disappointing clinical trials targeting beta-amyloid, a peptide that accumulates in the extracellular spaces of the AD brain, attention is turning to active and passive immunotherapies that target tau and αS. However, there are several remaining uncertainties concerning the mechanism by which antibodies afford protection against self-propagating protein conformations. This review will discuss current understanding of how antibodies and their receptors can be brought to bear on proteins involved in neurodegeneration. Parallels will be made to antibody-mediated protection against classical viral infections. Common mechanisms that may contribute to protection against self-propagating protein conformations include blocking the entry of protein "seeds" to cells, clearance of immune complexes by microglia, and the intracellular protein degradation pathway initiated by cytoplasmic antibodies via the Fc receptor TRIM21. As with anti-viral immunity, protective mechanisms may be accompanied by the activation of immune signaling pathways and we will discuss the suitability of such activation in the neurological setting.
Collapse
Affiliation(s)
| | | | | | - William A. McEwan
- Department of Clinical Neurosciences, UK Dementia Research Institute at the University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Pradier L, Blanchard-Brégeon V, Bohme A, Debeir T, Menager J, Benoit P, Barneoud P, Taupin V, Bertrand P, Dugay P, Cameron B, Shi Y, Naimi S, Duchesne M, Gagnaire M, Weeden T, Travaline T, Reczek D, Khiroug L, Slaoui M, Brunel P, Fukuyama H, Ravetch J, Canton T, Cohen C. SAR228810: an antibody for protofibrillar amyloid β peptide designed to reduce the risk of amyloid-related imaging abnormalities (ARIA). ALZHEIMERS RESEARCH & THERAPY 2018; 10:117. [PMID: 30486882 PMCID: PMC6264593 DOI: 10.1186/s13195-018-0447-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/04/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Anti-amyloid β (Aβ) immunotherapy represents a major area of drug development for Alzheimer's disease (AD). However, Aβ peptide adopts multiple conformations and the pathological forms to be specifically targeted have not been identified. Aβ immunotherapy-related vasogenic edema has also been severely dose limiting for antibodies with effector functions binding vascular amyloid such as bapineuzumab. These two factors might have contributed to the limited efficacy demonstrated so far in clinical studies. METHODS To address these limitations, we have engineered SAR228810, a humanized monoclonal antibody (mAb) with limited Fc effector functions that binds specifically to soluble protofibrillar and fibrillar forms of Aβ peptide and we tested it together with its murine precursor SAR255952 in vitro and in vivo. RESULTS Unlike gantenerumab and BAN2401, SAR228810 and SAR255952 do not bind to Aβ monomers, low molecular weight Aβ oligomers or, in human brain sections, to Aβ diffuse deposits which are not specific of AD pathology. Both antibodies prevent Aβ42 oligomer neurotoxicity in primary neuronal cultures. In vivo, SAR255952, a mouse aglycosylated IgG1, dose-dependently prevented brain amyloid plaque formation and plaque-related inflammation with a minimal active dose of 3 mg/kg/week by the intraperitoneal route. No increase in plasma Aβ levels was observed with SAR255952 treatment, in line with its lack of affinity for monomeric Aβ. The effects of SAR255952 translated into synaptic functional improvement in ex-vivo hippocampal slices. Brain penetration and decoration of cerebral amyloid plaques was documented in live animals and postmortem. SAR255952 (up to 50 mg/kg/week intravenously) did not increase brain microhemorrhages and/or microscopic changes in meningeal and cerebral arteries in old APPSL mice while 3D6, the murine version of bapineuzumab, did. In immunotolerized mice, the clinical candidate SAR228810 demonstrated the same level of efficacy as the murine SAR255952. CONCLUSION Based on the improved efficacy/safety profile in non-clinical models of SAR228810, a first-in-man single and multiple dose administration clinical study has been initiated in AD patients.
Collapse
Affiliation(s)
- Laurent Pradier
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France.
| | | | - Andrees Bohme
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Thomas Debeir
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Jean Menager
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Patrick Benoit
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Pascal Barneoud
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Véronique Taupin
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Philippe Bertrand
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Philippe Dugay
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | | | - Yi Shi
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Souad Naimi
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Marc Duchesne
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Marie Gagnaire
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Tim Weeden
- Sanofi R&D Biotherapeutics Research, Framingham, USA.,Present address: Dyne Therapeutics, Inc., 400 Technology Square, Cambridge, USA
| | | | - David Reczek
- Sanofi R&D Biotherapeutics Research, Framingham, USA
| | | | | | | | - Hidehiro Fukuyama
- The Rockefeller University, New-York City, USA.,Present address: Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Thierry Canton
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Caroline Cohen
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| |
Collapse
|
7
|
Finke JM, Banks WA. Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer's disease immunotherapy. Hum Antibodies 2018; 25:131-146. [PMID: 28035915 DOI: 10.3233/hab-160306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review serves to highlight approaches that may improve the access of antibody drugs to regions of the brain affected by Alzheimer's Disease. While previous antibody drugs have been unsuccessful in treating Alzheimer's disease, recent work demonstrates that Alzheimer's pathology can be modified if these drugs can penetrate the brain parenchyma with greater efficacy. Research in antibody blood-brain barrier drug delivery predominantly follows one of three distinct directions: (1) enhancing influx with reduced antibody size, addition of Trojan horse modules, or blood-brain barrier disruption; (2) modulating trancytotic equilibrium and/or kinetics of the neonatal Fc Receptor; and (3) manipulation of antibody glycan carbohydrate composition. In addition to these topics, recent studies are discussed that reveal a role of glycan sialic acid in suppressing antibody efflux from the brain.
