1
|
He F, Shi WJ, Liu W, Fan JX, He ZG, Zhang YQ, Xiao J, Ruan WW, Gai YK, Zhang HL, Yang BB, Qin Y, Wang H, Li J, Wang JL, Liu S, Shi LP, Chen ZX, Jiang WJ, An N, Xue PJ, Wang ZH, Yang RJ, Tian PY, Chen Z, Xiao L, Yang ZS, Feng KB, Tan WY, Sun ZM, Xu W, Shu H, Wang JZ. A mass-producible macaque model displays a durable Alzheimer-like cognitive deficit and hallmark amyloid-β/tau/neurofilament light chain pathologies. J Alzheimers Dis 2025:13872877251334316. [PMID: 40267273 DOI: 10.1177/13872877251334316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
BackgroundAlzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive deficit and pathological accumulation of amyloid-β (Aβ) and tau proteins. The rodent models have contributed greatly to unravel AD pathogenesis, but these AD models have been shown a modest clinical translational effectiveness.ObjectiveTherefore, developing mass-producible primate AD models is promising for more effective drug development.MethodsHere, we constructed the AD monkey models by simultaneously infusing AAV-Tau and Aβ into different brain regions.ResultsThe induced monkeys showed a durable cognitive impairment lasting for at least 10 months after the modeling. Simultaneously, the increased levels of total tau and hyperphosphorylated tau (pTau) at several AD-associated sites, and neurofilament light chains (NfL) with altered Aβ level were detected at different time points in cerebrospinal fluid and/or plasma by using MSD kits. The increased brain accumulation of Aβ and tau proteins was also detected by positron emission tomography/magnetic resonance imaging and immunohistochemical staining. The model monkeys also had significant glial activation; an indicator of inflammation commonly seen in the brains of AD patients.ConclusionsTogether, this study provides mass-producible monkey models showing durable AD-like hallmark pathologies (Aβ, tau, NfL, i.e., ATN) and cognitive deficits. As monkeys are genetically and metabolically the closest to humans, these models will offer more effective drug discovery and development for AD.
Collapse
Affiliation(s)
- Feng He
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Wen-Jiao Shi
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| | - Jing-Xin Fan
- Department of Neurosurgery, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, P. R. China
| | - Zhi-Gang He
- Department of Emergency Medicine/Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ya-Qi Zhang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Jing Xiao
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Wei-Wei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, P. R. China
| | - Yong-Kang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, P. R. China
| | - Hong-Li Zhang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Bin-Bin Yang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Yao Qin
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Hao Wang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Jia Li
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Jun-Li Wang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Sha Liu
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Li-Ping Shi
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Zhong-Xu Chen
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Wei-Jie Jiang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Ni An
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Peng-Jing Xue
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Zi-Hao Wang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Rui-Jie Yang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Peng-Yu Tian
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Zhu Chen
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Ling Xiao
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Zheng-Sheng Yang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Kang-Bo Feng
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Wei-Ye Tan
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Zhan-Meng Sun
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Wei Xu
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Research Institute, Hubei Topgene Biotechnology, Wuhan, P. R. China
- Department of Pathophysiology, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
2
|
Schwehr BJ, Hartnell D, Ellison G, Hindes MT, Milford B, Dallerba E, Hickey SM, Pfeffer FM, Brooks DA, Massi M, Hackett MJ. Fluorescent probes for neuroscience: imaging ex vivo brain tissue sections. Analyst 2024; 149:4536-4552. [PMID: 39171617 DOI: 10.1039/d4an00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Neurobiological research relies heavily on imaging techniques, such as fluorescence microscopy, to understand neurological function and disease processes. However, the number and variety of fluorescent probes available for ex vivo tissue section imaging limits the advance of research in the field. In this review, we outline the current range of fluorescent probes that are available to researchers for ex vivo brain section imaging, including their physical and chemical characteristics, staining targets, and examples of discoveries for which they have been used. This review is organised into sections based on the biological target of the probe, including subcellular organelles, chemical species (e.g., labile metal ions), and pathological phenomenon (e.g., degenerating cells, aggregated proteins). We hope to inspire further development in this field, given the considerable benefits to be gained by the greater availability of suitably sensitive probes that have specificity for important brain tissue targets.
Collapse
Affiliation(s)
- Bradley J Schwehr
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - David Hartnell
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Gaewyn Ellison
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Breah Milford
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Elena Dallerba
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Massimiliano Massi
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Mark J Hackett
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| |
Collapse
|
3
|
Dai Y, Bi M, Jiao Q, Du X, Yan C, Jiang H. Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:143. [PMID: 39095480 PMCID: PMC11297325 DOI: 10.1038/s41531-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Apolipoprotein D (ApoD), a lipocalin transporter of small hydrophobic molecules, plays an essential role in several neurodegenerative diseases. It was reported that increased immunostaining for ApoD of glial cells surrounding dopaminergic (DAergic) neurons was observed in the brains of Parkinson's disease (PD) patients. Although preliminary findings supported the role of ApoD in neuroprotection, its derivation and effects on the degeneration of nigral DAergic neurons are largely unknown. In the present study, we observed that ApoD levels released from astrocytes were increased in PD models both in vivo and in vitro. When co-cultured with astrocytes, due to the increased release of astrocytic ApoD, the survival rate of primary cultured ventral midbrain (VM) neurons was significantly increased with 1-methyl-4-phenylpyridillium ion (MPP+) treatment. Increased levels of TAp73 and its phosphorylation at Tyr99 in astrocytes were required for the increased ApoD levels and its release. Conditional knockdown of TAp73 in the nigral astrocytes in vivo could aggravate the neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice. Our findings reported that astrocyte-derived ApoD was essential for DAergic neuronal survival in PD models, might provide new therapeutic targets for PD.
