1
|
Appu AP, Bagh MB, Plavelil N, Mondal A, Sadhukhan T, Singh SP, Perkins NJ, Liu A, Mukherjee AB. Niemann Pick C1 mistargeting disrupts lysosomal cholesterol homeostasis contributing to neurodegeneration in a Batten disease model. SCIENCE ADVANCES 2025; 11:eadr5703. [PMID: 40333988 PMCID: PMC12057685 DOI: 10.1126/sciadv.adr5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Neurodegeneration is a devastating manifestation in most lysosomal storage disorders (LSDs). Loss-of-function mutations in CLN1, encoding palmitoyl-protein thioesterase-1 (PPT1), cause CLN1 disease, a devastating neurodegenerative LSD that has no curative treatment. Numerous proteins in the brain require dynamic S-palmitoylation (palmitoylation-depalmitoylation) for trafficking to their destination. Although PPT1 depalmitoylates S-palmitoylated proteins and its deficiency causes CLN1 disease, the underlying pathogenic mechanism has remained elusive. We report that Niemann-Pick C1 (NPC1), a polytopic membrane protein mediating lysosomal cholesterol egress, requires dynamic S-palmitoylation for trafficking to the lysosome. In Cln1-/- mice, Ppt1 deficiency misroutes NPC1-dysregulating lysosomal cholesterol homeostasis. Along with this defect, increased oxysterol-binding protein (OSBP) promotes cholesterol-mediated activation of mechanistic target of rapamycin C1 (mTORC1), which inhibits autophagy contributing to neurodegeneration. Pharmacological inhibition of OSBP suppresses mTORC1 activation, rescues autophagy, and ameliorates neuropathology in Cln1-/- mice. Our findings reveal a previously unrecognized role of CLN1/PPT1 in lysosomal cholesterol homeostasis and suggest that suppression of mTORC1 activation may be beneficial for CLN1 disease.
Collapse
Affiliation(s)
- Abhilash P. Appu
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Maria B. Bagh
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Nisha Plavelil
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Neil J. Perkins
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Anil B. Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| |
Collapse
|
2
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
3
|
Santi M, Finamore F, Cecchettini A, Santorelli FM, Doccini S, Rocchiccioli S, Signore G. Protein Delivery by Peptide-Based Stealth Liposomes: A Biomolecular Insight into Enzyme Replacement Therapy. Mol Pharm 2020; 17:4510-4521. [PMID: 33112630 DOI: 10.1021/acs.molpharmaceut.0c00615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infantile neural ceroid lipofuscinosis (INCL) is a lysosomal storage disorder characterized by mutations in the CLN1 gene that leads to lack of the lysosomal enzyme palmitoyl-protein thioesterase-1 (PPT1), which causes the progressive death of cortical neurons. Enzyme replacement therapy (ERT) is one of the most promising treatments, but its translation toward a clinical use is hampered by the need to deliver the enzyme to the central nervous system and a more detailed understanding of its capability to restore physiologic conditions at the biochemical and protein level, beyond the simple regulation of enzymatic activity. Targeted nanoparticles can promote protein delivery to the central nervous system and affect biological pathways inside cells. Here, we describe an innovative peptide-based stealth nanoparticle that inhibits serum protein adsorption exploiting transferrin-driven internalization to convey the PPT1 enzyme to transferrin receptor-mediated pathways (endocytosis in this work, or transcytosis, in perspective, in vivo). These enzyme-loaded nanoparticles were able to restore stable levels of enzymatic activity in CLN1 patient's fibroblasts, comparable with the free enzyme, demonstrating that delivery after encapsulation in the nanocarrier does not alter uptake or intracellular trafficking. We also investigate, for the first time, dysregulated pathways of proteome and palmitoylome and their alteration upon enzyme delivery. Our nanoparticles were able of halving palmitoylated protein levels restoring conditions similar to the normal cells. From proteomic analysis, we also highlighted the reduction of the different groups of proteins after treatments with the free or encapsulated enzyme. In conclusion, our system is able to deliver the enzyme to a model of CLN1 disease restoring normal conditions in cells. Investigation of molecular details of pathologic state and enzyme-based correction reveals dysregulated pathways with unprecedented details for CLN1. Finally, we unveil for the first time the dysregulation landscape of palmitoylome and proteome in primary patient-derived fibroblasts and their modifications in response to enzyme administration. These findings will provide a guideline for the validation of future therapeutic strategies based on enzyme replacement therapy or acting at different metabolic levels.
Collapse
Affiliation(s)
- Melissa Santi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy.,NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa 56127, Italy
| | | | | | | | | | | | - Giovanni Signore
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa 56127, Italy.,Fondazione Pisana per la Scienza, Pisa 56017, Italy
| |
Collapse
|
4
|
Duodenal Metatranscriptomics to Define Human and Microbial Functional Alterations Associated with Severe Obesity: A Pilot Study. Microorganisms 2020; 8:microorganisms8111811. [PMID: 33213098 PMCID: PMC7698607 DOI: 10.3390/microorganisms8111811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disorder, and the gut microbiome has been suggested to contribute to its onset. In order to better clarify the role of the microbiome in obesity, we evaluated the metatranscriptome in duodenal biopsies from a cohort of 23 adult severely obese and lean control subjects using next generation sequencing. Our aim was to provide a general picture of the duodenal metatranscriptome associated with severe obesity. We found altered expressions of human and microbial genes in the obese compared to lean subjects, with most of the gene alterations being present in the carbohydrate, protein, and lipid metabolic pathways. Defects were also present in several human genes involved in epithelial intestinal cells differentiation and function, as well as in the immunity/inflammation pathways. Moreover, the microbial taxa abundance inferred by our transcriptomic data differed in part from the data that we previously evaluated by 16S rRNA in 13/23 individuals of our cohort, particularly concerning the Firmicutes and Proteobacteria phyla abundances. In conclusion, our pilot study provides the first taxonomic and functional characterization of duodenal microbiota in severely obese subjects and lean controls. Our findings suggest that duodenal microbiome and human genes both play a role in deregulating metabolic pathways, likely affecting energy metabolism and thus contributing to the obese phenotype.