Collapse
Affiliation(s)
- John M Finke
- Division of Sciences and Mathematics, Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Geriatric Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Abstract
BACKGROUND Drug delivery to the brain is a major roadblock to treatment of Alzheimer's disease. Recent results of the PRIME study indicate that increasing brain penetration of antibody drugs improves Alzheimer's treatment outcomes. New approaches are needed to better accomplish this goal. Based on prior evidence, the hypothesis that glycan modification alters antibody blood-brain barrier permeability was tested here. METHODS The blood-brain barrier permeability coefficient Pe of different glycosylated states of anti-amyloid IgG was measured using in vitro models of brain microvascular endothelial cells. Monoclonal antibodies 4G8, with sialic acid, and 6E10, lacking sialic acid, were studied. The amount of sialic acid was determined using quantitative and semi-quantitative surface plasmon resonance methods. RESULTS Influx of IgG was not saturable and was largely insensitive to IgG species and glycosylation state. By contrast, efflux of 4G8 efflux was significantly lower than both albumin controls and 6E10. Removal of α2,6-linked sialic acid group present on 12% of 4G8 completely restored efflux to that of 6E10 but increasing the α2,6-sialylated fraction to 15% resulted in no change. Removal of the Fc glycan from 4G8 partially restored efflux. Alternate sialic acid groups with α2,3 and α2,8 linkages, nor on the Fc glycan, were not detected at significant levels on either 4G8 or 6E10. CONCLUSIONS These results support a model in which surface-sialylated 4G8 inhibits its own efflux and that of asialylated 4G8. GENERAL SIGNIFICANCE Glycan modification has the potential to increase antibody drug penetration into the brain through efflux inhibition.
Collapse
|
9
|
Aβ-Immunotherapeutic strategies: a wide range of approaches for Alzheimer's disease treatment. Expert Rev Mol Med 2016; 18:e13. [PMID: 27357999 DOI: 10.1017/erm.2016.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current therapies to treat Alzheimer's disease (AD) are focused on ameliorating symptoms instead of treating the underlying causes of AD. The accumulation of amyloid β (Aβ) oligomers, whether by an increase in production or by a decrease in clearance, has been described as the seed that initiates the pathological cascade in AD. Developing therapies to target these species is a vital step in improving AD treatment. Aβ-immunotherapy, especially passive immunotherapy, is a promising approach to reduce the Aβ burden. Up to now, several monoclonal antibodies (mAbs) have been tested in clinical trials on humans, but none of them have passed Phase III. In all likelihood, these trials failed mainly because patients with mild-to-moderate AD were recruited, and thus treatment may have been too late to be effective. Therefore, many ongoing clinical trials are being conducted in patients at the prodromal stage. New structures based on antibody fragments have been engineered intending to improve efficacy and safety. This review presents the properties of this variety of developing treatments and provides a perspective on state-of-the-art of passive Aβ-immunotherapy in AD.
Collapse
|
10
|
Lathuilière A, Laversenne V, Astolfo A, Kopetzki E, Jacobsen H, Stampanoni M, Bohrmann B, Schneider BL, Aebischer P. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Brain 2016; 139:1587-604. [DOI: 10.1093/brain/aww036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/19/2016] [Indexed: 01/17/2023] Open
|
11
|
Delnomdedieu M, Duvvuri S, Li DJ, Atassi N, Lu M, Brashear HR, Liu E, Ness S, Kupiec JW. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer's disease. Alzheimers Res Ther 2016; 8:12. [PMID: 26925577 PMCID: PMC4772335 DOI: 10.1186/s13195-016-0177-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND In the First-In-Human (FIH), 39-week, randomized, adaptive design study, safety, tolerability, pharmacokinetics and biomarkers were measured in patients with mild-to-moderate Alzheimer's disease (AD) after infusion of a humanized monoclonal antibody to amyloid β, AAB-003 (NCT01193608; registered 19 August 2010). AAB-003 was developed by modifying bapineuzumab to reduce Fc-receptor-mediated effector function as a strategy to reduce the removal of amyloid from vessel walls associated with amyloid-related imaging abnormalities with edema/effusions (ARIA-E) without diminishing overall amyloid clearance. METHODS Eighty-eight patients with AD received up to three infusions of AAB-003 (or placebo) 13 weeks apart at doses of 0.5, 1, 2, 4 or 8 mg/kg in the FIH trial. Dose escalation was based on safety data reviews using a Bayesian escalation algorithm. Subjects who completed the FIH study were permitted to enter a 1-year open-label extension trial with four additional intravenous infusions of AAB-003 (NCT01369225; registered 10 May 2011). RESULTS Dose-dependent increases in plasma amyloid β and AAB-003 were observed. No significant changes in cerebral spinal fluid biomarkers were observed. Pharmacokinetics elimination half-life (21-28 days) clearance and volume of distribution values were consistent across dose groups indicating linearity. ARIA-E was the most notable safety finding detected by magnetic resonance imaging (MRI) at 8 mg/kg in two patients. Three cases of microhemorrhage were observed. No new safety findings or MRI abnormalities were observed for the 52 subjects who received AAB-003 in the extension trial. CONCLUSION Based on integrated review of laboratory, electrocardiogram, adverse events, and MRI, AAB-003 was safe and well tolerated up to 8 mg/kg for up to 91 weeks (FIH and extension trials) in patients with mild to moderate AD. Asymptomatic and resolvable ARIA-E was observed after the first or second infusion of AAB-003, similar to bapineuzumab. The AAB-003 dose at which ARIA-E was observed was higher compared to bapineuzumab, supporting the hypothesis that reducing Fc-receptor effector function may reduce the ARIA associated with monoclonal antibodies targeting cerebral amyloid.