Collapse
Affiliation(s)
- Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
4
|
Takaya K, Asou T, Kishi K. Identification of Apolipoprotein D as a Dermal Fibroblast Marker of Human Aging for Development of Skin Rejuvenation Therapy. Rejuvenation Res 2023; 26:42-50. [PMID: 36571249 DOI: 10.1089/rej.2022.0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current understanding of skin aging is that senescent fibroblasts accumulate within the dermis and subcutaneous fat to cause abnormal tissue remodeling and extracellular matrix dysfunction, triggering a senescence-associated secretory phenotype (SASP). A novel therapeutic approach to prevent skin aging is to specifically eliminate senescent dermal fibroblasts; this requires the identification of specific protein markers for senescent cells. Apolipoprotein D (ApoD) is involved in lipid metabolism and antioxidant responses and is abundantly expressed in tissues affected by age-related diseases such as Alzheimer's disease and atherosclerosis. However, its behavior and role in skin aging remain unclear. In this study, we examined whether ApoD functions as a marker of aging using human dermal fibroblast aging models. In cellular senescence models induced through replicative aging and ionizing radiation exposure, ApoD expression was upregulated at the gene and protein levels and correlated with senescence-associated β-galactosidase activity and the decreased uptake of the proliferation marker bromodeoxyuridine, which was concomitant with the upregulation of SASP genes. Furthermore, ApoD-positive cells were found to be more abundant in the aging human dermis using fluorescence flow cytometry. These results suggest that ApoD is a potential clinical marker for identifying aging dermal fibroblasts.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Corraliza-Gomez M, Bendito B, Sandonis-Camarero D, Mondejar-Duran J, Villa M, Poncela M, Valero J, Sanchez D, Ganfornina MD. Dual role of Apolipoprotein D as long-term instructive factor and acute signal conditioning microglial secretory and phagocytic responses. Front Cell Neurosci 2023; 17:1112930. [PMID: 36779011 PMCID: PMC9908747 DOI: 10.3389/fncel.2023.1112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Microglial cells are recognized as very dynamic brain cells, screening the environment and sensitive to signals from all other cell types in health and disease. Apolipoprotein D (ApoD), a lipid-binding protein of the Lipocalin family, is required for nervous system optimal function and proper development and maintenance of key neural structures. ApoD has a cell and state-dependent expression in the healthy nervous system, and increases its expression upon aging, damage or neurodegeneration. An extensive overlap exists between processes where ApoD is involved and those where microglia have an active role. However, no study has analyzed the role of ApoD in microglial responses. In this work, we test the hypothesis that ApoD, as an extracellular signal, participates in the intercellular crosstalk sensed by microglia and impacts their responses upon physiological aging or damaging conditions. We find that a significant proportion of ApoD-dependent aging transcriptome are microglia-specific genes, and show that lack of ApoD in vivo dysregulates microglial density in mouse hippocampus in an age-dependent manner. Murine BV2 and primary microglia do not express ApoD, but it can be internalized and targeted to lysosomes, where unlike other cell types it is transiently present. Cytokine secretion profiles and myelin phagocytosis reveal that ApoD has both long-term pre-conditioning effects on microglia as well as acute effects on these microglial immune functions, without significant modification of cell survival. ApoD-triggered cytokine signatures are stimuli (paraquat vs. Aβ oligomers) and sex-dependent. Acute exposure to ApoD induces microglia to switch from their resting state to a secretory and less phagocytic phenotype, while long-term absence of ApoD leads to attenuated cytokine induction and increased myelin uptake, supporting a role for ApoD as priming or immune training factor. This knowledge should help to advance our understanding of the complex responses of microglia during aging and neurodegeneration, where signals received along our lifespan are combined with damage-triggered acute signals, conditioning both beneficial roles and limitations of microglial functions.
Collapse
Affiliation(s)
- Miriam Corraliza-Gomez
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Beatriz Bendito
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - David Sandonis-Camarero
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Jorge Mondejar-Duran
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Miguel Villa
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Marta Poncela
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain,Diego Sanchez,
| | - Maria D. Ganfornina
- Instituto de Biología y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid, Spain,*Correspondence: Maria D. Ganfornina, ,
| |
Collapse
|
6
|
Baerends E, Soud K, Folke J, Pedersen AK, Henmar S, Konrad L, Lycas MD, Mori Y, Pakkenberg B, Woldbye DPD, Dmytriyeva O, Pankratova S. Modeling the early stages of Alzheimer's disease by administering intracerebroventricular injections of human native Aβ oligomers to rats. Acta Neuropathol Commun 2022; 10:113. [PMID: 35974377 PMCID: PMC9380371 DOI: 10.1186/s40478-022-01417-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease characterized by the accumulation of aggregated amyloid beta (Aβ) and hyperphosphorylated tau along with a slow decline in cognitive functions. Unlike advanced AD, the initial steps of AD pathophysiology have been poorly investigated, partially due to limited availability of animal models focused on the early, plaque-free stages of the disease. The aim of this study was to evaluate the early behavioral, anatomical and molecular alterations in wild-type rats following intracerebroventricular injections of human Aβ oligomers (AβOs). Bioactive human AD and nondemented control brain tissue extracts were characterized using ELISA and proteomics approaches. Following a bilateral infusion, rats underwent behavioral testing, including the elevated plus maze, social recognition test, Morris water maze and Y-maze within 6 weeks postinjection. An analysis of brain structure was performed with manganese-enhanced MRI. Collected brain tissues were analyzed using stereology, immunohistochemistry, ELISA and qPCR. No sensorimotor deficits affecting motor performance on different maze tasks were observed, nor was spatial memory disturbed in AD rats. In contrast, a significant impairment of social memory became evident at 21 days postinjection. This deficit was associated with a significantly decreased volume of the lateral entorhinal cortex and a tendency toward a decrease in the total brain volume. Significant increase of cleaved caspase-3-positive cells, microglial activation and proinflammatory responses accompanied by altered expression of synaptic markers were observed in the hippocampus of AD rats with immunohistochemical and qPCR approaches at 6 weeks postinjection. Our data suggest that the social memory impairment observed in AβO-injected rats might be determined by neuroinflammatory responses and synaptopathy. An infusion of native oligomeric Aβ in the rat brain represents a feasible tool to model early plaque-free events associated with AD.
Collapse
Affiliation(s)
- Eva Baerends
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Katia Soud
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Department of Neurology,, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Henmar
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lisa Konrad
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Department of Neurology,, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David P D Woldbye
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
8
|
Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, Yassine HN. Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Front Physiol 2021; 12:700847. [PMID: 34552500 PMCID: PMC8450374 DOI: 10.3389/fphys.2021.700847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cristiana Meuret
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ashley E Martinez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vibha Kodancha
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Abbasi DA, Nguyen TTA, Hall DA, Robertson-Dick E, Berry-Kravis E, Cologna SM. Characterization of the Cerebrospinal Fluid Proteome in Patients with Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2021; 21:86-98. [PMID: 34046842 DOI: 10.1007/s12311-021-01262-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 01/11/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS), first described in 2001, is a neurodegenerative and movement disorder, caused by a premutation in the fragile X mental retardation 1 (FMR1) gene. To date, the biological mechanisms causing this condition are still not well understood, as not all premutation carriers develop FXTAS. To further understand this syndrome, we quantitatively compared the cerebrospinal fluid (CSF) proteome of FXTAS patients with age-matched controls using mass spectrometry. We identified 415 proteins of which 97 were altered in FXTAS patients. These proteins suggest changes in acute phase response signaling, liver X receptor/ retinoid X receptor (LXR/RXR) activation, and farnesoid X receptor (FXR)/RXR activation, which are the main pathways found to be affected. Additionally, we detected changes in many other proteins including amyloid-like protein 2, contactin-1, afamin, cell adhesion molecule 4, NPC intracellular cholesterol transporter 2, and cathepsin B, that had been previously noted to hold important roles in other movement disorders. Specific to RXR pathways, several apolipoproteins (APOA1, APOA2, APOA4, APOC2, and APOD) showed significant changes in the CSF of FXTAS patients. Lastly, CSF parameters were analyzed to investigate abnormalities in blood brain barrier function. Correlations were observed between patient albumin quotient values, a measure of permeability, and CGG repeat length as well as FXTAS rating scale scores.