Collapse
|
5
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
6
|
Zhao W, Su J, Wang Y, Qian T, Liu Y. Functional importance of palmitoyl protein thioesterase 1 (PPT1) expression by Sertoli cells in mediating cholesterol metabolism and maintenance of sperm quality. Mol Reprod Dev 2019; 86:984-998. [PMID: 31134714 DOI: 10.1002/mrd.23173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Sertoli cells are a type of nurse cell in the seminiferous epithelium that are crucial for sustaining spermatogenesis by extending nutritional and energy support to the developing germ cells. Dysfunction of Sertoli cells could cause disordered spermatogenesis and reduced fertility in males. In this study, we focused on the expression and function of palmitoyl protein thioesterase 1 (PPT1), a lysosomal depalmitoylating enzyme, in Sertoli cells. Here, we show that PPT1 expression in Sertoli cells is responsive to cholesterol treatment and that specific knockout of Ppt1 in Sertoli cells causes male subfertility associated with poor sperm quality and a high ratio of sperm deformity. Specifically, Ppt1 deficiency leads to poor cell variably accompanied with abnormal lysosome accumulation and increased cholesterol levels in Sertoli cells. Further, Ppt1 deficiency results in poor adhesion of developing germ cells to Sertoli cells in the seminiferous epithelium, which is likely to be responsible for the reduced male fertility as a consequence of declines in sperm count and motility as well as a high incidence of sperm head deformity. In summary, PPT1 affects sperm quality and male fertility through regulating lysosomal function and cholesterol metabolism in Sertoli cells.
Collapse
Affiliation(s)
- Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, Yunnan, China.,Institute of Reproductive Medicine, Dali University, Yunnan, China
| | - Juan Su
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Dali University, Yunnan, China
| | - Yuntao Wang
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, Yunnan, China
| | - Tijun Qian
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University, Yunnan, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Sapir T, Segal M, Grigoryan G, Hansson KM, James P, Segal M, Reiner O. The Interactome of Palmitoyl-Protein Thioesterase 1 (PPT1) Affects Neuronal Morphology and Function. Front Cell Neurosci 2019; 13:92. [PMID: 30918483 PMCID: PMC6424868 DOI: 10.3389/fncel.2019.00092] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Palmitoyl-protein thioesterase 1 (PPT1) is a depalmitoylation enzyme that is mutated in cases of neuronal ceroid lipofuscinosis (NCL). The hallmarks of the disease include progressive neurodegeneration and blindness, as well as seizures. In the current study, we identified 62 high-confident PPT1-binding proteins. These proteins included a self-interaction of PPT1, two V-type ATPases, calcium voltage-gated channels, cytoskeletal proteins and others. Pathway analysis suggested their involvement in seizures and neuronal morphology. We then proceeded to demonstrate that hippocampal neurons from Ppt1−/− mice exhibit structural deficits, and further investigated electrophysiology parameters in the hippocampi of mutant mice, both in brain slices and dissociated postnatal primary cultures. Our studies reveal new mechanistic features involved in the pathophysiology of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Segal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gayane Grigoryan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Karin M Hansson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Peter James
- Department of Immunotechnology, Lund University, Lund, Sweden.,Turku Centre for Biotechnology (BTK), University of Turku, Turku, Finland
| | - Menahem Segal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Adams J, Feuerborn M, Molina JA, Wilden AR, Adhikari B, Budden T, Lee SY. Autophagy-lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease. Sci Rep 2019; 9:151. [PMID: 30655561 PMCID: PMC6336884 DOI: 10.1038/s41598-018-36379-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders. CLN5 deficiency causes a subtype of NCL, referred to as CLN5 disease. CLN5 is a soluble lysosomal protein with an unclear function in the cell. Increased levels of the autophagy marker protein LC3-II have been reported in several subtypes of NCLs. In this report, we examine whether autophagy is altered in CLN5 disease. We found that the basal level of LC3-II was elevated in both CLN5 disease patient fibroblasts and CLN5-deficient HeLa cells. Further analysis using tandem fluorescent mRFP-GFP-LC3 showed the autophagy flux was increased. We found the alpha-synuclein (α-syn) gene SNCA was highly up-regulated in CLN5 disease patient fibroblasts. The aggregated form of α-syn is well known for its role in the pathogenicity of Parkinson's disease. Higher α-syn protein levels confirmed the SNCA up-regulation in both patient cells and CLN5 knockdown HeLa cells. Furthermore, α-syn was localized to the vicinity of lysosomes in CLN5 deficient cells, indicating it may have a lysosome-related function. Intriguingly, knocking down SNCA reversed lysosomal perinuclear clustering caused by CLN5 deficiency. These results suggest α-syn may affect lysosomal clustering in non-neuronal cells, similar to its role in presynaptic vesicles in neurons.
Collapse
Affiliation(s)
- Jessie Adams
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33602, USA
| | - Melissa Feuerborn
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Joshua A Molina
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Alexa R Wilden
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Babita Adhikari
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Theodore Budden
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Stella Y Lee
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Mathavarajah S, O'Day DH, Huber RJ. Neuronal Ceroid Lipofuscinoses: Connecting Calcium Signalling through Calmodulin. Cells 2018; 7:cells7110188. [PMID: 30380624 PMCID: PMC6262527 DOI: 10.3390/cells7110188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the increased focus on the role of calcium in the neuronal ceroid lipofuscinoses (NCLs, also known as Batten disease), links between calcium signalling and the proteins associated with the disease remain to be identified. A central protein in calcium signalling is calmodulin (CaM), which regulates many of the same cellular processes affected in the NCLs. In this study, we show that 11 of the 13 NCL proteins contain putative CaM-binding domains (CaMBDs). Many of the missense mutations documented from NCL patients overlap with the predicted CaMBDs and are often key residues of those domains. The two NCL proteins lacking such domains, CLN7 and CLN11, share a commonality in undergoing proteolytic processing by cathepsin L, which contains a putative CaMBD. Since CaM appears to have both direct and indirect roles in the NCLs, targeting it may be a valid therapeutic approach for treating the disease.