Collapse
MESH Headings
- Aged
- Alzheimer Disease/blood
- Alzheimer Disease/cerebrospinal fluid
- Alzheimer Disease/drug therapy
- Alzheimer Disease/immunology
- Amyloid beta-Peptides/blood
- Amyloid beta-Peptides/immunology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Biomarkers/blood
- Brain Edema/chemically induced
- Dose-Response Relationship, Drug
- Female
- Humans
- Infusions, Intravenous
- Male
- Middle Aged
- Severity of Illness Index
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Janssen R&D, Spring House, PA, USA.
| | | | | | | | | |
Collapse
|
12
|
Antimisiaris S, Mourtas S, Markoutsa E, Skouras A, Papadia K. Nanoparticles for Diagnosis and/or Treatment of Alzheimer's Disease. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Morkuniene R, Zvirbliene A, Dalgediene I, Cizas P, Jankeviciute S, Baliutyte G, Jokubka R, Jankunec M, Valincius G, Borutaite V. Antibodies bound to Aβ oligomers potentiate the neurotoxicity of Aβ by activating microglia. J Neurochem 2013; 126:604-15. [DOI: 10.1111/jnc.12332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Ramune Morkuniene
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Indre Dalgediene
- Vilnius University; Institute of Biotechnology; Vilnius Lithuania
| | - Paulius Cizas
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
- Department of Biochemistry; Medical Academy; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Silvija Jankeviciute
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Giedre Baliutyte
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Ramunas Jokubka
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Marija Jankunec
- Vilnius University; Institute of Biochemistry; Vilnius Lithuania
| | | | - Vilmante Borutaite
- Institute of Neurosciences; Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
14
|
MER5101, a novel Aβ1-15:DT conjugate vaccine, generates a robust anti-Aβ antibody response and attenuates Aβ pathology and cognitive deficits in APPswe/PS1ΔE9 transgenic mice. J Neurosci 2013; 33:7027-37. [PMID: 23595760 DOI: 10.1523/jneurosci.5924-12.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Active amyloid-β (Aβ) immunotherapy is under investigation to prevent or treat early Alzheimer's disease (AD). In 2002, a Phase II clinical trial (AN1792) was halted due to meningoencephalitis in ∼6% of the AD patients, possibly caused by a T-cell-mediated immunological response. Thus, generating a vaccine that safely generates high anti-Aβ antibody levels in the elderly is required. In this study, MER5101, a novel conjugate of Aβ1-15 peptide (a B-cell epitope fragment) conjugated to an immunogenic carrier protein, diphtheria toxoid (DT), and formulated in a nanoparticular emulsion-based adjuvant, was administered to 10-month-old APPswe/PS1ΔE9 transgenic (Tg) and wild-type (Wt) mice. High anti-Aβ antibody levels were observed in both vaccinated APPswe/PS1ΔE9 Tg and Wt mice. Antibody isotypes were mainly IgG1 and IgG2b, suggesting a Th2-biased response. Restimulation of splenocytes with the Aβ1-15:DT conjugate resulted in a strong proliferative response, whereas proliferation was absent after restimulation with Aβ1-15 or Aβ1-40/42 peptides, indicating a cellular immune response against DT while avoiding an Aβ-specific T-cell response. Moreover, significant reductions in cerebral Aβ plaque burden, accompanied by attenuated microglial activation and increased synaptic density, were observed in MER5101-vaccinated APPswe/PS1ΔE9 Tg mice compared with Tg adjuvant controls. Last, MER5101-immunized APPswe/PS1ΔE9 Tg mice showed improvement of cognitive deficits in both contextual fear conditioning and the Morris water maze. Our novel, highly immunogenic Aβ conjugate vaccine, MER5101, shows promise for improving Aβ vaccine safety and efficacy and therefore, may be useful for preventing and/or treating early AD.