Collapse
Affiliation(s)
- Diana A Abbasi
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson-Dick
- Department of Communication Sciences and Disorders, Northwestern University, Chicago, IL, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA.
- Laboratory of Integrated Neuroscience, University of Illinois At Chicago, 845 W Taylor Street, Room 4500, Chicago, IL, 60607, USA.
| |
Collapse
|
10
|
Desmarais F, Hervé V, Bergeron KF, Ravaut G, Perrotte M, Fyfe-Desmarais G, Rassart E, Ramassamy C, Mounier C. Cerebral Apolipoprotein D Exits the Brain and Accumulates in Peripheral Tissues. Int J Mol Sci 2021; 22:ijms22084118. [PMID: 33923459 PMCID: PMC8073497 DOI: 10.3390/ijms22084118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. In rodent, the bulk of its expression occurs in the central nervous system. Despite this, ApoD has profound effects in peripheral tissues, indicating that neural ApoD may reach peripheral organs. We endeavor to determine if cerebral ApoD can reach the circulation and accumulate in peripheral tissues. Three hours was necessary for over 40% of all the radiolabeled human ApoD (hApoD), injected bilaterally, to exit the central nervous system (CNS). Once in circulation, hApoD accumulates mostly in the kidneys/urine, liver, and muscles. Accumulation specificity of hApoD in these tissues was strongly correlated with the expression of lowly glycosylated basigin (BSG, CD147). hApoD was observed to pass through bEnd.3 blood brain barrier endothelial cells monolayers. However, cyclophilin A did not impact hApoD internalization rates in bEnd.3, indicating that ApoD exit from the brain is either independent of BSG or relies on additional cell types. Overall, our data showed that ApoD can quickly and efficiently exit the CNS and reach the liver and kidneys/urine, organs linked to the recycling and excretion of lipids and toxins. This indicated that cerebral overexpression during neurodegenerative episodes may serve to evacuate neurotoxic ApoD ligands from the CNS.
Collapse
Affiliation(s)
- Frederik Desmarais
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Vincent Hervé
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
| | - Karl F. Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
| | - Gaétan Ravaut
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
| | - Morgane Perrotte
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
| | - Guillaume Fyfe-Desmarais
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
- Correspondence: (C.R.); (C.M.)
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Correspondence: (C.R.); (C.M.)
| |
Collapse
|
11
|
Jankovska N, Olejar T, Matej R. Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins? Int J Mol Sci 2020; 22:E7. [PMID: 33374972 PMCID: PMC7792617 DOI: 10.3390/ijms22010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by the deposition of specific protein aggregates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer's disease, in which plaques are composed of amyloid β-protein, while in prionoses, the same term "amyloid" refers to the amyloid prion protein. In this review, we focused on providing a detailed didactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer's disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 100 00 Prague, Czech Republic; (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 100 00 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 100 00 Prague, Czech Republic
| |
Collapse
|
12
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
13
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
14
|
Kuiperij HB, Hondius DC, Kersten I, Versleijen AAM, Rozemuller AJM, Greenberg SM, Schreuder FHBM, Klijn CJM, Verbeek MM. Apolipoprotein D: a potential biomarker for cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2020; 46:431-440. [PMID: 31872472 DOI: 10.1111/nan.12595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023]
Abstract
AIMS We investigated the potential of apolipoprotein D (apoD) as cerebrospinal fluid (CSF) biomarker for cerebral amyloid angiopathy (CAA) after confirmation of its association with CAA pathology in human brain tissue. METHODS The association of apoD with CAA pathology was analysed in human occipital lobe tissue of CAA (n = 9), Alzheimer's disease (AD) (n = 11) and healthy control cases (n = 11). ApoD levels were quantified in an age- and sex-matched CSF cohort of CAA patients (n = 31), AD patients (n = 27) and non-neurological controls (n = 67). The effects of confounding factors (age, sex, serum levels) on apoD levels were studied using CSF of non-neurological controls (age range 16-85 years), and paired CSF and serum samples. RESULTS ApoD was strongly associated with amyloid deposits in vessels, but not with parenchymal plaques in human brain tissue. CSF apoD levels correlated with age and were higher in men than women in subjects >50 years. The apoD CSF/serum ratio correlated with the albumin ratio. When controlling for confounding factors, CSF apoD levels were significantly lower in CAA patients compared with controls and compared with AD patients (P = 0.0008). CONCLUSIONS Our data show that apoD is specifically associated with CAA pathology and may be a CSF biomarker for CAA, but clinical application is complicated due to dependency on age, sex and blood-CSF barrier integrity. Well-controlled follow-up studies are required to determine whether apoD can be used as reliable biomarker for CAA.
Collapse
Affiliation(s)
- H B Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D C Hondius
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - I Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A A M Versleijen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - S M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Bhatia S, Kim WS, Shepherd CE, Halliday GM. Apolipoprotein D Upregulation in Alzheimer's Disease but Not Frontotemporal Dementia. J Mol Neurosci 2018; 67:125-132. [PMID: 30467822 PMCID: PMC6344390 DOI: 10.1007/s12031-018-1217-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer’s disease (AD) are the two common forms of dementia. FTD syndromes are characterized by lobar atrophy (frontotemporal lobar degeneration or FTLD) and the presence of either cellular TDP43 (FTLD-TDP), tau (FTLD-tau), or FUS aggregates, while extracellular β-amyloid plaques and hyperphosphorylated tau tangles develop in AD. Oxidative stress can induce these pathological modifications in disease models, and is thought to play a role in these syndromes. Apolipoprotein D (apoD) is a glial-expressed lipocalin known to protect against oxidative stress, with increased levels in AD, supporting a protective role. The expression of apoD has not been studied in FTLD. This study assesses apoD expression in FTLD-TDP and FTLD-tau in comparison to AD and controls. It also analyzes the effect of apoD on TARDBP (TDP43 gene) and β-amyloid precursor protein (APP). The expression of apoD was analyzed by Western blotting in FTLD-TDP, FTLD-tau, AD, and control post-mortem brain tissue. An apoD-overexpressing cell model was used to study the impact of increased apoD on APP and TARDBP expression. We confirm that apoD expression was increased in AD but surprisingly it was not affected in either of the two main pathological forms of FTLD. Under oxidative stress conditions, apoD had no effect on TDP43 expression but it did decrease APP expression. This suggests that apoD does not act as a neuroprotective factor in FTLD in the same way as in AD. This could contribute to the more rapid degeneration observed in FTLD.
