1
|
De Plano LM, Saitta A, Oddo S, Caccamo A. Navigating Alzheimer's Disease Mouse Models: Age-Related Pathology and Cognitive Deficits. Biomolecules 2024; 14:1405. [PMID: 39595581 PMCID: PMC11592094 DOI: 10.3390/biom14111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Since the mid-1990s, scientists have been generating mouse models of Alzheimer's disease to elucidate key mechanisms underlying the onset and progression of the disease and aid in developing potential therapeutic approaches. The first successful mouse model of Alzheimer's disease was reported in 1995 with the generation of the PDAPP mice, which were obtained by the overexpression of gene coding for the amyloid precursor protein (APP). Since then, scientists have used different approaches to develop other APP overexpression mice, mice overexpressing tau, or a combination of them. More recently, Saito and colleagues generated a mouse model by knocking in mutations associated with familial Alzheimer's disease into the APP gene. In this review, we will describe the most used animal models and provide a practical guide for the disease's age of onset and progression. We believe that this guide will be valuable for the planning and experimental design of studies utilizing these mouse models.
Collapse
Affiliation(s)
| | | | | | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (A.S.); (S.O.)
| |
Collapse
|
2
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
3
|
Drew VJ, Wang C, Kim T. Progressive sleep disturbance in various transgenic mouse models of Alzheimer's disease. Front Aging Neurosci 2023; 15:1119810. [PMID: 37273656 PMCID: PMC10235623 DOI: 10.3389/fnagi.2023.1119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The relationship between AD and sleep dysfunction has received increased attention over the past decade. The use of genetically engineered mouse models with enhanced production of amyloid beta (Aβ) or hyperphosphorylated tau has played a critical role in the understanding of the pathophysiology of AD. However, their revelations regarding the progression of sleep impairment in AD have been highly dependent on the mouse model used and the specific techniques employed to examine sleep. Here, we discuss the sleep disturbances and general pathology of 15 mouse models of AD. Sleep disturbances covered in this review include changes to NREM and REM sleep duration, bout lengths, bout counts and power spectra. Our aim is to describe in detail the severity and chronology of sleep disturbances within individual mouse models of AD, as well as reveal broader trends of sleep deterioration that are shared among most models. This review also explores a variety of potential mechanisms relating Aβ accumulation and tau neurofibrillary tangles to the progressive deterioration of sleep observed in AD. Lastly, this review offers perspective on how study design might impact our current understanding of sleep disturbances in AD and provides strategies for future research.
Collapse
Affiliation(s)
- Victor J. Drew
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chanung Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer's disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation 2023; 20:19. [PMID: 36717922 PMCID: PMC9887791 DOI: 10.1186/s12974-023-02704-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling pathway. METHODS After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPβ/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/β were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPβ. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aβ) 40 and Aβ42, suppressed Aβ plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPβ/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPβ in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aβ plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPβ/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.
Collapse
Affiliation(s)
- Qing-Qing Xu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zi-Ren Su
- grid.411866.c0000 0000 8848 7685Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Wen Yang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Mei Zhong
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Yan-Fang Xian
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zhi-Xiu Lin
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| |
Collapse
|
5
|
Yang W, Xu QQ, Yuan Q, Xian YF, Lin ZX. Sulforaphene, a CDK5 Inhibitor, attenuates cognitive deficits in a transgenic mouse model of Alzheimer's disease via reducing Aβ Deposition, tau hyperphosphorylation and synaptic dysfunction. Int Immunopharmacol 2023; 114:109504. [PMID: 36508924 DOI: 10.1016/j.intimp.2022.109504] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder characterized by progressive loss of memory and cognitive functions. There are two pathological hallmarks, including accumulation of amyloid plaques composed of β-amyloid peptide (Aβ) and deposits of neurofibrillatory tangles (NFT). Cyclin-dependent kinase 5 (CDK5), a serine/threonine kinase, plays an important role in synaptic plasticity and cognitive behavior. Sulforaphene (SF) has been demonstrated to exert anti-AD activity in AD rat model. In this study, we aimed to evaluate the cognitive deficits improving effects of SF on in TgCRND8 mice and to elucidate the underlying molecular mechanisms. METHODS TgCRND8 mice were intragastrically treated with SF (25 and 50 mg/kg) for 4 months from 3-month-old. The cognitive functions were assessed using Morris Water Maze Test. Cultured primary mouse neurons were pre-treated with SF, followed by co-treatment with Aβ1-42 oligomers. CDK5 inhibitor (roscovitine) was used to determine the involvement of CDK5/p25 pathway in the anti-AD effects of SF in primary neurons. RESULTS Our results showed that SF treatment significantly ameliorated the cognitive deficits in TgCRND8 mice and protected primary mouse neurons against Aβ1-42 induced neurotoxicity. SF could modulate the expression of Aβ production related markers, and suppress the phosphorylation of tau protein at specific sites in the TgCRND8 mice. In addition, SF enhanced the expressions of synaptic plasticity related markers and CDK5. SF also markedly suppressed the CDK5/p25 activity. CONCLUSIONS SF is a potent CDK5 inhibitor and a potential therapeutic agent for treatment and prevention of AD. Moreover, SF inhibited the overexpression of CDK5 in primary neurons of mouse.
Collapse
Affiliation(s)
- Wen Yang
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Qing-Qing Xu
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Qiuju Yuan
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
6
|
Stykel MG, Ryan SD. Nitrosative stress in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:104. [PMID: 35953517 PMCID: PMC9372037 DOI: 10.1038/s41531-022-00370-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder characterized, in part, by the loss of dopaminergic neurons within the nigral-striatal pathway. Multiple lines of evidence support a role for reactive nitrogen species (RNS) in degeneration of this pathway, specifically nitric oxide (NO). This review will focus on how RNS leads to loss of dopaminergic neurons in PD and whether RNS accumulation represents a central signal in the degenerative cascade. Herein, we provide an overview of how RNS accumulates in PD by considering the various cellular sources of RNS including nNOS, iNOS, nitrate, and nitrite reduction and describe evidence that these sources are upregulating RNS in PD. We document that over 1/3 of the proteins that deposit in Lewy Bodies, are post-translationally modified (S-nitrosylated) by RNS and provide a broad description of how this elicits deleterious effects in neurons. In doing so, we identify specific proteins that are modified by RNS in neurons which are implicated in PD pathogenesis, with an emphasis on exacerbation of synucleinopathy. How nitration of alpha-synuclein (aSyn) leads to aSyn misfolding and toxicity in PD models is outlined. Furthermore, we delineate how RNS modulates known PD-related phenotypes including axo-dendritic-, mitochondrial-, and dopamine-dysfunctions. Finally, we discuss successful outcomes of therapeutics that target S-nitrosylation of proteins in Parkinson’s Disease related clinical trials. In conclusion, we argue that targeting RNS may be of therapeutic benefit for people in early clinical stages of PD.