Collapse
|
15
|
Shimada M, Abe S, Takahashi T, Shiozaki K, Okuda M, Mizukami H, Klinman DM, Ozawa K, Okuda K. Prophylaxis and treatment of Alzheimer's disease by delivery of an adeno-associated virus encoding a monoclonal antibody targeting the amyloid Beta protein. PLoS One 2013; 8:e57606. [PMID: 23555563 PMCID: PMC3610755 DOI: 10.1371/journal.pone.0057606] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/23/2013] [Indexed: 02/03/2023] Open
Abstract
We previously reported on a monoclonal antibody (mAb) that targeted amyloid beta (Aß) protein. Repeated injection of that mAb reduced the accumulation of Aß protein in the brain of human Aß transgenic mice (Tg2576). In the present study, cDNA encoding the heavy and light chains of this mAb were subcloned into an adeno-associated virus type 1 (AAV) vector with a 2A/furin adapter. A single intramuscular injection of 3.0×1010 viral genome of these AAV vectors into C57BL/6 mice generated serum anti-Aß Ab levels up to 0.3 mg/ml. Anti-Aß Ab levels in excess of 0.1 mg/ml were maintained for up to 64 weeks. The effect of AAV administration on Aß levels in vivo was examined. A significant decrease in Aß levels in the brain of Tg2576 mice treated at 5 months (prophylactic) or 10 months (therapeutic) of age was observed. These results support the use of AAV vector encoding anti-Aß Ab for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Masaru Shimada
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Shinya Abe
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toru Takahashi
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kazumasa Shiozaki
- Department of Psychiatry, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi-ken, Japan
| | - Dennis M. Klinman
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi-ken, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Yokohama City University, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
16
|
Valera E, Masliah E. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther 2013; 138:311-22. [PMID: 23384597 DOI: 10.1016/j.pharmthera.2013.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer's disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson's disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in the blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
17
|
Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, Greco A, Seripa D, Pilotto A. Immunotherapy for Alzheimer's disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 2012; 4:213-38. [PMID: 22339463 DOI: 10.2217/imt.11.170] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The exact mechanisms leading to Alzheimer's disease (AD) are largely unknown, limiting the identification of effective disease-modifying therapies. The two principal neuropathological hallmarks of AD are extracellular β-amyloid (Aβ), peptide deposition (senile plaques) and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. During the last decade, most of the efforts of the pharmaceutical industry were directed against the production and accumulation of Aβ. The most innovative of the pharmacological approaches was the stimulation of Aβ clearance from the brain of AD patients via the administration of Aβ antigens (active vaccination) or anti-Aβ antibodies (passive vaccination). Several active and passive anti-Aβ vaccines are under clinical investigation. Unfortunately, the first active vaccine (AN1792, consisting of preaggregate Aβ and an immune adjuvant, QS-21) was abandoned because it caused meningoencephalitis in approximately 6% of treated patients. Anti-Aβ monoclonal antibodies (bapineuzumab and solanezumab) are now being developed. The clinical results of the initial studies with bapineuzumab were equivocal in terms of cognitive benefit. The occurrence of vasogenic edema after bapineuzumab, and more rarely brain microhemorrhages (especially in Apo E ε4 carriers), has raised concerns on the safety of these antibodies directed against the N-terminus of the Aβ peptide. Solanezumab, a humanized anti-Aβ monoclonal antibody directed against the midregion of the Aβ peptide, was shown to neutralize soluble Aβ species. Phase II studies showed a good safety profile of solanezumab, while studies on cerebrospinal and plasma biomarkers documented good signals of pharmacodynamic activity. Although some studies suggested that active immunization may be effective against tau in animal models of AD, very few studies regarding passive immunization against tau protein are currently available. The results of the large, ongoing Phase III trials with bapineuzumab and solanezumab will tell us if monoclonal anti-Aβ antibodies may slow down the rate of deterioration of AD. Based on the new diagnostic criteria of AD and on recent major failures of anti-Aβ drugs in mild-to-moderate AD patients, one could argue that clinical trials on potential disease-modifying drugs, including immunological approaches, should be performed in the early stages of AD.
Collapse
Affiliation(s)
- Francesco Panza
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Robert R, Wark KL. Engineered antibody approaches for Alzheimer's disease immunotherapy. Arch Biochem Biophys 2012; 526:132-8. [PMID: 22475448 DOI: 10.1016/j.abb.2012.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 12/15/2022]
Abstract
The accumulation of amyloid-β-peptide (Aβ or A-beta) in the brain is considered to be a key event in the pathogenesis of Alzheimer's disease (AD). Over the last decade, antibody strategies aimed at reducing high levels of Aβ in the brain and or neutralizing its toxic effects have emerged as one of the most promising treatments for AD. Early approaches using conventional antibody formats demonstrated the potential of immunotherapy, but also caused a range of undesirable side effects such meningoencephalitis, vasogenic edema or cerebral microhemorrhages in both murine and humans. This prompted the exploration of alternative approaches using engineered antibodies to avoid adverse immunological responses and provide a safer and more effective therapy. Encouraging results have been obtained using a range of recombinant antibody formats including, single chain antibodies, antibody domains, intrabodies, bispecific antibodies as well as Fc-engineered antibodies in transgenic AD mouse and primate models. This review will address recent progress using these recombinant antibodies against Aβ, highlighting their advantages over conventional monoclonal antibodies and delivery methods.