Collapse
Affiliation(s)
| | - Danton H O'Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
10
|
van Rooden EJ, van Esbroeck ACM, Baggelaar MP, Deng H, Florea BI, Marques ARA, Ottenhoff R, Boot RG, Overkleeft HS, Aerts JMFG, van der Stelt M. Chemical Proteomic Analysis of Serine Hydrolase Activity in Niemann-Pick Type C Mouse Brain. Front Neurosci 2018; 12:440. [PMID: 30018533 PMCID: PMC6037894 DOI: 10.3389/fnins.2018.00440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick type C (NPC) is a neurodegenerative disease in which the role of the ECS has not been studied yet. Most of the endocannabinoid enzymes are serine hydrolases, which can be studied using activity-based protein profiling (ABPP). Here, we report the serine hydrolase activity in brain proteomes of a NPC mouse model as measured by ABPP. Two ABPP methods are used: a gel-based method and a chemical proteomics method. The activities of the following endocannabinoid enzymes were quantified: diacylglycerol lipase (DAGL) α, α/β-hydrolase domain-containing protein 4, α/β-hydrolase domain-containing protein 6, α/β-hydrolase domain-containing protein 12, fatty acid amide hydrolase, and monoacylglycerol lipase. Using the gel-based method, two bands were observed for DAGL α. Only the upper band corresponding to this enzyme was significantly decreased in the NPC mouse model. Chemical proteomics showed that three lysosomal serine hydrolase activities (retinoid-inducible serine carboxypeptidase, cathepsin A, and palmitoyl-protein thioesterase 1) were increased in Niemann-Pick C1 protein knockout mouse brain compared to wild-type brain, whereas no difference in endocannabinoid hydrolase activity was observed. We conclude that these targets might be interesting therapeutic targets for future validation studies.
Collapse
Affiliation(s)
- Eva J van Rooden
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Marc P Baggelaar
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hui Deng
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Bogdan I Florea
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - André R A Marques
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rolf G Boot
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S Overkleeft
- Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
11
|
Danyukova T, Ariunbat K, Thelen M, Brocke-Ahmadinejad N, Mole SE, Storch S. Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation. Hum Mol Genet 2018; 27:1711-1722. [PMID: 29514215 PMCID: PMC5932567 DOI: 10.1093/hmg/ddy076] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Defects in the MFSD8 gene encoding the lysosomal membrane protein CLN7 lead to CLN7 disease, a neurodegenerative lysosomal storage disorder belonging to the group of neuronal ceroid lipofuscinoses. Here, we have performed a SILAC-based quantitative analysis of the lysosomal proteome using Cln7-deficient mouse embryonic fibroblasts (MEFs) from a Cln7 knockout (ko) mouse model. From 3335 different proteins identified, we detected 56 soluble lysosomal proteins and 29 highly abundant lysosomal membrane proteins. Quantification revealed that the amounts of 12 different soluble lysosomal proteins were significantly reduced in Cln7 ko MEFs compared with wild-type controls. One of the most significantly depleted lysosomal proteins was Cln5 protein that underlies another distinct neuronal ceroid lipofuscinosis disorder. Expression analyses showed that the mRNA expression, biosynthesis, intracellular sorting and proteolytic processing of Cln5 were not affected, whereas the depletion of mature Cln5 protein was due to increased proteolytic degradation by cysteine proteases in Cln7 ko lysosomes. Considering the similar phenotypes of CLN5 and CLN7 patients, our data suggest that depletion of CLN5 may play an important part in the pathogenesis of CLN7 disease. In addition, we found a defect in the ability of Cln7 ko MEFs to adapt to starvation conditions as shown by impaired mammalian target of rapamycin complex 1 reactivation, reduced autolysosome tubulation and increased perinuclear accumulation of autolysosomes compared with controls. In summary, depletion of multiple soluble lysosomal proteins suggest a critical role of CLN7 for lysosomal function, which may contribute to the pathogenesis and progression of CLN7 disease.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Section Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Khandsuren Ariunbat
- Section Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, Department of Genetics, Evolution and Environment & UCL GOSH Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Stephan Storch
- Section Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Savchenko E, Singh Y, Konttinen H, Lejavova K, Mediavilla Santos L, Grubman A, Kärkkäinen V, Keksa-Goldsteine V, Naumenko N, Tavi P, White AR, Malm T, Koistinaho J, Kanninen KM. Loss of Cln5 causes altered neurogenesis in a mouse model of a childhood neurodegenerative disorder. Dis Model Mech 2017; 10:1089-1100. [PMID: 28733362 PMCID: PMC5611964 DOI: 10.1242/dmm.029165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
Neural stem/progenitor cells (NPCs) generate new neurons in the brain throughout an individual's lifetime in an intricate process called neurogenesis. Neurogenic alterations are a common feature of several adult-onset neurodegenerative diseases. The neuronal ceroid lipofuscinoses (NCLs) are the most common group of inherited neurodegenerative diseases that mainly affect children. Pathological features of the NCLs include accumulation of lysosomal storage material, neuroinflammation and neuronal degeneration, yet the exact cause of this group of diseases remains poorly understood. The function of the CLN5 protein, causative of the CLN5 disease form of NCL, is unknown. In the present study, we sought to examine neurogenesis in the neurodegenerative disorder caused by loss of Cln5 Our findings demonstrate a newly identified crucial role for CLN5 in neurogenesis. We report for the first time that neurogenesis is increased in Cln5-deficient mice, which model the childhood neurodegenerative disorder caused by loss of Cln5 Our results demonstrate that, in Cln5 deficiency, proliferation of NPCs is increased, NPC migration is reduced and NPC differentiation towards the neuronal lineage is increased concomitantly with functional alterations in the NPCs. Moreover, the observed impairment in neurogenesis is correlated with increased expression of the pro-inflammatory cytokine IL-1β. A full understanding of the pathological mechanisms that lead to disease and the function of the NCL proteins are critical for designing effective therapeutic approaches for this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Yajuvinder Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Henna Konttinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katarina Lejavova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Laura Mediavilla Santos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Alexandra Grubman