Collapse
Affiliation(s)
- Morgan G Stykel
- The Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, ON, Canada
| | - Scott D Ryan
- The Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, ON, Canada. .,Neurodegenerative Disease Center, Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
7
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
8
|
Yeh TY, Liu PH. Inhibition of nitric oxide production enhances the activity of facial nerve tubulin polymerization and the ability of tau to promote microtubule assembly after neurorrhaphy. Neurochem Int 2021; 150:105183. [PMID: 34508785 DOI: 10.1016/j.neuint.2021.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
We previously reported that inhibition of nitric oxide (NO) production promotes rat reconnected facial nerve regeneration. However, the underlying mechanism is obscure. Microtubule assembly is known to be essential to axon regeneration; nevertheless, tubulins and microtubule-associated proteins (MAPs) have been demonstrated as targets for NO and peroxynitrite. Thus, we hypothesized that NO and/or peroxynitrite may affect facial nerve regeneration via influencing on microtubule assembly. First, tubulins and tau (a MAP) were extracted from facial nerves of normal rats, treated with NO donor or peroxynitrite, and processed for microtubule assembly assay. We found that peroxynitrite, DEA NONOate, and Angeli's salt reduced the tubulin polymerization activity to a greater extent than GSNO, SIN-1, and SNAP. Additionally, SIN-1, peroxynitrite, and Angeli's salt impaired the ability of tau to promote microtubule assembly. Next, nitrosative stress biomarkers 3-nitrotyrosine (3-NT) and S-nitrosylated cysteine (SNO-Cys) were immunolabeled in facial nerves. Both biomarkers were highly upregulated in proximal and distal stumps of reconnected facial nerves at 3 days and 1 week after neurorrhaphy. Notably, the expression of 3-NT was greatly reduced at 2 weeks, whereas that of SNO-Cys was maintained. Conversely, inhibition of NO production with L-NAME prevented the upregulation of SNO-Cys. Further, we used tubulins and tau extracted from facial nerves of sham-operated, nerve suture + vehicle treatment, and nerve suture + L-NAME treatment rats to perform microtubule assembly assay. We found that L-NAME treatment enhanced polymerization activity of tubulins and ability of tau to promote microtubule assembly. It is noteworthy that α-tubulin plays a more important role than β-tubulin since the activity of microtubule assembly using α-tubulin extracted from L-NAME-treated rats was greatly elevated, whereas that using β-tubulin extracted from L-NAME-treated rats was not. Overall, our findings support that inhibition of NO production reduces nitrosative stress, and may thus facilitate microtubule assembly and facial nerve regeneration.
Collapse
Affiliation(s)
- Tzu-Yin Yeh
- Department of Anatomy, Tzu Chi University, No. 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Pei-Hsin Liu
- Department of Anatomy, Tzu Chi University, No. 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan; Master Program in Medical Physiology, Tzu Chi University, No. 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan.
| |
Collapse
|
9
|
Nakai T, Yamada K, Mizoguchi H. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. Int J Mol Sci 2021; 22:5549. [PMID: 34074018 PMCID: PMC8197360 DOI: 10.3390/ijms22115549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Nardiello P, Pantano D, Lapucci A, Stefani M, Casamenti F. Diet Supplementation with Hydroxytyrosol Ameliorates Brain Pathology and Restores Cognitive Functions in a Mouse Model of Amyloid-β Deposition. J Alzheimers Dis 2019; 63:1161-1172. [PMID: 29710709 DOI: 10.3233/jad-171124] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common form of dementia affecting a large proportion of aged people. Plant polyphenols have been reported to be potentially useful in the prevention of AD due to their multiple pharmacological activities. The aim of the present study was to assess whether the previously reported neuroprotective and anti-inflammatory effects resulting from oleuropein aglycone administration were reproduced by diet supplementation with similar amounts of its metabolite hydoxytyrosol (HT). Four-month-old TgCRND8 and wild type mice were treated for 8 weeks with a low-fat diet (5%) supplemented with HT (50 mg/kg of diet). We found that HT supplementation significantly improved cognitive functions of TgCRND8 mice and significantly reduced Aβ42 and pE3-Aβ plaque area and number in the cortex; in the hippocampal areas of HT-fed TgCRND8 mice, we found a significant reduction in the pE3-Aβ plaque number together with a tendency toward a reduction in Aβ42 load and pE3-Aβ plaque area, associated with a marked reduction of TNF-α expression and astrocyte reaction. Macroautophagy induction and modulation of MAPKs signaling were found to underlie the beneficial effects of HT. Our findings indicate that HT administration reproduces substantially the beneficial effects on behavioral performance and neuropathology previously reported in TgCRND8 mice fed with oleuropein aglycone, resulting in comparable neuroprotection.
Collapse
Affiliation(s)
- Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Andrea Lapucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Horenberg AL, Houghton AM, Pandey S, Seshadri V, Guilford WH. S-nitrosylation of cytoskeletal proteins. Cytoskeleton (Hoboken) 2019; 76:243-253. [PMID: 30969482 DOI: 10.1002/cm.21520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/30/2022]
Abstract
Nitric oxide has pronounced effects on cellular functions normally associated with the cytoskeleton, including cell motility, shape, contraction, and mitosis. Protein S-nitrosylation, the covalent addition of a NO group to a cysteine sulfur, is a signaling pathway for nitric oxide that acts in parallel to cyclic guanosine monophosphate (cGMP), but is poorly studied compared to the latter. There is growing evidence that S-nitrosylation of cytoskeletal proteins selectively alters their function. We review that evidence, and find that S-nitrosylation of cytoskeletal targets has complementary but distinct effects to cyclic-GMP in motile and contractile cells-promoting cell migration, and biasing muscle contraction toward relaxation. However, the effects of S-nitrosylation on a host of cytoskeletal proteins and functions remains to be explored.
Collapse
Affiliation(s)
- Allison L Horenberg
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Alisa M Houghton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Saurav Pandey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Vikram Seshadri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - William H Guilford
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
12
|
Adalbert R, Milde S, Durrant C, Ando K, Stygelbout V, Yilmaz Z, Gould S, Brion JP, Coleman MP. Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiol Aging 2018; 68:68-75. [PMID: 29729423 PMCID: PMC5998378 DOI: 10.1016/j.neurobiolaging.2018.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/27/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-β promotes an action of mutant tau that impairs axonal transport. As amyloid-β levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.
Collapse
Affiliation(s)
- Robert Adalbert
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Stefan Milde
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Claire Durrant
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Virginie Stygelbout
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Stacey Gould
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Michael P Coleman
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Henderson LE, Abdelmegeed MA, Yoo SH, Rhee SG, Zhu X, Smith MA, Nguyen RQ, Perry G, Song BJ. Enhanced Phosphorylation of Bax and Its Translocation into Mitochondria in the Brains of Individuals Affiliated with Alzheimer's Disease. Open Neurol J 2017; 11:48-58. [PMID: 29290835 PMCID: PMC5738752 DOI: 10.2174/1874205x01711010048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Despite increased neuronal death, senile plaques, and neurofibrillary tangles observed in patients suffering from Alzheimer’s disease (AD), the detailed mechanism of cell death in AD is still poorly understood. Method: We hypothesized that p38 kinase activates and then phosphorylates Bax, leading to its translocation to mitochondria in AD brains compared to controls. The aim of this study was to investigate the role of p38 kinase in phosphorylation and sub-cellular localization of pro-apoptotic Bax in the frontal cortex of the brains from AD and control subjects. Increased oxidative stress in AD individuals compared to control was evaluated by measuring the levels of carbonylated proteins and oxidized peroxiredoxin, an antioxidant enzyme. The relative amounts of p38 kinase and phospho-Bax in mitochondria in AD brains and controls were determined by immunoblot analysis using the respective antibody against each protein following immunoprecipitation. Results: Our results showed that the levels of oxidized peroxiredoxin-SO3 and carbonylated proteins are significantly elevated in AD brains compared to controls, demonstrating the increased oxidative stress. Conclusion: The amount of phospho-p38 kinase is increased in AD brains and the activated p38 kinase appears to phosphorylate Thr residue(s) of Bax, which leads to its mitochondrial translocation, contributing to apoptosis and ultimately, neurodegeneration.