Collapse
Affiliation(s)
- Remy Robert
- Department of Immunology (Clayton), Monash University, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Services, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
19
|
|
20
|
Wang YJ, Gao CY, Yang M, Liu XH, Sun Y, Pollard A, Dong XY, Wu XB, Zhong JH, Zhou HD, Zhou XF. Intramuscular delivery of a single chain antibody gene prevents brain Aβ deposition and cognitive impairment in a mouse model of Alzheimer's disease. Brain Behav Immun 2010; 24:1281-93. [PMID: 20595065 DOI: 10.1016/j.bbi.2010.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 12/30/2022] Open
Abstract
Anti-beta-amyloid (Aβ) immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. We have demonstrated that Adeno-associated virus (AAV)-mediated delivery of an anti-Aβ single chain antibody (scFv) gene was effective in clearing brain Aβ without eliciting any inflammatory side effects in old APP(Swe)/PS1dE9 transgenic mice. In the present study, we tested the efficacy and safety of intramuscular delivery of the scFv gene in preventing brain Aβ deposition. The scFv gene was intramuscularly delivered to APP(Swe)/PS1dE9 transgenic mice at 3 months of age, prior to Aβ deposition in the brain. Six months later, we found that the transgenes were expressed in a stable form at the delivered sites, with a small amount of ectopic expression in the liver and olfactory bulb. Brain Aβ plaque formation, Aβ accumulation, AD-type pathologies and cognitive impairment were significantly attenuated in scFv-treated APP(Swe)/PS1dE9 transgenic mice relative to EGFP-treated mice. Intramuscular delivery of scFv gene was well tolerated by the animals, did not cause inflammation or microhemorrhage at the gene expression site and in the brain, and did not induce neutralizing antibodies in the animals. These findings suggest that peripheral application of scFv is effective and safe in preventing the development of Alzheimer's disease (AD), and would be a promising non-inflammatory immunological modality for prevention and treatment of AD.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- Department of Human Physiology, Center for Neuroscience, Flinders University, Adelaide 5042, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fu HJ, Liu B, Frost JL, Lemere CA. Amyloid-beta immunotherapy for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:197-206. [PMID: 20205640 DOI: 10.2174/187152710791012017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/12/2009] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the brain and the most common form of dementia among the elderly. As the population grows and lifespan is extended, the number of AD patients will continue to rise. Current clinical therapies for AD provide partial symptomatic benefits for some patients; however, none of them modify disease progression. Amyloid-beta (Abeta) peptide, the major component of senile plaques in AD patients, is considered to play a crucial role in the pathogenesis of AD thereby leading to Abeta as a target for treatment. Abeta immunotherapy has been shown to induce a marked reduction in amyloid burden and an improvement in cognitive function in animal models. Although preclinical studies were successful, the initial human clinical trial of an active Abeta vaccine was halted due to the development of meningoencephalitis in approximately 6% of the vaccinated AD patients. Some encouraging outcomes, including signs of cognitive stabilization and apparent plaque clearance, were obtained in subset of patients who generated antibody titers. These promising preliminary data support further efforts to refine Abeta immunotherapy to produce highly effective and safer active and passive vaccines for AD. Furthermore, some new human clinical trials for both active and passive Abeta immunotherapy are underway. In this review, we will provide an update of Abeta immunotherapy in animal models and in human beings, as well as discuss the possible mechanisms underlying Abeta immunotherapy for AD.
Collapse
Affiliation(s)
- H J Fu
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
22
|
Abeta-directed single-chain antibody delivery via a serotype-1 AAV vector improves learning behavior and pathology in Alzheimer's disease mice. Mol Ther 2010; 18:1471-81. [PMID: 20551911 DOI: 10.1038/mt.2010.111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive dementing disorder characterized by age-related amyloid-beta (Abeta) deposition, neurofibrillary tangles, and synapse and neuronal loss. It is widely recognized that Abeta is a principal pathogenic mediator of AD. Our goal was to develop an immunotherapeutic approach, which would specifically lead to the clearance and/or neutralization of Abeta in the triple transgenic mouse model (3xTg-AD). These mice develop the amyloid and tangle pathologies and synaptic dysfunction reminiscent of human AD. Using a human single-chain variable fragment (scFv) antibody phage display library, a novel scFv antibody specific to Abeta was isolated, its activity characterized in vitro, and its open reading frame subsequently cloned into a recombinant adeno-associated virus (rAAV) vector. Three-month-old 3xTg-AD mice were intrahippocampally infused with serotype-1 rAAV vectors encoding Abeta-scFv or a control vector using convection-enhanced delivery (CED). Mice receiving rAAV1-Abeta-scFv harbored lower levels of insoluble Abeta and hyperphosphorylated tau, and exhibited improved cognitive function as measured by the Morris Water Maze (MWM) spatial memory task. These results underscore the potential of gene-based passive vaccination for AD, and provide further rationale for the development of Abeta-targeting strategies for this debilitating disease.
Collapse
|
23
|
Robert R, Streltsov VA, Newman J, Pearce LA, Wark KL, Dolezal O. Germline humanization of a murine Abeta antibody and crystal structure of the humanized recombinant Fab fragment. Protein Sci 2010; 19:299-308. [PMID: 20014445 DOI: 10.1002/pro.312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is the most common form of dementia, affecting 26 million people worldwide. The Abeta peptide (39-43 amino acids) derived from the proteolytic cleavage of the amyloid precursor protein is one of the main constituents of amyloid plaques associated with disease pathogenesis and therefore a validated target for therapy. Recently, we characterized antibody fragments (Fab and scFvs) derived from the murine monoclonal antibody WO-2, which bind the immunodominant epitope ((3)EFRH(6)) in the Abeta peptide at the N-terminus. In vitro, these fragments are able to inhibit fibril formation, disaggregate preformed amyloid fibrils, and protect neuroblastoma cells against oligomer-mediated toxicity. In this study, we describe the humanization of WO-2 using complementary determining region loop grafting onto the human germline gene and the determination of the three-dimensional structure by X-ray crystallography. This humanized version retains a high affinity for the Abeta peptide and therefore is a potential candidate for passive immunotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Remy Robert
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Adekar SP, Klyubin I, Macy S, Rowan MJ, Solomon A, Dessain SK, O'Nuallain B. Inherent anti-amyloidogenic activity of human immunoglobulin gamma heavy chains. J Biol Chem 2009; 285:1066-74. [PMID: 19889627 DOI: 10.1074/jbc.m109.044321] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Abeta, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig gamma heavy chains. A gamma(1) heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Abeta monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig gamma heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Abeta oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig gamma heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.