Collapse
Affiliation(s)
- Surabhi Bhatia
- Central Clinical School and Brain and Mind Centre, Faculty of Medicine and Health Sciences, The University of Sydney, 94 Mallet Street, Camperdown, NSW, Australia.
| | - Woojin Scott Kim
- Central Clinical School and Brain and Mind Centre, Faculty of Medicine and Health Sciences, The University of Sydney, 94 Mallet Street, Camperdown, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Central Clinical School and Brain and Mind Centre, Faculty of Medicine and Health Sciences, The University of Sydney, 94 Mallet Street, Camperdown, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Desmarais F, Bergeron KF, Lacaille M, Lemieux I, Bergeron J, Biron S, Rassart E, Joanisse DR, Mauriege P, Mounier C. High ApoD protein level in the round ligament fat depot of severely obese women is associated with an improved inflammatory profile. Endocrine 2018; 61:248-257. [PMID: 29869155 DOI: 10.1007/s12020-018-1621-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Apolipoprotein D (ApoD) is a lipocalin participating in lipid transport. It binds to a variety of ligands, with a higher affinity for arachidonic acid, and is thought to have a diverse array of functions. We investigated a potential role for ApoD in insulin sensitivity, inflammation, and thrombosis-processes related to lipid metabolism-in severely obese women. METHODS We measured ApoD expression in a cohort of 44 severely obese women including dysmetabolic and non-dysmetabolic patients. Physical and metabolic characteristics of these women were determined from anthropometric measurements and blood samples. ApoD was quantified at the mRNA and protein levels in samples from three intra-abdominal adipose tissues (AT): omental, mesenteric and round ligament (RL). RESULTS ApoD protein levels were highly variable between AT of the same individual. High ApoD protein levels, particularly in the RL depot, were linked to lower plasma insulin levels (-40%, p = 0.015) and insulin resistance (-47%, p = 0.022), and increased insulin sensitivity (+10%, p = 0.008). Lower circulating pro-inflammatory PAI-1 (-39%, p = 0.001), and TNF-α (-19%, p = 0.030) levels were also correlated to high ApoD protein in the RL AT. CONCLUSIONS ApoD variability between AT was consistent with different accumulation efficiencies and/or metabolic functions according to the anatomic location of fat depots. Most statistically significant correlations implicated ApoD protein levels, in agreement with protein accumulation in target tissues. These correlations associated higher ApoD levels in fat depots with improved metabolic health in severely obese women.
Collapse
Affiliation(s)
- Frederik Desmarais
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Karl-F Bergeron
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Michel Lacaille
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Isabelle Lemieux
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Jean Bergeron
- Endocrinology and Nephrology Axis, Research Center of the University Hospital, Quebec City, QC, Canada
| | - Simon Biron
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Eric Rassart
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada
| | - Denis R Joanisse
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Pascale Mauriege
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Research Center of the Quebec University Heart and Lung Institute, Quebec City, QC, Canada
| | - Catherine Mounier
- BioMed Research Center, Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, Canada.
| |
Collapse
|
17
|
Del Valle E, Navarro A, Martínez-Pinilla E, Torices S, Tolivia J. Apo J and Apo D: Complementary or Antagonistic Roles in Alzheimer's Disease? J Alzheimers Dis 2016; 53:639-50. [PMID: 27197790 DOI: 10.3233/jad-160032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apolipoprotein D (Apo D) and Apolipoprotein J (Apo J) are among the only nine apolipoproteins synthesized in the nervous system. Apart from development, these apolipoproteins are implicated in the normal aging process as well as in different neuropathologies as Alzheimer's disease (AD), where a neuroprotective role has been postulated. Different authors have proposed that Apo D and Apo J could be biomarkers for AD but as far as we know, there are no studies about the relationship between them as well as their expression pattern along the progression of the disease. In this paper, using double immunohistochemistry techniques, we have demonstrated that Apo D is mainly located in glial cells while Apo J expression preferentially occurs in neurons; both proteins are also present in AD diffuse and mature senile plaques but without signal overlap. In addition, we have observed that Apo J and Apo D immunostaining shows a positive correlation with the progression of the disease and the Braak's stages. These results suggest complementary and cell-dependent neuroprotective roles for each apolipoprotein during AD progress.
Collapse
|
18
|
Armanmehr S, Kalhor HR, Tabarraei A. Production of a soluble and functional recombinant apolipoproteinD in the Pichia pastoris expression system. Protein Expr Purif 2016; 121:157-62. [PMID: 26826316 DOI: 10.1016/j.pep.2016.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel β-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein.
Collapse
Affiliation(s)
- Shiva Armanmehr
- Metabolic Disorder Research Center, Golestan University of Medical Science, Gorgan, Iran; Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Hamid Reza Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
19
|
Li H, Ruberu K, Muñoz SS, Jenner AM, Spiro A, Zhao H, Rassart E, Sanchez D, Ganfornina MD, Karl T, Garner B. Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging 2015; 36:1820-33. [PMID: 25784209 DOI: 10.1016/j.neurobiolaging.2015.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/10/2015] [Indexed: 11/24/2022]
Abstract
Apolipoprotein D (apoD) is expressed in the brain and levels are increased in affected brain regions in Alzheimer's disease (AD). The role that apoD may play in regulating AD pathology has not been addressed. Here, we crossed both apoD-null mice and Thy-1 human apoD transgenic mice with APP-PS1 amyloidogenic AD mice. Loss of apoD resulted in a nearly 2-fold increase in hippocampal amyloid plaque load, as assessed by immunohistochemical staining. Conversely, transgenic expression of neuronal apoD reduced hippocampal plaque load by approximately 35%. This latter finding was associated with a 60% decrease in amyloid β 1-40 peptide levels, and a 34% decrease in insoluble amyloid β 1-42 peptide. Assessment of β-site amyloid precursor protein cleaving enzyme-1 (BACE1) levels and proteolytic products of amyloid precursor protein and neuregulin-1 point toward a possible association of altered BACE1 activity in association with altered apoD levels. In conclusion, the current studies provide clear evidence that apoD regulates amyloid plaque pathology in a mouse model of AD.