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
- Anatomy and Developmental Biology, Monash University, Clayton 3168, Australia
| | - Virve Kärkkäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Nikolay Naumenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anthony R White
- Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
13
|
Uusi-Rauva K, Blom T, von Schantz-Fant C, Blom T, Jalanko A, Kyttälä A. Induced Pluripotent Stem Cells Derived from a CLN5 Patient Manifest Phenotypic Characteristics of Neuronal Ceroid Lipofuscinoses. Int J Mol Sci 2017; 18:E955. [PMID: 28468312 PMCID: PMC5454868 DOI: 10.3390/ijms18050955] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/12/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells, we generated induced pluripotent stem cells (iPSCs) by reprogramming skin fibroblasts from a patient with CLN5 (ceroid lipofuscinosis, neuronal, 5) disease, the late infantile variant form of NCL. These CLN5 patient-derived iPSCs (CLN5Y392X iPSCs) harbouring the most common CLN5 mutation, c.1175_1176delAT (p.Tyr392X), were further differentiated into neural lineage cells, the most affected cell type in NCLs. The CLN5Y392X iPSC-derived neural lineage cells showed accumulation of autofluorescent storage material and subunit C of the mitochondrial ATP synthase, both representing the hallmarks of many forms of NCLs, including CLN5 disease. In addition, we detected abnormalities in the intracellular organelles and aberrations in neuronal sphingolipid transportation, verifying the previous findings obtained from Cln5-deficient mouse macrophages. Therefore, patient-derived iPSCs provide a suitable model to study the mechanisms of NCL diseases.
Collapse
Affiliation(s)
- Kristiina Uusi-Rauva
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
- Folkhälsan Institute of Genetics, P.O. Box 63, University of Helsinki, 00014 Helsinki, Finland.
| | - Tea Blom
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
| | | | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Anu Jalanko
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
| | - Aija Kyttälä
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
| |
Collapse
|
14
|
Tikka S, Monogioudi E, Gotsopoulos A, Soliymani R, Pezzini F, Scifo E, Uusi-Rauva K, Tyynelä J, Baumann M, Jalanko A, Simonati A, Lalowski M. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules. Neuromolecular Med 2015; 18:109-33. [PMID: 26707855 DOI: 10.1007/s12017-015-8382-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood encephalopathy.
Collapse
Affiliation(s)
- Saara Tikka
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland.,Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
| | - Evanthia Monogioudi
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Joint Research Centre, Directorate D-Institute for Reference Materials and Measurements, Standards for Innovation and Sustainable Development, Geel, Belgium
| | - Athanasios Gotsopoulos
- Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, 02150, Espoo, Finland
| | - Rabah Soliymani
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Francesco Pezzini
- Department of Neurological and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Enzo Scifo
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland.,Doctoral Program Brain & Mind, University of Helsinki, Helsinki, Finland.,Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Canada
| | - Kristiina Uusi-Rauva
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Genomics and Biomarkers, National Institute for Health and Welfare (THL), P.O. Box 30, 00271, Helsinki, Finland
| | - Jaana Tyynelä
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Marc Baumann
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Anu Jalanko
- Institute for Molecular Medicine (FIMM), University of Helsinki, 00014, Helsinki, Finland.,Genomics and Biomarkers, National Institute for Health and Welfare (THL), P.O. Box 30, 00271, Helsinki, Finland
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maciej Lalowski
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland. .,Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.
| |
Collapse
|
15
|
Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, Dębski J, Uusi-Rauva K, Dadlez M, Gingras AC, Tyynelä J, Simonati A, Jalanko A, Baumann MH, Lalowski M. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics 2015; 123:42-53. [PMID: 25865307 DOI: 10.1016/j.jprot.2015.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1). In this study, we utilised single step affinity purification coupled to mass spectrometry (AP-MS) to unravel the in vivo substrates of human PPT1 in the brain neuronal cells. Protein complexes were isolated from human PPT1 expressing SH-SY5Y stable cells, subjected to filter-aided sample preparation (FASP) and analysed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. A total of 23 PPT1 interacting partners (IP) were identified from label free quantitation of the MS data by SAINT platform. Three of the identified PPT1 IP, namely CRMP1, DBH, and MAP1B are predicted to be palmitoylated. Our proteomic analysis confirmed previously suggested roles of PPT1 in axon guidance and lipid metabolism, yet implicates the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway. BIOLOGICAL SIGNIFICANCE The significance of this work lies in the unravelling of putative in vivo substrates of human CLN1 or PPT1 in brain neuronal cells. Moreover, the PPT1 IP implicate the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway.