Collapse
Affiliation(s)
- Sharad P Adekar
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Peter JC, Bekel A, Lecourt AC, Zipfel G, Eftekhari P, Nesslinger M, Breidert M, Muller S, Kessler L, Hofbauer KG. Anti-melanocortin-4 receptor autoantibodies in obesity. J Clin Endocrinol Metab 2009; 94:793-800. [PMID: 19050052 DOI: 10.1210/jc.2008-1749] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND The melanocortin-4 receptor (MC4R) is part of an important pathway regulating energy balance. Here we report the existence of autoantibodies (autoAbs) against the MC4R in sera of obese patients. METHODS The autoAbs were detected after screening of 216 patients' sera by using direct and inhibition ELISA with an N-terminal sequence of the MC4R. Binding to the native MC4R was evaluated by flow cytometry, and pharmacological effects were evaluated by measuring adenylyl cyclase activity. RESULTS Positive results in all tests were obtained in patients with overweight or obesity (prevalence, 3.6%) but not in normal weight patients. The selective binding properties of anti-MC4R autoAbs were confirmed by surface plasmon resonance and by immunoprecipitation with the native MC4R. Finally, it was demonstrated that these autoAbs increased food intake in rats after passive transfer via intracerebroventricular injection. CONCLUSION These observations suggest that inhibitory anti-MC4R autoAbs might contribute to the development of obesity in a small subpopulation of patients.
Collapse
|
26
|
Abstract
There has been considerable recent interest in vaccination of patients by immunotherapy as a potentially clinically useful methodology for combating histopathological changes in Alzheimer's disease (AD). The focus of the majority of this research has been on (1) active immunotherapy using the pre-aggregated synthetic beta-amyloid (Abeta) 42 preparation AN1792 vaccine (QS-21), or (2) passive immunization using injections of already prepared polyclonal anti-Abeta antibodies (intravenous immunoglobulin). These two clinical approaches to the treatment of patients with AD represent the focus of this review. We conclude here that, with certain caveats, immunization offers further potential as a technique for the treatment (and possible prevention) of AD. New studies are seeking to develop and apply safer vaccines that do not result in toxicity and neuroinflammation. Nevertheless, caution is warranted, and future clinical investigations are required to tackle key outstanding issues. These include the need to demonstrate efficacy in humans as well as animal models (especially with respect to the potentially toxic side effects of immunotherapy), and fine-tuning in safely guiding the immune response. The issue of defining necessary and sufficient criteria for determining clinical efficacy remains an additional important issue for future immunization trials. The vaccination methodology appears to offer substantial current promise for clearing both soluble and aggregated amyloid in AD. However, it remains to be determined whether this approach will help to repair already damaged neural systems in the disease, and the extent to which vaccination-driven amyloid clearance will impact beneficially on patients' neurocognitive capacity and their functional status. The outcomes of future studies will be important both clinically and scientifically: an important further test of the validity of the amyloid hypothesis of AD is to evaluate the impact of an effective anti-amyloid strategy on the functional status of patients with this disease.
Collapse
|
27
|
Robert R, Dolezal O, Waddington L, Hattarki MK, Cappai R, Masters CL, Hudson PJ, Wark KL. Engineered antibody intervention strategies for Alzheimer's disease and related dementias by targeting amyloid and toxic oligomers. Protein Eng Des Sel 2008; 22:199-208. [PMID: 18927231 DOI: 10.1093/protein/gzn052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most neurodegenerative disorders, such as Alzheimer's (AD), Parkinson's, Huntington's and Creutzfeldt-Jakob disease, are characterised by the accumulation of insoluble filamentous aggregates known as amyloid. These pathologies share common pathways involving protein aggregation which can lead to fibril formation and amyloid plaques. The 4 kDa Abeta peptide (39-43 amino acids) derived from the proteolysis of the amyloid precursor protein is currently a validated target for therapy in AD. Both active and passive immunisation studies against Abeta are being trialled as potential AD therapeutic approaches. In this study, we have characterised engineered antibody fragments derived from the monoclonal antibody, WO-2 which recognises an epitope in the N-terminal region of Abeta (amino acids 2-8 of Abeta). A chimeric recombinant Fab (rFab) and single chain fragments (scFvs) of WO-2 were constructed and expressed in Escherichia coli. Rationally designed mutants to improve the stability of antibody fragments were also constructed. All antibody formats retained high affinity (K(D) approximately 8 x 10(-9) M) for the Abeta peptide, comparable with the intact parental IgG as measured by surface plasmon resonance. Likewise, all engineered fragments were able to: (i) prevent amyloid fibrillisation, (ii) disaggregate preformed Abeta(1-42) fibrils and (iii) inhibit Abeta(1-42) oligomer-mediated neurotoxicity in vitro as efficiently as the whole IgG molecule. These data indicate that the WO-2 antibody and its fragments have immunotherapeutic potential. The perceived advantages of using small Fab and scFv engineered antibody formats which lack the effector function include more efficient passage across the blood-brain barrier and minimising the risk of triggering inflammatory side reactions. Hence, these recombinant antibody fragments represent attractive candidates and safer formulations of passive immunotherapy for AD.