Collapse
Affiliation(s)
- L E Henderson
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| | - M A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| | - S H Yoo
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| | - S G Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - X Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - M A Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - R Q Nguyen
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - G Perry
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - B J Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| |
Collapse
|
14
|
McKeever PM, Kim T, Hesketh AR, MacNair L, Miletic D, Favrin G, Oliver SG, Zhang Z, St George-Hyslop P, Robertson J. Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer's disease. Neurobiol Aging 2017; 57:104-119. [PMID: 28628896 DOI: 10.1016/j.neurobiolaging.2017.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
Cholinergic neurotransmission is impaired in Alzheimer's disease (AD), and loss of basal forebrain cholinergic neurons is a key component of disease pathogenicity and symptomatology. To explore the molecular basis of this cholinergic dysfunction, we paired translating ribosome affinity purification (TRAP) with RNA sequencing (TRAP-Seq) to identify the actively translating mRNAs in anterior forebrain cholinergic neurons in the TgCRND8 mouse model of AD. Bioinformatic analyses revealed the downregulation of 67 of 71 known cholinergic-related transcripts, consistent with cholinergic neuron dysfunction in TgCRND8 mice, as well as transcripts related to oxidative phosphorylation, neurotrophins, and ribosomal processing. Upregulated transcripts included those related to axon guidance, glutamatergic synapses and kinase activity and included AD-risk genes Sorl1 and Ptk2b. In contrast, the total transcriptome of the anterior forebrain showed upregulation in cytokine signaling, microglia, and immune system pathways, including Trem2, Tyrobp, and Inpp5d. Hence, TRAP-Seq clearly distinguished the differential gene expression alterations occurring in cholinergic neurons of TgCRND8 mice compared with wild-type littermates, providing novel candidate pathways to explore for therapeutic development in AD.
Collapse
Affiliation(s)
- Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - TaeHyung Kim
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada
| | - Andrew R Hesketh
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Laura MacNair
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Denise Miletic
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Giorgio Favrin
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Stephen G Oliver
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Zhaolei Zhang
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Sexually Dimorphic Expression of Reelin in the Brain of a Mouse Model of Alzheimer Disease. J Mol Neurosci 2016; 61:359-367. [PMID: 27866325 DOI: 10.1007/s12031-016-0865-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
Recent evidence highlights the protective role of reelin against amyloid β (Aβ)-induced synaptic dysfunction and cognitive impairment in Alzheimer disease (AD). In this study, exploiting TgCRND8 mice that overexpress a mutant form of amyloid β precursor protein (AβPP) and display an early onset of AD neuropathological signs, we addressed the question whether changes of reelin expression eventually precede the appearance of Aβ-plaques in a sex-dependent manner. We show that sex-associated and brain region-specific differences in reelin expression appear long before Aβ-plaque formation. However, in spite of a downregulation of reelin expression compared to males, TgCRND8 females display fewer Aβ-plaques, suggesting that additional factors, other than sex and reelin level, influence amyloidosis in this mouse model.
Collapse
|
16
|
Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, Zahel J, Sanchez-Mendoza E, Wang Y, Hermann DM, Arzberger T, Teuber-Hanselmann S, Keyvani K. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement 2016; 12:1273-1287. [PMID: 27327541 DOI: 10.1016/j.jalz.2016.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/04/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Memory loss and increased anxiety are clinical hallmarks of Alzheimer's disease (AD). Kallikrein-8 is a protease implicated in memory acquisition and anxiety, and its mRNA is known to be up-regulated in AD-affected human hippocampus. Therefore, an involvement of Kallikrein-8 in Alzheimer's pathogenesis is conceivable but remains to be proved. METHODS We determined the cerebral expression of Kallikrein-8 mRNA and protein during the course of AD in patients and in transgenic mice and tested the impact of Kallikrein-8 inhibition on AD-related pathology in mice and in primary glial cells. RESULTS Kallikrein-8 mRNA and protein were up-regulated in both species at incipient stages of AD. Kallikrein-8 inhibition impeded amyloidogenic amyloid-precursor-protein processing, facilitated amyloid β (Aβ) clearance across the blood-brain-barrier, boosted autophagy, reduced Aβ load and tau pathology, enhanced neuroplasticity, reversed molecular signatures of anxiety, and ultimately improved memory and reduced fear. DISCUSSION Kallikrein-8 is a promising new therapeutic target against AD.
Collapse
Affiliation(s)
- Arne Herring
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany.
| | - Yvonne Münster
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Tamer Akkaya
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Sahar Moghaddam
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | | | - Jakob Meyer
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Julia Zahel
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | | | - Yachao Wang
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
17
|
Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, Chang L, Yan LJ, Zhao B. Role of RAGE in Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:483-95. [PMID: 26175217 PMCID: PMC11482350 DOI: 10.1007/s10571-015-0233-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/29/2015] [Indexed: 01/11/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer's disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE-Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China.
| | - Nannuan Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Biyong Qin
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Yingjun Zhou
- Physical Examination Center, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Liying Chang
- Department of Neurology, Xiangyang Center Hospital, The First Affiliated Hospital, Hubei University of Arts and Science, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences,UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Bin Zhao
- Department of Neurology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| |
Collapse
|
18
|
Bouvier DS, Jones EV, Quesseveur G, Davoli MA, A Ferreira T, Quirion R, Mechawar N, Murai KK. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep 2016; 6:24544. [PMID: 27090093 PMCID: PMC4835751 DOI: 10.1038/srep24544] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
Fixed human brain samples in tissue repositories hold great potential for unlocking complexities of the brain and its alteration with disease. However, current methodology for simultaneously resolving complex three-dimensional (3D) cellular anatomy and organization, as well as, intricate details of human brain cells in tissue has been limited due to weak labeling characteristics of the tissue and high background levels. To expose the potential of these samples, we developed a method to overcome these major limitations. This approach offers an unprecedented view of cytoarchitecture and subcellular detail of human brain cells, from cellular networks to individual synapses. Applying the method to AD samples, we expose complex features of microglial cells and astrocytes in the disease. Through this methodology, we show that these cells form specialized 3D structures in AD that we refer to as reactive glial nets (RGNs). RGNs are areas of concentrated neuronal injury, inflammation, and tauopathy and display unique features around β-amyloid plaque types. RGNs have conserved properties in an AD mouse model and display a developmental pattern coinciding with the progressive accumulation of neuropathology. The method provided here will help reveal novel features of the healthy and diseased human brain, and aid experimental design in translational brain research.