Collapse
Affiliation(s)
- Enzo Scifo
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland; Doctoral Program Brain & Mind, University of Helsinki, Helsinki, Finland.
| | - Agnieszka Szwajda
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Francesco Pezzini
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Marzia Bianchi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arvydas Dapkunas
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kristiina Uusi-Rauva
- Folkhälsan Institute of Genetics, Helsinki, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Michał Dadlez
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anne-Claude Gingras
- Centre for Systems Biology, Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Jaana Tyynelä
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Anu Jalanko
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Marc H Baumann
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland; Folkhälsan Institute of Genetics, Helsinki, Finland.
| |
Collapse
|
16
|
Chen J, Mills JD, Halliday GM, Janitz M. The role of transcriptional control in multiple system atrophy. Neurobiol Aging 2015; 36:394-400. [DOI: 10.1016/j.neurobiolaging.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
|
17
|
Grubman A, Pollari E, Duncan C, Caragounis A, Blom T, Volitakis I, Wong A, Cooper J, Crouch PJ, Koistinaho J, Jalanko A, White AR, Kanninen KM. Deregulation of biometal homeostasis: the missing link for neuronal ceroid lipofuscinoses? Metallomics 2014; 6:932-43. [PMID: 24804307 DOI: 10.1039/c4mt00032c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs), a group of genetically distinct fatal neurodegenerative disorders with no treatment or cure, are clinically characterised by progressive motor and visual decline leading to premature death. While the underlying pathological mechanisms are yet to be precisely determined, the diseases share several common features including inflammation, lysosomal lipofuscin deposits and lipid abnormalities. An important hallmark of most common neurodegenerative disorders including Alzheimer's, Parkinson's and motor neuron diseases is deregulation of biologically active metal homeostasis. Metals such as zinc, copper and iron are critical enzyme cofactors and are important for synaptic transmission in the brain, but can mediate oxidative neurotoxicity when homeostatic regulatory mechanisms fail. We previously demonstrated biometal accumulation and altered biometal transporter expression in 3 animal models of CLN6 NCL disease. In this study we investigated the hypothesis that altered biometal homeostasis may be a feature of NCLs in general using 3 additional animal models of CLN1, CLN3 and CLN5 disease. We demonstrated significant accumulation of the biometals zinc, copper, manganese, iron and cobalt in these mice. Patterns of biometal accumulation in each model preceded significant neurodegeneration, and paralleled the relative severity of disease previously described for each model. Additionally, we observed deregulation of transcripts encoding the anti-oxidant protein, metallothionein (Mt), indicative of disruptions to biometal homeostasis. These results demonstrate that altered biometal homeostasis is a key feature of at least 4 genetically distinct forms of NCL disease.
Collapse
|
18
|
NCL disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1882-93. [DOI: 10.1016/j.bbadis.2013.05.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/13/2023]
|
19
|
Finn R, Kovács AD, Pearce DA. Treatment of the Ppt1(-/-) mouse model of infantile neuronal ceroid lipofuscinosis with the N-methyl-D-aspartate (NMDA) receptor antagonist memantine. J Child Neurol 2013; 28:1159-68. [PMID: 24014511 PMCID: PMC4017336 DOI: 10.1177/0883073813494480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neuronal ceroid lipofuscinoses, a family of neurodegenerative lysosomal storage disorders, represent the most common cause of pediatric-onset neurodegeneration. The infantile form has a devastatingly early onset and one of the fastest-progressing disease courses. Despite decades of research, the molecular mechanisms driving neuronal loss in infantile neuronal ceroid lipofuscinosis remain unknown. We have previously shown that N-methyl-d-aspartate (NMDA)-type glutamate receptors in the Ppt1(-/-) mouse model of this disease exhibit a hyperfunctional phenotype and postulate that aberrant glutamatergic activity may contribute to neural pathology in both the mouse model and human patients. To test this hypothesis, we treated Ppt1(-/-) mice with the NMDA receptor antagonist memantine and assessed their response to the drug using an accelerating rotarod. At 20 mg/kg, memantine treatment induced a delayed but notable improvement in Ppt1(-/-) mice. Much remains to be assessed before moving to patient trials, but these results suggest memantine has potential as a treatment.
Collapse
Affiliation(s)
- Rozzy Finn
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | - Attila D. Kovács
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | - David A. Pearce
- Sanford Children’s Health Research Center, Sanford Research/USD, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
20
|
Ma G, Zhou J, Tian C, Jiang D, Fang D, Chen H. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells. Anal Chem 2013; 85:3912-7. [PMID: 23527944 DOI: 10.1021/ac303304r] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking.
Collapse
Affiliation(s)
- Guangzhong Ma
- Key State Labortorary of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, 210093, China
| | | | | | | | | | | |
Collapse
|
21
|
Groh J, Kühl TG, Ip CW, Nelvagal HR, Sri S, Duckett S, Mirza M, Langmann T, Cooper JD, Martini R. Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain 2013; 136:1083-101. [DOI: 10.1093/brain/awt020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Blom T, Schmiedt ML, Wong AM, Kyttälä A, Soronen J, Jauhiainen M, Tyynelä J, Cooper JD, Jalanko A. Exacerbated neuronal ceroid lipofuscinosis phenotype in Cln1/5 double-knockout mice. Dis Model Mech 2013; 6:342-57. [PMID: 23065637 PMCID: PMC3597017 DOI: 10.1242/dmm.010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022] Open
Abstract
Both CLN1 and CLN5 deficiencies lead to severe neurodegenerative diseases of childhood, known as neuronal ceroid lipofuscinoses (NCLs). The broadly similar phenotypes of NCL mouse models, and the potential for interactions between NCL proteins, raise the possibility of shared or convergent disease mechanisms. To begin addressing these issues, we have developed a new mouse model lacking both Cln1 and Cln5 genes. These double-knockout (Cln1/5 dko) mice were fertile, showing a slight decrease in expected Mendelian breeding ratios, as well as impaired embryoid body formation by induced pluripotent stem cells derived from Cln1/5 dko fibroblasts. Typical disease manifestations of the NCLs, i.e. seizures and motor dysfunction, were detected at the age of 3 months, earlier than in either single knockout mouse. Pathological analyses revealed a similar exacerbation and earlier onset of disease in Cln1/5 dko mice, which exhibited a pronounced accumulation of autofluorescent storage material. Cortical demyelination and more pronounced glial activation in cortical and thalamic regions was followed by cortical neuron loss. Alterations in lipid metabolism in Cln1/5 dko showed a specific increase in plasma phospholipid transfer protein (PLTP) activity. Finally, gene expression profiling of Cln1/5 dko cortex revealed defects in myelination and immune response pathways, with a prominent downregulation of α-synuclein in Cln1/5 dko mouse brains. The simultaneous loss of both Cln1 and Cln5 genes might enhance the typical pathological phenotypes of these mice by disrupting or downregulating shared or convergent pathogenic pathways, which could potentially include interactions of CLN1 and CLN5.