Collapse
Affiliation(s)
- Remy Robert
- CSIRO Molecular and Health Technologies, University of Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Immunotherapeutic strategies to combat neurodegenerative disorders have galvanized the scientific community since the first dramatic successes in mouse models recreating aspects of Alzheimer disease (AD) were reported. However, initial human trials of active amyloid-beta (Abeta) vaccination were halted early because of a serious safety issue: meningoencephalitis in 6% of subjects. Nonetheless, some encouraging preliminary data were obtained, and rapid progress has been made toward developing alternative, possibly safer active and passive immunotherapeutic approaches for several neurodegenerative conditions. Many of these are currently in human trials for AD. Despite these advances, our understanding of the essential mechanisms underlying the effects seen in preclinical models and human subjects is still incomplete. Antibody-induced phagocytosis of pathological protein deposits, direct antibody-mediated disruption of aggregates, neutralization of toxic soluble proteins, a shift in equilibrium toward efflux of specific proteins from the brain, cell-mediated immune responses, and other mechanisms may all play roles depending on the specific immunotherapeutic scenario.
Collapse
Affiliation(s)
- David L Brody
- Department of Neurology, Developmental Biology, Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
29
|
Selective contrast enhancement of individual Alzheimer's disease amyloid plaques using a polyamine and Gd-DOTA conjugated antibody fragment against fibrillar Abeta42 for magnetic resonance molecular imaging. Pharm Res 2008; 25:1861-72. [PMID: 18443900 DOI: 10.1007/s11095-008-9600-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE The lack of an in vivo diagnostic test for AD has prompted the targeting of amyloid plaques with diagnostic imaging probes. We describe the development of a contrast agent (CA) for magnetic resonance microimaging that utilizes the F(ab')2 fragment of a monoclonal antibody raised against fibrillar human Abeta42 METHODS This fragment is polyamine modified to enhance its BBB permeability and its ability to bind to amyloid plaques. It is also conjugated with a chelator and gadolinium for subsequent imaging of individual amyloid plaques RESULTS Pharmacokinetic studies demonstrated this 125I-CA has higher BBB permeability and lower accumulation in the liver and kidney than F(ab')2 in WT mice. The CA retains its ability to bind Abeta40/42 monomers/fibrils and also binds to amyloid plaques in sections of AD mouse brain. Intravenous injection of 125I-CA into the AD mouse demonstrates targeting of amyloid plaques throughout the cortex/hippocampus as detected by emulsion autoradiography. Incubation of AD mouse brain slices in vitro with this CA resulted in selective enhancement on T1-weighted spin-echo images, which co-register with individual plaques observed on spatially matched T2-weighted spin-echo image CONCLUSIONS Development of such a molecular probe is expected to open new avenues for the diagnosis of AD.
Collapse
|
30
|
Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem 2008; 104:859-74. [DOI: 10.1111/j.1471-4159.2007.05064.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Wang YJ, Pollard A, Zhong JH, Dong XY, Wu XB, Zhou HD, Zhou XF. Intramuscular delivery of a single chain antibody gene reduces brain Abeta burden in a mouse model of Alzheimer's disease. Neurobiol Aging 2007; 30:364-76. [PMID: 17686552 DOI: 10.1016/j.neurobiolaging.2007.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 06/20/2007] [Accepted: 06/23/2007] [Indexed: 11/22/2022]
Abstract
Anti-beta-amyloid (Abeta) immunotherapy has been well documented to effectively elicit amyloid plaque clearance and slow cognitive decline in experimental and clinical studies. However, anti-Abeta immunotherapy was associated with detrimental effects of brain inflammation and microhemorrhage, presumably induced by T-cell-mediated and/or Fc-mediated inflammatory responses. In the present study, a single chain antibody (scFv) against Abeta could effectively inhibit the aggregation of Abeta and promote the disaggregation of preformed Abeta fibrils. The recombined adeno-associated virus vectors carrying the scFv gene were produced to delivery the scFv gene. Hippocampus delivery of the scFv gene was effective in reducing the amyloid plaque in the hippocampus of an Alzheimer's disease (AD) mouse model. Further studies demonstrated that intramuscular delivery of the scFv gene was as effective as intracranial delivery in reducing the total Abeta level in the brain with a concomitant elevated Abeta level in serum. No enhanced microglial activation, discernable T lymphocyte infiltration, and increased microhemorrhage were found after intracranial and intramuscular delivery of the scFv gene. Our results suggest that intramuscular delivery of the scFv gene would be a novel peripheral noninflammatory immunological modality targeting Abeta clearance and be promising in future drug development for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Poduslo JF, Ramakrishnan M, Holasek SS, Ramirez-Alvarado M, Kandimalla KK, Gilles EJ, Curran GL, Wengenack TM. In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J Neurochem 2007; 102:420-33. [PMID: 17596213 DOI: 10.1111/j.1471-4159.2007.04591.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeting therapeutic or diagnostic proteins to the nervous system is limited by the presence of the blood-brain barrier. We report that a F(ab')(2) fragment of a monoclonal antibody against fibrillar human Abeta42 that is polyamine (p)-modified has increased permeability at the blood-brain barrier, comparable binding to the antigen, and comparable in vitro binding to amyloid plaques in Alzheimer's disease (AD) transgenic mouse brain sections. Intravenous injection of the pF(ab')(2)4.1 in the AD transgenic mouse demonstrated efficient targeting to amyloid plaques throughout the brain, whereas the unmodified fragment did not. Removal of the Fc portion of this antibody derivative will minimize the inflammatory response and cerebral hemorrhaging associated with passive immunization and provide increased therapeutic potential for treating AD. Coupling contrast agents/radioisotopes might facilitate the molecular imaging of amyloid plaques with magnetic resonance imaging/positron emission tomography. The efficient delivery of immunoglobulin G fragments may also have important applications to other neurodegenerative disorders or for the generalized targeting of nervous system antigens.