Collapse
Affiliation(s)
- David S Bouvier
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Gaël Quesseveur
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Maria Antonietta Davoli
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Tiago A Ferreira
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Wang J, Song L, Zhang Q, Zhang W, An L, Zhang Y, Tong D, Zhao B, Chen S, Zhao S. Exposure to swainsonine impairs adult neurogenesis and spatial learning and memory. Toxicol Lett 2015; 232:263-70. [DOI: 10.1016/j.toxlet.2014.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 01/17/2023]
|
20
|
Luccarini I, Grossi C, Rigacci S, Coppi E, Pugliese AM, Pantano D, la Marca G, Ed Dami T, Berti A, Stefani M, Casamenti F. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ß toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 2014; 36:648-63. [PMID: 25293421 DOI: 10.1016/j.neurobiolaging.2014.08.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/01/2014] [Accepted: 08/28/2014] [Indexed: 01/12/2023]
Abstract
Amyloid-ß (Aß) fragments, oligomeric Aß aggregates, and pyroglutamylated-Aß peptides, as well as epigenetic mechanisms and autophagy dysfunction all appear to contribute in various ways to Alzheimer's disease progression. We previously showed that dietary supplementation of oleuropein aglycone, a natural phenol abundant in the extra virgin olive oil, can be protective by reducing Aß42 deposits in the brain of young and middle-aged TgCRND8 mice. Here, we extended our study to aged TgCRND8 mice showing increased pE3-Aß in the brain deposits. We report that oleuropein aglycone is active against glutaminylcyclase-catalyzed pE3-Aß generation reducing enzyme expression and interferes both with Aß42 and pE3-Aß aggregation. Moreover, the phenol astonishingly activates neuronal autophagy even in mice at advanced stage of pathology, where it increases histone 3 and 4 acetylation, which matches both a decrease of histone deacetylase 2 expression and a significant improvement of synaptic function. The occurrence of these functional, epigenetic, and histopathologic beneficial effects even at a late stage of the pathology suggests that the phenol could be beneficial at the therapeutic, in addition to the prevention, level.
Collapse
Affiliation(s)
- Ilaria Luccarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Cristina Grossi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giancarlo la Marca
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy; Department of NEUROFARBA, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Teresa Ed Dami
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy; Department of NEUROFARBA, Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Florence, Italy
| | - Andrea Berti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| |
Collapse
|
21
|
Koppel J, Vingtdeux V, Marambaud P, d'Abramo C, Jimenez H, Stauber M, Friedman R, Davies P. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease. Mol Med 2014; 20:29-36. [PMID: 24722782 DOI: 10.2119/molmed.2013.00140.revised] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-) mice. Seventeen J20 CNR2(+/+) mice (12 females, 5 males) and 16 J20 CNR2(-/-) mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2(-/-) mice relative to CNR2(+/+) mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2(-/-) mice. Total tau was significantly suppressed in J20 CNR2(-/-) mice relative to J20 CNR2(+/+) mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.
Collapse
Affiliation(s)
- Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Valerie Vingtdeux
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cristina d'Abramo
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Heidy Jimenez
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Mark Stauber
- Yeshiva University, New York, New York, United States of America
| | - Rachel Friedman
- Queens College, New York, New York, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| |
Collapse
|
22
|
Koppel J, Vingtdeux V, Marambaud P, d'Abramo C, Jimenez H, Stauber M, Friedman R, Davies P. CB₂ receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease. Mol Med 2013; 19:357-64. [PMID: 24408112 DOI: 10.2119/molmed.2013.00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
The endocannabinoid CB₂ receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB₂ receptor system on AD pathology, a colony of mice with a deleted CB₂ receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB₂ receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2⁻/⁻ (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2⁺/⁺ and J20 CNR2⁻/⁻ mice. Seventeen J20 CNR2⁺/⁺ mice (12 females, 5 males) and 16 J20 CNR2⁻/⁻ mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2⁻/⁻ mice relative to CNR2⁺/⁺ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2⁻/⁻ mice. Total tau was significantly suppressed in J20 CNR2⁻/⁻ mice relative to J20 CNR2⁺/⁺ mice. The results confirm the constitutive role of the CB₂ receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB₂ to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.
Collapse
Affiliation(s)
- Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Valerie Vingtdeux
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cristina d'Abramo
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Heidy Jimenez
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Mark Stauber
- Yeshiva University, New York, New York, United States of America
| | - Rachel Friedman
- Queens College, New York, New York, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| |
Collapse
|
23
|
Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer's transgenic mice. Int J Neuropsychopharmacol 2013; 16:2245-57. [PMID: 23768694 DOI: 10.1017/s1461145713000631] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficacy of antihypertensive agents in Alzheimer's disease (AD) is controversial. It has been tested here whether some antihypertensive drugs might influence AD through mechanisms independent of blood pressure-lowering activity. The effects of treatment with the antihypertensive propranolol on cognition and AD-related markers have been studied in the Tg2576 mouse model of AD. Propranolol, at a lower dose than that used as antihypertensive (5 mg/kg, 6 wk), attenuated cognitive impairments shown by Tg2576 mice aged 9 months in the novel object recognition and fear conditioning tests. Propranolol was also able to counteract the increases in hippocampal levels of Aβ(42) present in Tg2576 mice. This effect was accompanied by an increased expression of insulin degrading enzyme. Changes in markers of synaptic pathology, as shown by decreases in phosphorylation of Akt and in the expression of BDNF in Tg2676 mice, were also counteracted by propranolol treatment. Tau hyperphosphorylation shown by Tg2576 mice was also decreased in the hippocampus of propranolol-treated mice, an effect probably related to an increase of GSK3β phosphorylation (inactive form) and a decreased JNK1 expression. Overall, these data further strengthen the potential of propranolol as a therapeutic agent for AD.
Collapse
|
24
|
Grossi C, Ed Dami T, Rigacci S, Stefani M, Luccarini I, Casamenti F. Employing Alzheimer disease animal models for translational research: focus on dietary components. NEURODEGENER DIS 2013; 13:131-4. [PMID: 24192327 DOI: 10.1159/000355461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Translational research needs valid animal models of disease to discover new pathogenetic aspects and treatments. In Alzheimer's disease (AD), transgenic models are of great value for AD research and drug testing. OBJECTIVE It was the aim of this study to analyze the power of dietary polyphenols against neurodegeneration by investigating the effects of oleuropein aglycone (OLE), the main phenol in the extra virgin olive oil (EVOO), a key component of the Mediterranean diet (MD), in a mouse model of amyloid-β deposition. METHODS TgCRND8 mice (3.5 months old), expressing the mutant KM670/671NL+V717F h-βAPP695 transgene, and wild-type (wt) mice were used to study in vivo the effects of an 8-week dietary supplementation with OLE (50 mg/kg of diet) [Grossi et al: PLoS One 2013;8:e71702], following the European Communities Council Directive 86/609 (DL 116/92) and National Guidelines (permit number: 283/2012-B). RESULTS OLE administration ameliorates memory dysfunction, raises a significant autophagic response in the cortex and promotes the proliferation of newborn cells in the subgranular zone of the dentate gyrus of the hippocampus. CONCLUSIONS Our findings support the beneficial effects of EVOO and highlight the possibility that continuous intake of high doses of OLE, both as a nutraceutical or as a food integrator, may prevent/delay the appearance of AD and reduce the severity of its symptoms.
Collapse
Affiliation(s)
- Cristina Grossi
- Division of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Grossi C, Rigacci S, Ambrosini S, Ed Dami T, Luccarini I, Traini C, Failli P, Berti A, Casamenti F, Stefani M. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One 2013; 8:e71702. [PMID: 23951225 PMCID: PMC3738517 DOI: 10.1371/journal.pone.0071702] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and “fluffy”; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.