Collapse
Affiliation(s)
- Tea Blom
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM, Biomedicum Helsinki, Helsinki, Finland
| | - Mia-Lisa Schmiedt
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM, Biomedicum Helsinki, Helsinki, Finland
| | - Andrew M. Wong
- Pediatric Storage Disorders Laboratory, Department of Neuroscience and Centre for the Cellular Basis of Behaviour, James Black Centre, King's Health Partners Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, UK
| | - Aija Kyttälä
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM, Biomedicum Helsinki, Helsinki, Finland
| | - Jarkko Soronen
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM, Biomedicum Helsinki, Helsinki, Finland
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Jaana Tyynelä
- Finnish Medicines Agency, Helsinki, Finland and University of Helsinki, Helsinki, Finland
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Neuroscience and Centre for the Cellular Basis of Behaviour, James Black Centre, King's Health Partners Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, UK
| | - Anu Jalanko
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1831-41. [PMID: 23274885 DOI: 10.1016/j.bbadis.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
25
|
In a model of Batten disease, palmitoyl protein thioesterase-1 deficiency is associated with brown adipose tissue and thermoregulation abnormalities. PLoS One 2012; 7:e48733. [PMID: 23139814 PMCID: PMC3490854 DOI: 10.1371/journal.pone.0048733] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 09/28/2012] [Indexed: 11/19/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1α and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1α and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative diseases that are linked to alterations in peripheral metabolic processes. In addition, extrapolating these findings clinically, impaired thermoregulation and hypothermia are potential risks in patients with INCL.
Collapse
|
26
|
Native and Complexed IGF-1: Biodistribution and Pharmacokinetics in Infantile Neuronal Ceroid Lipofuscinosis. JOURNAL OF DRUG DELIVERY 2012; 2012:626417. [PMID: 22778966 PMCID: PMC3384888 DOI: 10.1155/2012/626417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of childhood characterized by selective death of cortical neurons. Insulin-like growth factor 1 (IGF-1) is important in embryonic development and is considered as a potential therapeutic agent for several disorders of peripheral and central nervous systems. In circulation IGF-1 is mainly bound to its carrier protein IGFBP-3. As a therapeutic agent IGF-1 has shown to be more active as free than complexed form. However, this may cause side effects during the prolonged treatment. In addition to IGFBP-3 the bioavailability of IGF-1 can be modulated by using mesoporous silicon nanoparticles (NPs) which are optimal carriers for sustained release of unstable peptide hormones like IGF-1. In this study we compared biodistribution, pharmacokinetics, and bioavailability of radiolabeled free IGF-1, IGF-1/IGFBP-3, and IGF-1/NP complexes in a Cln1-/- knockout mouse model. IGF-1/NP was mainly accumulated in liver and spleen in all studied time points, whereas minor and more constant amounts were measured in other organs compared to free IGF-1 or IGF-1/IGFBP-3. Also concentration of IGF-1/NP in blood was relatively high and stable during studied time points suggesting continuous release of IGF-1 from the particles.
Collapse
|
27
|
Staropoli JF, Haliw L, Biswas S, Garrett L, Hölter SM, Becker L, Skosyrski S, Da Silva-Buttkus P, Calzada-Wack J, Neff F, Rathkolb B, Rozman J, Schrewe A, Adler T, Puk O, Sun M, Favor J, Racz I, Bekeredjian R, Busch DH, Graw J, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Lopez E, Harati H, Hill E, Krause DS, Guide J, Dragileva E, Gale E, Wheeler VC, Boustany RM, Brown DE, Breton S, Ruether K, Gailus-Durner V, Fuchs H, de Angelis MH, Cotman SL. Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. PLoS One 2012; 7:e38310. [PMID: 22701626 PMCID: PMC3368842 DOI: 10.1371/journal.pone.0038310] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/08/2012] [Indexed: 12/29/2022] Open
Abstract
Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development.
Collapse
Affiliation(s)
- John F. Staropoli
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Larissa Haliw
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sunita Biswas
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Lore Becker
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | | | | | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Anja Schrewe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Oliver Puk
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Minxuan Sun
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Jack Favor
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Ildikó Racz
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Raffi Bekeredjian
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Otto-Meyerhof-Zentrum, Heidelberg, Germany
| | - Dirk H. Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Entwicklungsgenetik, TUM, Freising-Weihenstephan, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. Site Munich, Munich, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Edith Lopez
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hayat Harati
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Eric Hill
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniela S. Krause
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jolene Guide
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ella Dragileva
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Evan Gale
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rose-Mary Boustany
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Diane E. Brown
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Klaus Ruether
- Augenabteilung Sankt Gertrauden Krankenhaus, Berlin, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Experimentelle Genetik, TUM, Freising-Weihenstephan, Germany
| | - Susan L. Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kovács AD, Saje A, Wong A, Ramji S, Cooper JD, Pearce DA. Age-dependent therapeutic effect of memantine in a mouse model of juvenile Batten disease. Neuropharmacology 2012; 63:769-75. [PMID: 22683643 DOI: 10.1016/j.neuropharm.2012.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
Currently there is no treatment for juvenile Batten disease, a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. The Cln3-knockout (Cln3(Δex1-6)) mouse model recapitulates several features of the human disorder. Cln3(Δex1-6) mice, similarly to juvenile Batten disease patients, have a motor coordination deficit detectable as early as postnatal day 14. Previous studies demonstrated that acute attenuation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptor activity by the non-competitive AMPA antagonist, EGIS-8332, in both 1- and 6-7-month-old Cln3(Δex1-6) mice results in improvement in motor coordination. Here we show that acute inhibition of N-methyl-D-aspartate (NMDA)-type glutamate receptors by memantine (1 and 5 mg/kg i.p.) had no effect on the impaired motor coordination of one-month-old Cln3(Δex1-6) mice. At a later stage of the disease, in 6-7-month-old Cln3(Δex1-6) mice, memantine induced a delayed but extended (8 days) improvement of motor skills similarly to that observed previously with EGIS-8332 treatment. An age-dependent therapeutic effect of memantine implies that the pathomechanism in juvenile Batten disease changes during disease progression. In contrast to acute treatment, repeated administration of memantine or EGIS-8332 (1 mg/kg, once a week for 4 weeks) to 6-month-old Cln3(Δex1-6) mice had no beneficial effect on motor coordination. Moreover, repeated treatments did not impact microglial activation or the survival of vulnerable neuron populations. Memantine did not affect astrocytosis in the cortex. EGIS-8332, however, decreased astrocytic activation in the somatosensory barrelfield cortex. Acute inhibition of NMDA receptors can induce a prolonged therapeutic effect, identifying NMDA receptors as a new therapeutic target for juvenile Batten disease.