Collapse
MESH Headings
- Alzheimer Disease/immunology
- Alzheimer Disease/physiopathology
- Alzheimer Disease/therapy
- Amyloid beta-Peptides/antagonists & inhibitors
- Amyloid beta-Peptides/immunology
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Binding, Competitive/immunology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Cell Line, Tumor
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunoglobulin Fragments/immunology
- Immunoglobulin Fragments/metabolism
- Immunoglobulin Fragments/therapeutic use
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoglobulin G/therapeutic use
- Immunotherapy/methods
- Immunotherapy/trends
- Injections, Intravenous
- Isoelectric Focusing
- Mice
- Mice, Transgenic
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/immunology
- Peptide Hydrolases/chemistry
- Plaque, Amyloid/drug effects
- Plaque, Amyloid/immunology
- Protein Binding/immunology
- Protein Transport/immunology
- Radioligand Assay
- Receptors, Immunologic/drug effects
- Receptors, Immunologic/metabolism
Collapse
Affiliation(s)
- Joseph F Poduslo
- Molecular Neurobiology Laboratory, Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Levites Y, Jansen K, Smithson LA, Dakin R, Holloway VM, Das P, Golde TE. Intracranial adeno-associated virus-mediated delivery of anti-pan amyloid beta, amyloid beta40, and amyloid beta42 single-chain variable fragments attenuates plaque pathology in amyloid precursor protein mice. J Neurosci 2006; 26:11923-8. [PMID: 17108166 PMCID: PMC6674861 DOI: 10.1523/jneurosci.2795-06.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulation of amyloid beta protein (Abeta) aggregates is hypothesized to trigger a pathological cascade that causes Alzheimer's disease (AD). Active or passive immunizations targeting Abeta are therefore of great interest as potential therapeutic strategies. We have evaluated the use of recombinant anti-Abeta single-chain variable fragments (scFvs) as a potentially safer form of anti-Abeta immunotherapy. We have generated and characterized three anti-Abeta scFvs that recognize Abeta 1-16, Abeta x-40, or Abeta x-42. To achieve widespread brain delivery, constructs expressing these anti-Abeta scFvs were packaged into adeno-associated virus (AAV) vectors and injected into the ventricles of postnatal day 0 (P0) amyloid precursor protein CRND8-transgenic mice. Intracranial delivery of AAV to neonatal mice resulted in widespread neuronal delivery. In situ expression of each of the anti-Abeta scFvs after intracerebroventricular AAV serotype 1 delivery to P0 pups decreased Abeta deposition by 25-50%. These data suggest that intracranial anti-Abeta scFv expression is an effective strategy to attenuate amyloid deposition. As opposed to transgenic approaches, these studies also establish a "somatic brain transgenic" paradigm to rapidly and cost-effectively evaluate potential modifiers of AD-like pathology in AD mouse models.
Collapse
Affiliation(s)
- Yona Levites
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Karen Jansen
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Lisa A. Smithson
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Rachel Dakin
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Vallie M. Holloway
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Todd E. Golde
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| |
Collapse
|
34
|
Levites Y, Smithson LA, Price RW, Dakin RS, Yuan B, Sierks MR, Kim J, McGowan E, Reed DK, Rosenberry TL, Das P, Golde TE. Insights into the mechanisms of action of anti-Abeta antibodies in Alzheimer's disease mouse models. FASEB J 2006; 20:2576-8. [PMID: 17068112 DOI: 10.1096/fj.06-6463fje] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of hypotheses regarding how anti-Abeta antibodies alter amyloid deposition have been postulated, yet there is no consensus as to how Abeta immunotherapy works. We have examined the in vivo binding properties, pharmacokinetics, brain penetrance, and alterations in Abeta levels after a single peripheral dose of anti-Abeta antibodies to both wild-type (WT) and young non-Abeta depositing APP and BRI-Abeta42 mice. The rapid rise in plasma Abeta observed after antibody (Ab) administration is attributable to prolongation of the half-life of Abeta bound to the Ab. Only a miniscule fraction of Ab enters the brain, and despite dramatic increases in plasma Abeta, we find no evidence that total brain Abeta levels are significantly altered. Surprisingly, cerebral spinal fluid Abeta levels transiently rise, and when Ab:Abeta complex is directly injected into the lateral ventricles of mice, it is rapidly cleared from the brain into the plasma where it remains stable. When viewed in context of daily turnover of Abeta, these data provide a framework to evaluate proposed mechanisms of Abeta attenuation mediated by peripheral administration of an anti-Abeta monoclonal antibody (mAb) effective in passive immunization paradigm. Such quantitative data suggest that the mAbs are either indirectly enhancing clearance of Abeta or targeting a low abundance aggregation intermediate.
Collapse
Affiliation(s)
- Yona Levites
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|