Collapse
Affiliation(s)
- Cristina Grossi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Stefano Ambrosini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Teresa Ed Dami
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Ilaria Luccarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Traini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Andrea Berti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
- * E-mail:
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Propranolol reduces cognitive deficits, amyloid β levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. Int J Neuropsychopharmacol 2013. [PMID: 23194475 DOI: 10.1017/s1461145712001393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic exposure to glucocorticoids might result not only in insulin resistance or cognitive deficits, but it is also considered as a risk factor for pathologies such as Alzheimer's disease. Propranolol is a β-adrenergic antagonist commonly used in the treatment of hypertension or acute anxiety. The effects of propranolol (5 mg/kg) have been tested in a model of chronic corticosterone administration (100 μg/ml, 4 wk) in drinking water. Corticosterone administration led to cognitive impairment in the novel object recognition test that was reversed by propranolol. Increased levels of Aβ in the hippocampus of corticosterone-treated mice were counteracted by propranolol treatment, purportedly through an increased IDE expression. Chronic corticosterone treatment induced responses characteristic of insulin resistance, as increased peripheral insulin levels, decreased activation of the insulin receptor (pIR) and decreased associated intracellular pathways (pAkt). These effects might be related to a decreased c-Jun N terminal kinase 1 expression. Again, propranolol was able to counteract all corticosterone-induced effects. One of the main kinases involved in tau phosphorylation, glycogen synthase kinase 3β (GSK3β), which is inactivated by phosphorylation by pAkt, was found to be decreased after corticosterone and increased after propranolol treatment. Concomitant changes in pTau expression were found. Overall, these data further strengthen the potential of propranolol as a therapeutic agent for pathologies associated with the interaction glucocorticoids-insulin resistance and the development of relevant cellular processes for Alzheimer's disease.
Collapse
|
27
|
Durairajan SSK, Liu LF, Lu JH, Chen LL, Yuan Q, Chung SK, Huang L, Li XS, Huang JD, Li M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiol Aging 2012; 33:2903-2919. [PMID: 22459600 DOI: 10.1016/j.neurobiolaging.2012.02.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/15/2012] [Indexed: 12/25/2022]
Abstract
The accumulation of β-amyloid (Aβ) peptide derived from abnormal processing of amyloid precursor protein (APP) is a common pathological hallmark of Alzheimer's disease (AD) brains. In this study, we evaluated the therapeutic effect of berberine (BBR) extracted from Coptis chinensis Franch, a Chinese medicinal herb, on the neuropathology and cognitive impairment in TgCRND8 mice, a well established transgenic mouse model of AD. Two-month-old TgCRND8 mice received a low (25 mg/kg per day) or a high dose of BBR (100 mg/kg per day) by oral gavage until 6 months old. BBR treatment significantly ameliorated learning deficits, long-term spatial memory retention, as well as plaque load compared with vehicle control treatment. In addition, enzyme-linked immunosorbent assay (ELISA) measurement showed that there was a profound reduction in levels of detergent-soluble and -insoluble β-amyloid in brain homogenates of BBR-treated mice. Glycogen synthase kinase (GSK)3, a major kinase involved in APP and tau phosphorylation, was significantly inhibited by BBR treatment. We also found that BBR significantly decreased the levels of C-terminal fragments of APP and the hyperphosphorylation of APP and tau via the Akt/glycogen synthase kinase 3 signaling pathway in N2a mouse neuroblastoma cells stably expressing human Swedish mutant APP695 (N2a-SwedAPP). Our results suggest that BBR provides neuroprotective effects in TgCRND8 mice through regulating APP processing and that further investigation of the BBR for therapeutic use in treating AD is warranted.
Collapse
|
28
|
Maulik M, Ghoshal B, Kim J, Wang Y, Yang J, Westaway D, Kar S. Mutant human APP exacerbates pathology in a mouse model of NPC and its reversal by a β-cyclodextrin. Hum Mol Genet 2012; 21:4857-75. [PMID: 22869680 DOI: 10.1093/hmg/dds322] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick type C (NPC) disease, an autosomal recessive disorder caused primarily by loss-of-function mutations in NPC1 gene, is characterized neuropathologically by intracellular cholesterol accumulation, gliosis and neuronal loss in selected brain regions. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease (AD), including the presence of tau-positive neurofibrillary tangles (NFTs) and β-amyloid (Aβ)-related peptides in vulnerable brain regions. Since enhanced cholesterol level, which acts as a risk factor for AD, can increase Aβ production by regulating amyloid precursor protein (APP) metabolism, it is possible that APP overexpression can influence cholesterol-regulated NPC pathology. We have addressed this issue in a novel bigenic mice (ANPC) generated by crossing heterozygous Npc1-deficient mice with mutant human APP transgenic mice. These mice exhibited decreased lifespan, early object memory and motor impairments, and exacerbated glial pathology compared with other littermates. Neurodegeneration observed in the cerebellum of ANPC mice was found to be accelerated along with a selective increase in the phosphorylation/cleavage of tau protein. Additionally, enhanced levels/activity of cytosolic cathepsin D together with cytochrome c and Bcl-2-associated X protein suggest a role for the lysosomal enzyme in the caspase-induced degeneration of neurons in ANPC mice. The reversal of cholesterol accretion by 2-hydroxypropyl-β-cyclodextrin (2-HPC) treatment increased longevity and attenuated behavioral/pathological abnormalities in ANPC mice. Collectively, our results reveal that overexpression of APP in Npc1-deficient mice can negatively influence longevity and a wide spectrum of behavioral/neuropathological abnormalities, thus raising the possibility that APP and NPC1 may interact functionally to regulate the development of AD and NPC pathologies.
Collapse
Affiliation(s)
- Mahua Maulik
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Dobarro M, Orejana L, Aguirre N, Ramírez MJ. Propranolol restores cognitive deficits and improves amyloid and Tau pathologies in a senescence-accelerated mouse model. Neuropharmacology 2012; 64:137-44. [PMID: 22824191 DOI: 10.1016/j.neuropharm.2012.06.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 11/25/2022]
Abstract
Ageing is associated with a deterioration of cognitive performance and with increased risk of neurodegenerative disorders. Hypertension is the most-prevalent modifiable risk factor for cardiovascular morbidity and mortality worldwide, and clinical data suggest that hypertension is a risk factor for Alzheimer's disease (AD). In the present study we tested whether propranolol, a β-receptor antagonist commonly used as antihypertensive drug, could ameliorate the cognitive impairments and increases in AD-related markers shown by the senescence-accelerated mouse prone-8 (SAMP8). Propranolol administration (5 mg/kg for 3 weeks) to 6-month-old SAMP8 mice attenuated cognitive memory impairments shown by these mice in the novel object recognition test. In the hippocampus of SAMP8 mice it has been found increases in Aβ(42) levels, the principal constituent of amyloid plaques observed in AD, accompanied by both an increased expression of the cleaving enzyme BACE1 and a decreased expression of the degrading enzyme IDE. All these effects were reversed by propranolol treatment. Tau hyperphosphorylation (PHF-1 epitope) shown by SAMP8 mice at this age was also decreased in the hippocampus of propranolol-treated mice, an effect probably related to a decrease in JNK1 expression. Interestingly, propranolol also phosphorylated Akt in SAMP8 mice, which was associated with an increase of glycogen synthase kinase-3β phosphorylation, contributing therefore to the reductions in Tau hyperphosphorylation. Synaptic pathology in SAMP8 mice, as shown by decreases in synaptophysin and BDNF, was also counteracted by propranolol treatment. Overall, propranolol might be beneficial in age-related brain dysfunction and could be an emerging candidate for the treatment of other neurodegenerative diseases. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Marta Dobarro
- Department of Pharmacology, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
30
|
Cancino GI, Miller FD, Kaplan DR. p73 haploinsufficiency causes tau hyperphosphorylation and tau kinase dysregulation in mouse models of aging and Alzheimer's disease. Neurobiol Aging 2012; 34:387-99. [PMID: 22592019 DOI: 10.1016/j.neurobiolaging.2012.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/15/2012] [Accepted: 04/17/2012] [Indexed: 12/23/2022]
Abstract
Haploinsufficiency for the p53 family member p73 causes behavioral and neuroanatomical correlates of neurodegeneration in aging mice, including the appearance of aberrant phospho-tau-positive aggregates. Here, we show that these aggregates and tau hyperphosphorylation, as well as a generalized dysregulation of the tau kinases GSK3β, c-Abl, and Cdk5, occur in the brains of aged p73+/- mice. To investigate whether p73 haploinsufficiency therefore represents a general risk factor for tau hyperphosphorylation during neurodegeneration, we crossed the p73+/- mice with 2 mouse models of neurodegeneration, TgCRND8+/Ø mice that express human mutant amyloid precursor protein, and Pin1-/- mice. We show that haploinsufficiency for p73 leads to the early appearance of phospho-tau-positive aggregates, tau hyperphosphorylation, and activation of GSK3β, c-Abl, and Cdk5 in the brains of both of these mouse models. Moreover, p73+/-;TgCRND8+/Ø mice display a shortened lifespan relative to TgCRND8+/Ø mice that are wild type for p73. Thus, p73 is required to protect the murine brain from tau hyperphosphorylation during aging and degeneration.