Collapse
Affiliation(s)
- Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schmiedt ML, Blom T, Blom T, Kopra O, Wong A, von Schantz-Fant C, Ikonen E, Kuronen M, Jauhiainen M, Cooper JD, Jalanko A. Cln5-deficiency in mice leads to microglial activation, defective myelination and changes in lipid metabolism. Neurobiol Dis 2012; 46:19-29. [PMID: 22182690 DOI: 10.1016/j.nbd.2011.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/08/2011] [Accepted: 12/04/2011] [Indexed: 11/27/2022] Open
Abstract
CLN5 disease, late infantile variant phenotype neuronal ceroid lipofuscinosis, is a severe neurodegenerative disease caused by mutations in the CLN5 gene, which encodes a lysosomal protein of unknown function. Cln5-deficiency in mice leads to loss of thalamocortical neurons, and glial activation, but the underlying mechanisms are poorly understood. We have now studied the gene expression of Cln5 in the mouse brain and show that it increases gradually with age and differs between neurons and glia, with the highest expression in microglia. In Cln5(-/-) mice, we documented early and significant microglial activation that was already evident at 3 months of age. Loss of Cln5 also leads to defective myelination in vitro and in the developing mouse brain. This was accompanied by early alterations in serum lipid profiles, dysfunctional cellular metabolism and lipid transport in Cln5(-/-) mice. Taken together, these data provide significant new information about events associated with Cln5-deficiency, revealing altered myelination and disturbances in lipid metabolism, together with an early neuroimmune response.
Collapse
Affiliation(s)
- Mia-Lisa Schmiedt
- National Institute for Health and Welfare (THL), Public Health Genomics Unit, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull 2012; 88:43-57. [PMID: 22502604 DOI: 10.1016/j.brainresbull.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/04/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL, also known as Batten disease) is a devastating neurodegenerative diseases caused by mutations in either soluble enzymes or membrane-associated structural proteins that result in lysosome dysfunction. Different forms of NCL were defined initially by age of onset, affected population and/or type of storage material but collectively represent the most prevalent pediatric hereditary neurovisceral storage disorder. Specific gene mutations are now known for each subclass of NCL in humans that now largely define the disease: cathepsin D (CTSD) for congenital (CLN10 form); palmitoyl protein thioesterase 1 (PPT1) for infantile (CLN1 form); tripeptidyl peptidase 1 (TPP1) for classic late infantile (CLN2 form); variant late infantile-CLN5, CLN6 or CLN8 for variant late infantile forms; and CLN3 for juvenile (CLN3 form). Several mouse models of NCL have been developed, or in some cases exist sporadically, that exhibit mutations producing a progressive neurodegenerative phenotype similar to that observed in human NCL. The study of these mouse models of NCL has dramatically advanced our knowledge of NCL pathophysiology and in some cases has helped delineate the function of proteins mutated in human NCL. In addition, NCL mutant mice have been tested for several different therapeutic approaches and as such they have become important pre-clinical models for validating treatment options. In this review we will assess the current state of mouse models of NCL with regards to their unique pathophysiology and how these mice have helped investigators achieve a better understanding of human NCL disease and therapy.
Collapse
Affiliation(s)
- John J Shacka
- Neuropathology Division, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Finn R, Kovács AD, Pearce DA. Altered glutamate receptor function in the cerebellum of the Ppt1-/- mouse, a murine model of infantile neuronal ceroid lipofuscinosis. J Neurosci Res 2011; 90:367-75. [PMID: 21971706 DOI: 10.1002/jnr.22763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 01/12/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a family of devastating pediatric neurodegenerative disorders and currently represent the most common form of pediatric-onset neurodegeneration. Infantile NCL (INCL), the most aggressive of these disorders, is caused by mutations in the CLN1 gene that encodes the enzyme palmitoyl protein thioesterase 1 (PPT1). Previous studies have suggested that glutamatergic neurotransmission may be disrupted in INCL, so the present study investigates glutamate receptor function in the Ppt1(-/-) mouse model of INCL by comparing the sensitivity of cultured wild-type (WT) and Ppt1(-/-) cerebellar granule cells to glutamate receptor-mediated toxicity. Ppt1(-/-) neurons were significantly less sensitive to AMPA receptor-mediated toxicity but markedly more vulnerable to NMDA receptor-mediated cell death. Because glutamate receptor function is regulated primarily by the surface expression level of the receptor, the surface level of AMPA and NMDA receptor subunits in the cerebella of WT and Ppt1(-/-) mice was also examined. Western blotting of surface cross-linked cerebellar samples showed a significantly lower surface level of the GluR4 AMPA receptor subunit in Ppt1(-/-) mice, providing a plausible explanation for the decreased vulnerability of Ppt1(-/-) cerebellar neurons to AMPA receptor-mediated cell death. The surface expression of the NR1, NR2A, and NR2B NMDA receptor subunits was similar in the cerebella of WT and Ppt1(-/-) mice, indicating that there is another mechanism behind the increased sensitivity of Ppt1(-/-) cerebellar granule cells to NMDA toxicity. Our results indicate an AMPA receptor hypofunction and NMDA receptor hyperfunction phenotype in Ppt1(-/-) neurons and provide new therapeutic targets for INCL.