Collapse
Affiliation(s)
- Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Andrew M Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Adena Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Hua Zhao
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Eric Rassart
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; BioMed, centre de recherches biomédicales, Université du Québec à Montréal, Montréal, Canada
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Medical Sciences, University of New South Wales, NSW, Australia; Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia.
| |
Collapse
|
20
|
Moore RA, Sturdevant DE, Chesebro B, Priola SA. Proteomics analysis of amyloid and nonamyloid prion disease phenotypes reveals both common and divergent mechanisms of neuropathogenesis. J Proteome Res 2014; 13:4620-34. [PMID: 25140793 PMCID: PMC4227561 DOI: 10.1021/pr500329w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Prion
diseases are a heterogeneous group of neurodegenerative disorders
affecting various mammals including humans. Prion diseases are characterized
by a misfolding of the host-encoded prion protein (PrPC) into a pathological isoform termed PrPSc. In wild-type
mice, PrPC is attached to the plasma membrane by a glycosylphosphatidylinositol
(GPI) anchor and PrPSc typically accumulates in diffuse
nonamyloid deposits with gray matter spongiosis. By contrast, when
mice lacking the GPI anchor are infected with the same prion inoculum,
PrPSc accumulates in dense perivascular amyloid plaques
with little or no gray matter spongiosis. In order to evaluate whether
different host biochemical pathways were implicated in these two phenotypically
distinct prion disease models, we utilized a proteomics approach.
In both models, infected mice displayed evidence of a neuroinflammatory
response and complement activation. Proteins involved in cell death
and calcium homeostasis were also identified in both phenotypes. However,
mitochondrial pathways of apoptosis were implicated only in the nonamyloid
form, whereas metal binding and synaptic vesicle transport were more
disrupted in the amyloid phenotype. Thus, following infection with
a single prion strain, PrPC anchoring to the plasma membrane
correlated not only with the type of PrPSc deposition but
also with unique biochemical pathways associated with pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases and ‡Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases , Hamilton, Montana 59840, United States
| | | | | | | |
Collapse
|
21
|
Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35:1632-42. [PMID: 24612673 PMCID: PMC3988949 DOI: 10.1016/j.neurobiolaging.2014.01.148] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 02/08/2023]
Abstract
Apolipoprotein D (ApoD) is an ancient member of the lipocalin family with a high degree of sequence conservation from insects to mammals. It is not structurally related to other major apolipoproteins and has been known as a small, soluble carrier protein of lipophilic molecules that is mostly expressed in neurons and glial cells within the central and peripheral nervous system. Recent data indicate that ApoD not only supplies cells with lipophilic molecules, but also controls the fate of these ligands by modulating their stability and oxidation status. Of particular interest is the binding of ApoD to arachidonic acid and its derivatives, which play a central role in healthy brain function. ApoD has been shown to act as a catalyst in the reduction of peroxidized eicosanoids and to attenuate lipid peroxidation in the brain. Manipulating its expression level in fruit flies and mice has demonstrated that ApoD has a favorable effect on both stress resistance and life span. The APOD gene is the gene that is upregulated the most in the aging human brain. Furthermore, ApoD levels in the nervous system are elevated in a large number of neurologic disorders including Alzheimer's disease, schizophrenia, and stroke. There is increasing evidence for a prominent neuroprotective role of ApoD because of its antioxidant and anti-inflammatory activity. ApoD emerges as an evolutionarily conserved anti-stress protein that is induced by oxidative stress and inflammation and may prove to be an effective therapeutic agent against a variety of neuropathologies, and even against aging.
Collapse
Affiliation(s)
- Sarah Dassati
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Andreas Waldner
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Rüdiger Schweigreiter
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
22
|
Song F, Poljak A, Kochan NA, Raftery M, Brodaty H, Smythe GA, Sachdev PS. Plasma protein profiling of Mild Cognitive Impairment and Alzheimer's disease using iTRAQ quantitative proteomics. Proteome Sci 2014; 12:5. [PMID: 24433274 PMCID: PMC3898732 DOI: 10.1186/1477-5956-12-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/10/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND With the promise of disease modifying treatments, there is a need for more specific diagnosis and prognosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Plasma biomarkers are likely to be utilised to increase diagnostic accuracy and specificity of AD and cognitive decline. METHODS Isobaric tags (iTRAQ) and proteomic methods were used to identify potential plasma biomarkers of MCI and AD. Relative protein expression level changes were quantified in plasma of 411 cognitively normal subjects, 19 AD patients and 261 MCI patients. Plasma was pooled into 4 groups including normal control, AD, amnestic single and multiple domain MCI (aMCI), and nonamnestic single and multiple domain MCI (nMCI). Western-blotting was used to validate iTRAQ data. Integrated function and protein interactions were explored using WEB based bioinformatics tools (DAVID v6.7 and STRING v9.0). RESULTS In at least two iTRAQ replicate experiments, 30 proteins were significantly dysregulated in MCI and AD plasma, relative to controls. These proteins included ApoA1, ApoB100, complement C3, C4b-binding protein, afamin, vitamin D-binding protein precursor, isoform 1 of Gelsolin actin regulator, Ig mμ chain C region (IGHM), histidine-rich glycoprotein and fibrinogen β and γ chains. Western-blotting confirmed that afamin was decreased and IGHM was increased in MCI and AD groups. Bioinformatics results indicated that these dysregulated proteins represented a diversity of biological processes, including acute inflammatory response, cholesterol transport and blood coagulation. CONCLUSION These findings demonstrate that expression level changes in multiple proteins are observed in MCI and AD plasma. Some of these, such as afamin and IGHM, may be candidate biomarkers for AD and the predementia condition of MCI.
Collapse
Affiliation(s)
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Binding and repressive activities of apolipoprotein E3 and E4 isoforms on the human ApoD promoter. Mol Neurobiol 2013; 48:669-80. [PMID: 23715769 PMCID: PMC7090986 DOI: 10.1007/s12035-013-8456-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/09/2013] [Indexed: 11/04/2022]
Abstract
Apolipoprotein D (ApoD) gene expression is increased in several neurological disorders such as Alzheimer’s disease (AD) and multiple sclerosis. We previously showed that transgenic mice that overexpress human ApoD show a better resistance against paraquat or OC43 coronavirus-induced neurodegeneration. Here, we identified several nuclear factors from the cortex of control and OC43-infected mice which bind a fragment of the proximal ApoD promoter in vitro. Of interest, we detected apolipoprotein E (ApoE). Human ApoE consists of three isoforms (E2, E3, and E4) with the E4 and E2 alleles representing a greater and a lower risk for developping AD, respectively. Our results show that ApoE is located in the nucleus and on the ApoD promoter in human hepatic and glioblastoma cells lines. Furthermore, overexpression of ApoE3 and ApoE4 isoforms but not ApoE2 significantly inhibited the ApoD promoter activity in U87 cells (E3/E3 genotype) cultured under normal or different stress conditions while ApoE knock-down by siRNA had a converse effect. Consistent with these results, we also demonstrated by ChIP assay that E3 and E4 isoforms, but not E2, bind the ApoD promoter. Moreover, using the Allen Brain Atlas in situ hybridization database, we observed an inverse correlation between ApoD and ApoE mRNA expression during development and in several regions of the mouse brain, notably in the cortex, hippocampus, plexus choroid, and cerebellum. This negative correlation was also observed for cortex layers IV–VI based on a new Transcriptomic Atlas of the Mouse Neocortical Layers. These findings reveal a new function for ApoE by regulating ApoD gene expression.