Collapse
Affiliation(s)
- Gonzalo I Cancino
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Francis BM, Kim J, Barakat ME, Fraenkl S, Yücel YH, Peng S, Michalski B, Fahnestock M, McLaurin J, Mount HT. Object recognition memory and BDNF expression are reduced in young TgCRND8 mice. Neurobiol Aging 2012; 33:555-63. [PMID: 20447730 PMCID: PMC3411544 DOI: 10.1016/j.neurobiolaging.2010.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/22/2010] [Accepted: 04/05/2010] [Indexed: 01/17/2023]
Abstract
The TgCRND8 mouse model of Alzheimer's disease exhibits progressive cortical and hippocampal β-amyloid accumulation, resulting in plaque pathology and spatial memory impairment by 3 months of age. We tested whether TgCRND8 cognitive function is disrupted prior to the appearance of macroscopic plaques in an object recognition task. We found profound deficits in 8-week-old mice. Animals this age were not impaired on the Morris water maze task. TgCRND8 and littermate controls did not differ in their duration of object exploration or optokinetic responses. Thus, visual and motor dysfunction did not confound the phenotype. Object memory deficits point to the frontal cortex and hippocampus as early targets of functional disruption. Indeed, we observed altered levels of brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) in these brain regions of preplaque TgCRND8 mice. Our findings suggest that object recognition provides an early index of cognitive impairment associated with amyloid exposure and reduced brain-derived neurotrophic factor expression in the TgCRND8 mouse.
Collapse
Affiliation(s)
- Beverly M. Francis
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - John Kim
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Meredith E. Barakat
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Stephan Fraenkl
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Keenan Research Centre of Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Yeni H. Yücel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Keenan Research Centre of Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Shiyong Peng
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - JoAnne McLaurin
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Howard T.J. Mount
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Sclip A, Antoniou X, Colombo A, Camici GG, Pozzi L, Cardinetti D, Feligioni M, Veglianese P, Bahlmann FH, Cervo L, Balducci C, Costa C, Tozzi A, Calabresi P, Forloni G, Borsello T. c-Jun N-terminal kinase regulates soluble Aβ oligomers and cognitive impairment in AD mouse model. J Biol Chem 2011; 286:43871-43880. [PMID: 22033930 PMCID: PMC3243502 DOI: 10.1074/jbc.m111.297515] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/17/2011] [Indexed: 01/02/2023] Open
Abstract
Alzheimer disease (AD) is characterized by cognitive impairment that starts with memory loss to end in dementia. Loss of synapses and synaptic dysfunction are closely associated with cognitive impairment in AD patients. Biochemical and pathological evidence suggests that soluble Aβ oligomers correlate with cognitive impairment. Here, we used the TgCRND8 AD mouse model to investigate the role of JNK in long term memory deficits. TgCRND8 mice were chronically treated with the cell-penetrating c-Jun N-terminal kinase inhibitor peptide (D-JNKI1). D-JNKI1, preventing JNK action, completely rescued memory impairments (behavioral studies) as well as the long term potentiation deficits of TgCRND8 mice. Moreover, D-JNKI1 inhibited APP phosphorylation in Thr-668 and reduced the amyloidogenic cleavage of APP and Aβ oligomers in brain parenchyma of treated mice. In conclusion, by regulating key pathogenic mechanisms of AD, JNK might hold promise as innovative therapeutic target.
Collapse
Affiliation(s)
- Alessandra Sclip
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Xanthi Antoniou
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Alessio Colombo
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Giovanni G Camici
- Cardiovascular Research Laboratory, Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Laura Pozzi
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Daniele Cardinetti
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Marco Feligioni
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Pietro Veglianese
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Ferdinand H Bahlmann
- Department of Internal Medicine IV, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Luigi Cervo
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Claudia Balducci
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Cinzia Costa
- Clinica Neurologica Division, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia 06156, Italy
| | - Alessandro Tozzi
- Clinica Neurologica Division, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia 06156, Italy
| | - Paolo Calabresi
- Clinica Neurologica Division, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia 06156, Italy; Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, Rome 00143, Italy
| | - Gianluigi Forloni
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy
| | - Tiziana Borsello
- Neuronal Death and Neuroprotection Laboratory, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano 20156, Italy.
| |
Collapse
|
33
|
Luccarini I, Grossi C, Traini C, Fiorentini A, Ed Dami T, Casamenti F. Aβ plaque-associated glial reaction as a determinant of apoptotic neuronal death and cortical gliogenesis: a study in APP mutant mice. Neurosci Lett 2011; 506:94-9. [PMID: 22056484 DOI: 10.1016/j.neulet.2011.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the microglia-driven apoptosis and the Aβ deposits triggered generation of new microglial cells in the neocortex of TgCRND8 mice. Three- and seven-month-old TgCRND8 mice, displaying an early and widespread amyloid deposition, respectively, were used. In 7-month-old TgCRND8 mice the Aβ-associated glial reaction was accompanied by an intense immunoreactivity of both TNF-α and inducible nitric oxide synthase, increased immunoreactivity of the pro-apoptotic protein Bax and a decrease in levels of the anti-apoptotic protein Bcl-2.Cortical and hippocampal neurons of TgCRND8 mice displayed higher immunoreactivity and higher nuclear expression of the transcription factor NF-kB than controls. It is possible that such an increase could represent a defence/compensatory response to degeneration. These findings indicate that Aβ deposits activate brain-resident microglia population and astrocytes, and induce overproduction of inflammatory mediators that enhance pro- and anti-apoptotic cascades. In both 3- and 7-month-old TgCRND8 mice apparent gliogenesis was present in the vicinity of Aβ plaques in the neocortex, indicating that microglia have a high proliferative rate which might play a more complex role than previously acknowledge.
Collapse
Affiliation(s)
- Ilaria Luccarini
- Department of Pharmacology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Walker JM, Fowler SW, Miller DK, Sun AY, Weisman GA, Wood WG, Sun GY, Simonyi A, Schachtman TR. Spatial learning and memory impairment and increased locomotion in a transgenic amyloid precursor protein mouse model of Alzheimer's disease. Behav Brain Res 2011; 222:169-75. [PMID: 21443906 DOI: 10.1016/j.bbr.2011.03.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/17/2011] [Accepted: 03/19/2011] [Indexed: 12/23/2022]
Abstract
This study provides an examination of spatial learning and a behavioral assessment of irritability and locomotion in TgCRND8 mice, an amyloid precursor protein transgenic model of Alzheimer's disease. Performance was assessed using the Barnes maze, the touch escape test, and an open-field test. While past research focused primarily on 2-5-month-old TgCRND8 mice, the present study used an older age cohort (9-month-old female mice), in addition to a 4-month-old cohort of both transgenic (Tg) and wildtype female mice. Both younger and older Tg mice displayed poor spatial learning in the Barnes maze task compared to their wildtype littermates, as demonstrated by significantly longer latencies and more errors both during acquisition and at a 2-week retest. No differences in irritability were found between Tg and control mice in the younger cohort; however, older Tg mice displayed significantly higher irritability compared with wildtype littermates, as measured by the touch escape test. Additionally, Tg mice of both age cohorts showed increased locomotion and slowed habituation during a 60-min open-field test over 3 days of testing. These results demonstrate that TgCRND8 mice show significant deficits in spatial and nonspatial behavioral tasks at advanced stages of amyloid pathology.
Collapse
Affiliation(s)
- J M Walker
- Department of Psychological Sciences, 210 McAlester Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chlan-Fourney J, Zhao T, Walz W, Mousseau DD. The increased density of p38 mitogen-activated protein kinase-immunoreactive microglia in the sensorimotor cortex of aged TgCRND8 mice is associated predominantly with smaller dense-core amyloid plaques. Eur J Neurosci 2011; 33:1433-44. [DOI: 10.1111/j.1460-9568.2010.07597.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
The γ-Secretase Modulator CHF5074 Reduces the Accumulation of Native Hyperphosphorylated Tau in a Transgenic Mouse Model of Alzheimer’s Disease. J Mol Neurosci 2010; 45:22-31. [DOI: 10.1007/s12031-010-9482-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/02/2010] [Indexed: 01/29/2023]
|
37
|
Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One 2010; 5:e14382. [PMID: 21187954 PMCID: PMC3004858 DOI: 10.1371/journal.pone.0014382] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/19/2010] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. Methodology/Principal Findings The double transgenic (Tg) CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. Conclusions Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.
Collapse
Affiliation(s)
- Anna Fiorentini
- Department of Pharmacology, University of Florence, Florence, Italy
| | | | - Cristina Grossi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Ilaria Luccarini
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Pharmacology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
38
|
Dragomir A, Akay YM, Akay M. Modeling carbachol-induced hippocampal network synchronization using hidden Markov models. J Neural Eng 2010; 7:056012. [PMID: 20841638 DOI: 10.1088/1741-2560/7/5/056012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10(-4)) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.
Collapse
Affiliation(s)
- Andrei Dragomir
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
39
|
Rosi MC, Luccarini I, Grossi C, Fiorentini A, Spillantini MG, Prisco A, Scali C, Gianfriddo M, Caricasole A, Terstappen GC, Casamenti F. Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem 2010; 112:1539-1551. [PMID: 20050968 DOI: 10.1111/j.1471-4159.2009.06566.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the role of the Wnt inhibitor Dickkopf-1 (DKK-1) in the pathophysiology of neurodegenerative diseases, we analysed DKK-1 expression and localization in transgenic mouse models expressing familial Alzheimer's disease mutations and a frontotemporal dementia mutation. A significant increase of DKK-1 expression was found in the diseased brain areas of all transgenic lines, where it co-localized with hyperphosphorylated tau-bearing neurons. In TgCRND8 mice, DKK-1 immunoreactivity was detected in neurons surrounding amyloid deposits and within the choline acetyltransferase-positive neurons of the basal forebrain. Active glycogen synthase kinase-3 (GSK-3) was found to co-localize with DKK-1 and phospho-tau staining. Downstream to GSK-3, a significant reduction in beta-catenin translocation to the nucleus, indicative of impaired Wnt signaling functions, was found as well. Cumulatively, our findings indicate that DKK-1 expression is associated with events that lead to neuronal death in neurodegenerative diseases and support a role for DKK-1 as a key mediator of neurodegeneration with therapeutic potential.
Collapse
Affiliation(s)
- Maria Cristina Rosi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Leem YH, Lim HJ, Shim SB, Cho JY, Kim BS, Han PL. Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies. J Neurosci Res 2009; 87:2561-70. [PMID: 19360903 DOI: 10.1002/jnr.22075] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study was undertaken to investigate whether chronic endurance exercise affects tau phosphorylation levels in the brain with Alzheimer's disease (AD)-like pathology. To address this, the transgenic (Tg) mouse model of tauopathies, Tg-NSE/htau23, which expresses human tau23 in the brain, was chosen. Animals were subjected to chronic exercise for 3 months from 16 months of age. The exercised Tg mouse groups were treadmill run at speeds of 12 m/min (intermediate exercise group) or 19 m/min (high exercise group) for 1 hr/day, 5 days/week, during the 3-month period. Chronic endurance exercise in Tg mice increased the expression of Cu/Zn-superoxide dismutase (SOD) and catalase, and also their enzymatic activities in the brain. In parallel, chronic exercise in Tg mice up-regulated the expression of phospho-PKCalpha, phospho-AKT, and phospho-PI3K, and down-regulated the expressions of phospho-PKA, phosphor-p38, phospho-JNK, and phospho-ERK. Moreover, chronic exercise up-regulated both cytosolic and nuclear levels of beta-catenin, and the expression of T-cell factor-4 (Tcf-4) and cyclin D1 in the brain. As a consequence of such changes, the levels of phospho-tau in the brain of Tg mice were markedly decreased after exercise. Immunohistochemical analysis showed an exercised-induced decrease of the phospho-tau levels in the CA3 subregion of the hippocampus. These results suggest that chronic endurance exercise may provide a therapeutic potential to alleviate the tau pathology.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Chemistry and Nano Science, and Brain Disease Research Institute, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Akay M, Wang K, Akay YM, Dragomir A, Wu J. Nonlinear dynamical analysis of carbachol induced hippocampal oscillations in mice. Acta Pharmacol Sin 2009; 30:859-67. [PMID: 19498425 DOI: 10.1038/aps.2009.66] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIM Hippocampal neuronal network and synaptic impairment underlie learning and memory deficit in Alzheimer's disease (AD) patients and animal models. In this paper, we analyzed the dynamics and complexity of hippocampal neuronal network synchronization induced by acute exposure to carbachol, a nicotinic and muscarinic receptor co-agonist, using the nonlinear dynamical model based on the Lempel-Ziv estimator. We compared the dynamics of hippocampal oscillations between wild-type (WT) and triple-transgenic (3xTg) mice, as an AD animal model. We also compared these dynamic alterations between different age groups (5 and 10 months). We hypothesize that there is an impairment of complexity of CCh-induced hippocampal oscillations in 3xTg AD mice compared to WT mice, and that this impairment is age-dependent. METHODS To test this hypothesis, we used electrophysiological recordings (field potential) in hippocampal slices. RESULTS Acute exposure to 100 micromol/L CCh induced field potential oscillations in hippocampal CA1 region, which exhibited three distinct patterns: (1) continuous neural firing, (2) repeated burst neural firing and (3) the mixed (continuous and burst) pattern in both WT and 3xTg AD mice. Based on Lempel-Ziv estimator, pattern (2) was significantly lower than patterns (1) and (3) in 3xTg AD mice compared to WT mice (P<0.001), and also in 10-month old WT mice compared to those in 5-month old WT mice (P<0.01). CONCLUSION These results suggest that the burst pattern (theta oscillation) of hippocampal network is selectively impaired in 3xTg AD mouse model, which may reflect a learning and memory deficit in the AD patients.