Collapse
|
24
|
Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. Biochem J 2012; 442:713-21. [PMID: 22150111 DOI: 10.1042/bj20111166] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ApoD (apolipoprotein D) is up-regulated in AD (Alzheimer's disease) and upon oxidative stress. ApoD inhibits brain lipid peroxidation in vivo, but the mechanism is unknown. Specific methionine residues may inhibit lipid peroxidation by reducing radical-propagating L-OOHs (lipid hydroperoxides) to non-reactive hydroxides via a reaction that generates MetSO (methionine sulfoxide). Since apoD has three conserved methionine residues (Met(49), Met(93) and Met(157)), we generated recombinant proteins with either one or all methionine residues replaced by alanine and assessed their capacity to reduce HpETEs (hydroperoxyeicosatetraenoic acids) to their HETE (hydroxyeicosatetraenoic acid) derivatives. ApoD, apoD(M49-A) and apoD(M157-A) all catalysed the reduction of HpETEs to their corresponding HETEs. Amino acid analysis of HpETE-treated apoD revealed a loss of one third of the methionine residues accompanied by the formation of MetSO. Additional studies using apoD(M93-A) indicated that Met(93) was required for HpETE reduction. We also assessed the impact that apoD MetSO formation has on protein aggregation by Western blotting of HpETE-treated apoD and human brain samples. ApoD methionine oxidation was associated with formation of apoD aggregates that were also detected in the hippocampus of AD patients. In conclusion, conversion of HpETE into HETE is mediated by apoD Met(93), a process that may contribute to apoD antioxidant function.
Collapse
|
25
|
Ordóñez C, Navarro A, Pérez C, Martínez E, del Valle E, Tolivia J. Gender differences in apolipoprotein D expression during aging and in Alzheimer disease. Neurobiol Aging 2012; 33:433.e11-20. [DOI: 10.1016/j.neurobiolaging.2011.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/10/2010] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
|
26
|
Diversity and disparity in dementia: the impact of ethnoracial differences in Alzheimer disease. Alzheimer Dis Assoc Disord 2011; 25:187-95. [PMID: 21399486 DOI: 10.1097/wad.0b013e318211c6c9] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Debate exists regarding differences in the prevalence of Alzheimer disease (AD) in African Americans and Hispanics in the United States, with some evidence suggesting that the prevalence of AD may be considerably higher in these groups than in non-Hispanic whites. Despite this possible disparity, patients of minority ethnoracial groups often receive delayed diagnosis or inadequate treatment for dementia. This review investigates these disparities by conceptualizing the dementia disease process as a product of both biological and cultural factors. Ethnoracial differences in biological risk factors, such as genetics and cardiovascular disease, may help to explain disparities in the incidence and prevalence of AD, whereas race-specific cultural factors may impact diagnosis and treatment. Cultural factors include differences in perceptions about what is normal aging and what is not, lack of adequate access to medical care, and issues of trust between minority groups and the medical establishment. The diagnosis of AD in diverse populations may also be complicated by racial biases inherent in cognitive screening tools widely used by clinicians, but controlling for literacy level or using savings scores in psychometric analyses has the potential to mitigate these biases. We also suggest that emerging biomarker-based diagnostic tools may be useful in further characterizing diverse populations with AD. Recognizing the gap in communication that exists between minority communities and the medical research community, we propose that education and outreach are a critical next step in the effort to understand AD as it relates to diverse populations.
Collapse
|
27
|
Mariano C, Silva SL, Pereira P, Fernandes A, Brites D, Brito MA. Evidence of tricellulin expression by immune cells, particularly microglia. Biochem Biophys Res Commun 2011; 409:799-802. [PMID: 21624353 DOI: 10.1016/j.bbrc.2011.05.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022]
Abstract
Tight junctions (TJs) are elaborate structures located on the apical region of epithelial cells that limit paracellular permeability. Tricellulin is a recently discovered TJ protein, which is concentrated at the structurally specialized tricellular TJs but also present at bicellular contacts between epithelial cells, namely in the stomach. Interestingly, several TJ proteins have been found in other than epithelial cells, as astrocytes, and tricellulin mRNA expression was reported in mature dendritic cells. These findings prompted us to look for tricellulin expression in both epithelial and immune cells in the stomach, as well as in microglia, the brain resident immunocompetent cells. Immunohistochemical analysis of human stomach tissue sections revealed peroxidase staining at three-corner contact sites, as well as at the contact between two adjacent epithelial cells, thus evidencing the expression of tricellulin not only at tricellullar but at bicellular junctions as well. Such analysis, further revealed tricellulin immunostaining in cells of the monocyte/macrophage lineage, scattered throughout the lamina propria. Cultured rat microglia exhibited a notorious tricellulin staining, consistent with an extensive expression of the protein along the cell, which was not absolutely coincident with the lysosomal marker CD68. Detection of mRNA expression by real-time PCR provided supportive evidence for the expression of the TJ protein in microglia. These data demonstrate for the first time that microglia express a TJ protein. Moreover, the expression of tricellulin both in microglia and in the stomach immune cells point to a possible role of this new TJ protein in the immune system.
Collapse
Affiliation(s)
- Cibelle Mariano
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
28
|
Antioxidant activities of recombinant amphioxus (Branchiostoma belcheri) apolipoprotein D. Mol Biol Rep 2010; 38:1847-51. [PMID: 20848217 DOI: 10.1007/s11033-010-0301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Apolipoprotein D (ApoD), a member of lipocalin, has been recently shown to be involved in regulating protection from oxidative stress. The absence of ApoD in mouse and Drosophila can reduce the resistance to oxidative stress and shorten lifespan. However, little information is available regarding the expression in vitro of ApoD and its biochemical properties. Amphioxus (Branchiostoma belcheri) ApoD, BbApoD, is an archetype of vertebrate ApoD proteins. In this study, the prokaryotic expression plasmid pET32a-BbApoD was constructed and recombinant BbApoD expressed in Escherichia coli BL21 and purified. Antioxidation assays showed that the recombinant BbApoD protein had the capacities to scavenge hydroxyl radicals (≥ 240 μg/ml) and to prevent nicking of the supercoiled DNA (≥ 100 μg/ml) in vitro, providing a biochemical evidence for antioxidant role of ApoD. This supports the notion that ApoD is part of the mechanisms regulating protection from oxidative stresses.