Collapse
|
42
|
Savage MJ, Gingrich DE. Advances in the development of kinase inhibitor therapeutics for Alzheimer's disease. Drug Dev Res 2009. [DOI: 10.1002/ddr.20287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Wetzel MK, Naska S, Laliberté CL, Rymar VV, Fujitani M, Biernaskie JA, Cole CJ, Lerch JP, Spring S, Wang SH, Frankland PW, Henkelman RM, Josselyn SA, Sadikot AF, Miller FD, Kaplan DR. p73 regulates neurodegeneration and phospho-tau accumulation during aging and Alzheimer's disease. Neuron 2008; 59:708-21. [PMID: 18786355 DOI: 10.1016/j.neuron.2008.07.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 05/28/2008] [Accepted: 07/08/2008] [Indexed: 11/18/2022]
Abstract
The genetic mechanisms that regulate neurodegeneration are only poorly understood. We show that the loss of one allele of the p53 family member, p73, makes mice susceptible to neurodegeneration as a consequence of aging or Alzheimer's disease (AD). Behavioral analyses demonstrated that old, but not young, p73+/- mice displayed reduced motor and cognitive function, CNS atrophy, and neuronal degeneration. Unexpectedly, brains of aged p73+/- mice demonstrated dramatic accumulations of phospho-tau (P-tau)-positive filaments. Moreover, when crossed to a mouse model of AD expressing a mutant amyloid precursor protein, brains of these mice showed neuronal degeneration and early and robust formation of tangle-like structures containing P-tau. The increase in P-tau was likely mediated by JNK; in p73+/- neurons, the activity of the p73 target JNK was enhanced, and JNK regulated P-tau levels. Thus, p73 is essential for preventing neurodegeneration, and haploinsufficiency for p73 may be a susceptibility factor for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Monica K Wetzel
- Cell Biology, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pollio G, Hoozemans JJM, Andersen CA, Roncarati R, Rosi MC, van Haastert ES, Seredenina T, Diamanti D, Gotta S, Fiorentini A, Magnoni L, Raggiaschi R, Rozemuller AJM, Casamenti F, Caricasole A, Terstappen GC. Increased expression of the oligopeptidase THOP1 is a neuroprotective response to Abeta toxicity. Neurobiol Dis 2008; 31:145-58. [PMID: 18571100 DOI: 10.1016/j.nbd.2008.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/03/2008] [Accepted: 04/17/2008] [Indexed: 01/18/2023] Open
Abstract
In a comprehensive proteomics study aiming at the identification of proteins associated with amyloid-beta (Abeta)-mediated toxicity in cultured cortical neurons, we have identified Thimet oligopeptidase (THOP1). Functional modulation of THOP1 levels in primary cortical neurons demonstrated that its overexpression was neuroprotective against Abeta toxicity, while RNAi knockdown made neurons more vulnerable to amyloid peptide. In the TgCRND8 transgenic mouse model of amyloid plaque deposition, an age-dependent increase of THOP1 expression was found in brain tissue, where it co-localized with Abeta plaques. In accordance with these findings, THOP1 expression was significantly increased in human AD brain tissue as compared to non-demented controls. These results provide compelling evidence for a neuroprotective role of THOP1 against toxic effects of Abeta in the early stages of AD pathology, and suggest that the observed increase in THOP1 expression might be part of a compensatory defense mechanism of the brain against an increased Abeta load.
Collapse
Affiliation(s)
- Giuseppe Pollio
- Siena Biotech SpA, Discovery Research, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ariga T, McDonald MP, Yu RK. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease--a review. J Lipid Res 2008; 49:1157-75. [PMID: 18334715 DOI: 10.1194/jlr.r800007-jlr200] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gangliosides are expressed in the outer leaflet of the plasma membrane of the cells of all vertebrates and are particularly abundant in the nervous system. Ganglioside metabolism is closely associated with the pathology of Alzheimer's disease (AD). AD, the most common form of dementia, is a progressive degenerative disease of the brain characterized clinically by progressive loss of memory and cognitive function and eventually death. Neuropathologically, AD is characterized by amyloid deposits or "senile plaques," which consist mainly of aggregated variants of amyloid beta-protein (Abeta). Abeta undergoes a conformational transition from random coil to ordered structure rich in beta-sheets, especially after addition of lipid vesicles containing GM1 ganglioside. In AD brain, a complex of GM1 and Abeta, termed "GAbeta," has been found to accumulate. In recent years, Abeta and GM1 have been identified in microdomains or lipid rafts. The functional roles of these microdomains in cellular processes are now beginning to unfold. Several articles also have documented the involvement of these microdomains in the pathogenesis of certain neurodegenerative diseases, such as AD. A pivotal neuroprotective role of gangliosides has been reported in in vivo and in vitro models of neuronal injury, Parkinsonism, and related diseases. Here we describe the possible involvement of gangliosides in the development of AD and the therapeutic potentials of gangliosides in this disorder.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
46
|
Giovannini MG, Cerbai F, Bellucci A, Melani C, Grossi C, Bartolozzi C, Nosi D, Casamenti F. Differential activation of mitogen-activated protein kinase signalling pathways in the hippocampus of CRND8 transgenic mouse, a model of Alzheimer's disease. Neuroscience 2008; 153:618-33. [PMID: 18406062 DOI: 10.1016/j.neuroscience.2008.02.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 01/03/2023]
Abstract
Transgenic Centre for Research in Neurodegenerative Diseases 8 (TgCRND8) mice expressing a double mutant form of human amyloid precursor protein represent a good model of Alzheimer's disease, and can be useful to clarify the involvement of mitogen-activated protein kinases (MAPK) dysregulation in the pathophysiology of this neurodegenerative disorder. Activation of extracellular regulated kinase (ERK) 1/2, jun kinase (JNK) and p38MAPK was studied in the hippocampus of 7-month-old TgCRND8 mice by immunohistochemistry and Western blot analysis using antibodies selective for the phosphorylated, and thus active, forms of the enzymes. We demonstrated that the three main MAPK pathways were differentially activated in cells of the hippocampus of TgCRND8 mice in comparison to wild type (Wt) littermates, p38MAPK and JNK being more activated, while ERK less activated. p38MAPK was significantly activated in microglia, astrocytes and neurons, around and distant from the plaques. JNK was highly activated in cells closely surrounding the plaques. No difference was observed in the activation of the two major bands of JNK, at a molecular weight of 46 kDa and 54 kDa. These data indicate the possible involvement of p38MAPK and JNK pathways dysregulation in the pathogenesis of Alzheimer's disease. The ERK2 isoform of the ERK pathway was less activated in the hippocampal dentate gyrus of Tg mice in basal conditions. Furthermore activation of the ERK pathway by ex vivo cholinergic stimulation with carbachol caused significantly higher activation of ERK in the hippocampus of Wt mice than in Tg mice. These findings may pose a molecular basis for the memory disruption of Alzheimer's disease, since proper functioning of the basal forebrain cholinergic neurons and of ERK2 is critical for memory formation.
Collapse
Affiliation(s)
- M G Giovannini
- Dipartimento di Farmacologia, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|