Collapse
|
29
|
Elliott DA, Weickert CS, Garner B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. ACTA ACUST UNITED AC 2010; 51:555-573. [PMID: 21423873 DOI: 10.2217/clp.10.37] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- David A Elliott
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
| | | | | |
Collapse
|
30
|
Perdomo G, Henry Dong H. Apolipoprotein D in lipid metabolism and its functional implication in atherosclerosis and aging. Aging (Albany NY) 2010; 1:17-27. [PMID: 19946382 PMCID: PMC2784685 DOI: 10.18632/aging.100004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Navarro A, del Valle E, Juárez A, Martinez E, Ordóñez C, Astudillo A, Tolivia J. Apolipoprotein D synthesis progressively increases in frontal cortex during human lifespan. AGE (DORDRECHT, NETHERLANDS) 2010; 32:85-96. [PMID: 19936966 PMCID: PMC2829646 DOI: 10.1007/s11357-009-9117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 10/05/2009] [Indexed: 05/04/2023]
Abstract
Apolipoprotein D (apo D) is a lipocalin present in the nervous system that may be related to processes of reinnervation, regeneration and neuronal cell protection. On the other hand, apo D expression has been correlated, in some brain regions, with normal ageing and neurodegenerative diseases. To elucidate the regional and cellular expression of apo Din normal human brain during ageing, we performed a detailed and extensive study in samples of post-mortem human cerebral cortices. To achieve this study, slot-blot techniques, for protein and mRNA,as well as immunohistochemistry and hybridohistochemistry methods, were used. A positive correlation for apo D expression with ageing was found;furthermore, mRNA levels, as well as the protein ones, were higher in the white than in the grey matter. Immunohistochemistry and non-isotopic in situ hybridization showed that apo D is synthesised in both neurons and glial cells. Apo D expression is notorious in oligodendrocytes, but with ageing, the number of neurons that synthesise apo D is increased.Our results indicate that apo D could play a fundamental role in central nervous system ageing and in the reduction of products derived from lipid peroxidation. The increment in the expression of apo D with ageing can be included in a global mechanism of cellular protection to prevent the deleterious effects caused by ageing.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva del Valle
- Life Sciences Department, The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA UK
| | - Amalia Juárez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva Martinez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Cristina Ordóñez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge Tolivia
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| |
Collapse
|
32
|
Armstrong RA, Cairns NJ. Analysis of beta-amyloid (Abeta) deposition in the temporal lobe in Alzheimer's disease using Fourier (spectral) analysis. Neuropathol Appl Neurobiol 2010; 36:248-57. [PMID: 20132489 DOI: 10.1111/j.1365-2990.2010.01071.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To determine the spatial pattern of beta-amyloid (Abeta) deposition throughout the temporal lobe in Alzheimer's disease (AD). METHODS Sections of the complete temporal lobe from six cases of sporadic AD were immunolabelled with antibody against Abeta. Fourier (spectral) analysis was used to identify sinusoidal patterns in the fluctuation of Abeta deposition in a direction parallel to the pia mater or alveus. RESULTS Significant sinusoidal fluctuations in density were evident in 81/99 (82%) analyses. In 64% of analyses, two frequency components were present with density peaks of Abeta deposits repeating every 500-1000 microm and at distances greater than 1000 microm. In 25% of analyses, three or more frequency components were present. The estimated period or wavelength (number of sample units to complete one full cycle) of the first and second frequency components did not vary significantly between gyri of the temporal lobe, but there was evidence that the fluctuations of the classic deposits had longer periods than the diffuse and primitive deposits. CONCLUSIONS (i) Abeta deposits exhibit complex sinusoidal fluctuations in density in the temporal lobe in AD; (ii) fluctuations in Abeta deposition may reflect the formation of Abeta deposits in relation to the modular and vascular structure of the cortex; and (iii) Fourier analysis may be a useful statistical method for studying the patterns of Abeta deposition both in AD and in transgenic models of disease.
Collapse
|
33
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Korolainen MA, Nyman TA, Aittokallio T, Pirttilä T. An update on clinical proteomics in Alzheimer's research. J Neurochem 2009; 112:1386-414. [PMID: 20050976 DOI: 10.1111/j.1471-4159.2009.06558.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is a pathologically complex and aetiologically multifactorial dementing disorder affecting millions of people worldwide. The pathological brain changes are assumed to occur decades prior to the onset of clinical symptoms. The diagnosis of early AD remains problematic and is mainly based on clinical and neuropsychological findings after the onset of symptoms. Currently available drugs are able to delay the symptom progression of the disease but not to attenuate the progression of pathological brain changes. Many studies exploring AD proteomes have been conducted as the middle of 1990s as a consequence of recent advances in the development of both gel-based and gel-free proteomics approaches. It is hoped that proteomics can contribute to improving the understanding, diagnosis, and follow-up of the progression of AD. In this review, we summarise the present status of proteome alterations, with emphasis on quantitative approaches, in AD brain, CSF and blood, and their relevance to dementia research.
Collapse
Affiliation(s)
- Minna A Korolainen
- Department of Neurology, University of Kuopio and Kuopio University Hospital, Kuopio, Finland
| | | | | | | |
Collapse
|
35
|
Ikonomovic MD, Abrahamson EE, Uz T, Manev H, Dekosky ST. Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer's disease. J Histochem Cytochem 2008; 56:1065-73. [PMID: 18678882 DOI: 10.1369/jhc.2008.951855] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The proinflammatory enzyme 5-lipoxygenase (5-LOX) is upregulated in Alzheimer's disease (AD), but its localization and association with the hallmark lesions of the disease, beta-amyloid (Abeta) plaques and neurofibrillary tangles (NFTs), is unknown. This study examined the distribution and cellular localization of 5-LOX in the medial temporal lobe from AD and control subjects. The spatial relationship between 5-LOX immunoreactive structures and AD lesions was also examined. We report that, in AD subjects, 5-LOX immunoreactivity is elevated relative to controls, and its localization is dependent on the antibody-targeted portion of the 5-LOX amino acid sequence. Carboxy terminus-directed antibodies detected 5-LOX in glial cells and neurons, but less frequently in neurons with dystrophic (NFT) morphology. In contrast, immunoreactivity observed using 5-LOX amino terminus-directed antibodies was virtually absent in neurons and abundant in NFTs, neuritic plaques, and glia. Double-labeling studies showed a close association of 5-LOX-immunoreactive processes and glial cells with Abeta immunoreactive plaques and vasculature and also detected 5-LOX in tau immunoreactive and amyloid containing NFTs. Different immunolabeling patterns with antibodies against carboxy vs amino terminus of 5-LOX may be caused by post-translational modifications of 5-LOX protein in Abeta plaques and NFTs. The relationship between elevated intracellular 5-LOX and hallmark AD pathological lesions provides further evidence that neuroinflammatory pathways contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, BSTWR S-521, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
36
|
Chen Y, Jia L, Wei C, Wang F, Lv H, Jia J. Association between polymorphisms in the apolipoprotein D gene and sporadic Alzheimer's disease. Brain Res 2008; 1233:196-202. [PMID: 18671953 DOI: 10.1016/j.brainres.2008.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/28/2008] [Accepted: 07/01/2008] [Indexed: 11/26/2022]
Abstract
Apolipoprotein D (apoD) is a lipoprotein-associated glycoprotein that is increased in the hippocampus and cerebrospinal fluid of patients with Alzheimer's disease (AD), which implies that apoD might be involved in the pathogenesis of AD. We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing techniques to screen all exons (1-5) and the flanking exon-intron boundaries of the apoD gene (APOD). Thirty subjects [15 sporadic AD (SAD) patients and 15 controls] were randomly selected and tested for APOD variations by direct sequencing. Two APOD polymorphisms (rs5952T/C and rs1568566C/T) were detected. We further investigated APOD polymorphisms in 256 SAD patients and 294 healthy subjects from a North Chinese population to investigate whether they affect the risk of SAD. Logistic analysis revealed that both rs5952 C and rs1568566 T alleles increase the risk of SAD [rs5952, adjusted odds ratio (OR) 1.817, 95% confidence interval (CI) 1.237-2.669, P = 0.002; rs1568566, adjusted OR 1.563, 95% CI 1.060-2.306, P = 0.024). The rs5952T-rs1568566C haplotype showed lower risk of SAD (OR 0.421, 95% CI 0.305-0.583, P = 0.000). Case-control analysis revealed that the rs5952T-rs1568566C haplotype could serve as a novel defendant factor against SAD. APOD polymorphisms might play an important role in modifying SAD risk in some way.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Xuan Wu Hospital of the Capital Medical University, Beijing 100053, China
| | | | | | | | | | | |
Collapse
|
37
|
Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila. Proc Natl Acad Sci U S A 2008; 105:7088-93. [PMID: 18458334 DOI: 10.1073/pnas.0800896105] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein D (ApoD) expression increases in several neurological disorders and in spinal cord injury. We provide a report of a physiological role for human ApoD (hApoD): Flies overexpressing hApoD are long-lived and protected against stress conditions associated with aging and neurodegeneration, including hyperoxia, dietary paraquat, and heat stress. We show that the fly ortholog, Glial Lazarillo, is strongly up-regulated in response to these extrinsic stresses and also can protect in vitro-cultured cells in situations modeling Alzheimer's disease (AD) and Parkinson's disease (PD). In adult flies, hApoD overexpression reduces age-associated lipid peroxide accumulation, suggesting a proximal mechanism of action. Similar data obtained in the mouse [Ganfornina, M.D., et al., (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 10.1111/j.1474-9726.2008.00395.] as well as in plants (Charron et al., personal communication) suggest that ApoD and its orthologs play an evolutionarily conserved role in response to stress, possibly managing or preventing lipid peroxidation.
Collapse
|
38
|
Armstrong RA, Lantos PL, Cairns NJ. What determines the molecular composition of abnormal protein aggregates in neurodegenerative disease? Neuropathology 2008; 28:351-65. [PMID: 18433435 DOI: 10.1111/j.1440-1789.2008.00916.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal protein aggregates, in the form of either extracellular plaques or intracellular inclusions, are an important pathological feature of the majority of neurodegenerative disorders. The major molecular constituents of these lesions, viz., beta-amyloid (Abeta), tau, and alpha-synuclein, have played a defining role in the diagnosis and classification of disease and in studies of pathogenesis. The molecular composition of a protein aggregate, however, is often complex and could be the direct or indirect consequence of a pathogenic gene mutation, be the result of cell degeneration, or reflect the acquisition of new substances by diffusion and molecular binding to existing proteins. This review examines the molecular composition of the major protein aggregates found in the neurodegenerative diseases including the Abeta and prion protein (PrP) plaques found in Alzheimer's disease (AD) and prion disease, respectively, and the cellular inclusions found in the tauopathies and synucleinopathies. The data suggest that the molecular constituents of a protein aggregate do not directly cause cell death but are largely the consequence of cell degeneration or are acquired during the disease process. These findings are discussed in relation to diagnosis and to studies of to disease pathogenesis.
Collapse
|
39
|
Lovestone S, Güntert A, Hye A, Lynham S, Thambisetty M, Ward M. Proteomics of Alzheimer's disease: understanding mechanisms and seeking biomarkers. Expert Rev Proteomics 2007; 4:227-38. [PMID: 17425458 DOI: 10.1586/14789450.4.2.227] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease is the scourge of the modern, aging world: a costly, damaging disease that robs the elderly of their ability to function as well as their memories. Three decades of progress have resulted in a deep understanding of the pathological processes and a range of targets for therapy, many of which have advanced to late-stage clinical trials. Proteomics has contributed greatly to these advances and will continue to have a growing role in determining the nature of the pathological lesions in the brain. In addition, proteomics (both gel based and gel free, mass spectrometry based), is likely to play an increasing role in identifying biomarkers that may assist in early diagnosis and in monitoring progression and, most importantly, response to therapy.
Collapse
Affiliation(s)
- Simon Lovestone
- Institute of Psychiatry, MRC Centre for Neurodegeneration Research and NIHR Biomedical Research Centre, KCL, London, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Ikonomovic MD, Abrahamson EE, Isanski BA, Debnath ML, Mathis CA, Dekosky ST, Klunk WE. X-34 labeling of abnormal protein aggregates during the progression of Alzheimer's disease. Methods Enzymol 2006; 412:123-44. [PMID: 17046656 DOI: 10.1016/s0076-6879(06)12009-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postmortem pathological diagnosis and basic research investigations of neurodegenerative disorders rely on histochemical staining procedures developed specifically to visualize abnormal protein conformation. In Alzheimer's disease (AD), two major pathological hallmarks are required to confirm the clinical diagnosis. Both consist of abnormally aggregated proteins that share the structural and histological properties common to all amyloid deposits. Amyloid-beta peptide (Abeta) of extracellular senile plaques (SP) and hyperphosphorylated tau of intracellular neurofibrillary tangles (NFT) are assembled in the abnormal beta-pleated sheet (amyloid-like) structural conformation that can be visualized with histological staining procedures using Congo red or its derivatives. These histochemical dyes bind amyloid with high affinity and allow easy detection of amyloid structure in postmortem brain samples. This chapter focuses on the development and application of a histological protocol using the compound X-34, a highly fluorescent derivative of Congo red, for sensitive detection of pathological amyloid structures in histopathological investigations of postmortem brain tissue. This procedure provides a simple and effective method for detailed fluorescent visualization of the localization and distribution of the majority of currently known major histopathological structures in AD, including compact cored, neuritic, and diffuse-appearing SP, NFT, dystrophic neurites, neuropil threads, and cerebrovascular amyloidosis.
Collapse
Affiliation(s)
- Milos D Ikonomovic
- Department of Neurology and Psychiatry, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|