Collapse
Affiliation(s)
- Rozzy Finn
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | |
Collapse
|
32
|
An Haack K, Narayan SB, Li H, Warnock A, Tan L, Bennett MJ. Screening for calcium channel modulators in CLN3 siRNA knock down SH-SY5Y neuroblastoma cells reveals a significant decrease of intracellular calcium levels by selected L-type calcium channel blockers. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:186-91. [PMID: 20933060 PMCID: PMC3109357 DOI: 10.1016/j.bbagen.2010.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Defects of the CLN3 gene on chromosome 16p12.1 lead to the juvenile form of neuronal ceroid-lipofuscinosis (JNCL, Batten Disease), the most common recessive inherited neurodegenerative disorder in children. Dysregulation of intracellular calcium homeostasis in the absence of a functional CLN3 protein (CLN3P, Battenin) has been linked to synaptic dysfunction and accelerated apoptosis in vulnerable neuronal cells. Prolonged increase of intracellular calcium concentration is considered to be a significant trigger for neuronal apoptosis and cellular loss in JNCL. METHODS We examined the potential effect of 41 different calcium channel modulators on intracellular calcium concentration in CLN3 siRNA knock down SH-SY5Y neuroblastoma cells. RESULTS Six drugs belonging to the group of voltage dependent L-type channel blockers show significant lowering of the increased intracellular calcium levels in CLN3 siRNA knock down cells. CONCLUSIONS Our studies provide important new data suggesting possible beneficial effects of the tested drugs on calcium flux regulated pathways in neuronal cell death. Therapeutic intervention in this untreatable disease will likely require drugs that cross the blood-brain barrier as did all of the positively screened drugs in this study. GENERAL SIGNIFICANCE Better comprehension of the mechanism of neurodegeneration in rare recessive disorders, such as neuronal ceroid-lipofuscinoses, is likely to help to better understand mechanisms involved in more complex genetic neurodegenerative conditions, such as those associated with aging.
Collapse
Affiliation(s)
- Kristina An Haack
- Department of Pathology and Laboratory Medicine, Division of Metabolic Disease, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 2010; 68:453-74. [PMID: 20680390 DOI: 10.1007/s00018-010-0468-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.
Collapse
Affiliation(s)
- Amanda L Getty
- Sanford Children's Health Research Center, Sanford Research USD, Sanford School of Medicine of the University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104-0589, USA
| | | |
Collapse
|
34
|
Lyly A, von Schantz C, Heine C, Schmiedt ML, Sipilä T, Jalanko A, Kyttälä A. Novel interactions of CLN5 support molecular networking between Neuronal Ceroid Lipofuscinosis proteins. BMC Cell Biol 2009; 10:83. [PMID: 19941651 PMCID: PMC2790443 DOI: 10.1186/1471-2121-10-83] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 11/26/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCLs) comprise at least eight genetically characterized neurodegenerative disorders of childhood. Despite of genetic heterogeneity, the high similarity of clinical symptoms and pathology of different NCL disorders suggest cooperation between different NCL proteins and common mechanisms of pathogenesis. Here, we have studied molecular interactions between NCL proteins, concentrating specifically on the interactions of CLN5, the protein underlying the Finnish variant late infantile form of NCL (vLINCLFin). RESULTS We found that CLN5 interacts with several other NCL proteins namely, CLN1/PPT1, CLN2/TPP1, CLN3, CLN6 and CLN8. Furthermore, analysis of the intracellular targeting of CLN5 together with the interacting NCL proteins revealed that over-expression of PPT1 can facilitate the lysosomal transport of mutated CLN5FinMajor, normally residing in the ER and in the Golgi complex. The significance of the novel interaction between CLN5 and PPT1 was further supported by the finding that CLN5 was also able to bind the F1-ATPase, earlier shown to interact with PPT1. CONCLUSION We have described novel interactions between CLN5 and several NCL proteins, suggesting a modifying role for these proteins in the pathogenesis of individual NCL disorders. Among these novel interactions, binding of CLN5 to CLN1/PPT1 is suggested to be the most significant one, since over-expression of PPT1 was shown to influence on the intracellular trafficking of mutated CLN5, and they were shown to share a binding partner outside the NCL protein spectrum.
Collapse
Affiliation(s)
- Annina Lyly
- National Institute for Health and Welfare (THL), Biomedicum Helsinki, Finland and FIMM, Institute for Molecular Medicine in Finland
| | - Carina von Schantz
- National Institute for Health and Welfare (THL), Biomedicum Helsinki, Finland and FIMM, Institute for Molecular Medicine in Finland
| | - Claudia Heine
- National Institute for Health and Welfare (THL), Biomedicum Helsinki, Finland and FIMM, Institute for Molecular Medicine in Finland
| | - Mia-Lisa Schmiedt
- National Institute for Health and Welfare (THL), Biomedicum Helsinki, Finland and FIMM, Institute for Molecular Medicine in Finland
| | - Tessa Sipilä
- National Institute for Health and Welfare (THL), Biomedicum Helsinki, Finland and FIMM, Institute for Molecular Medicine in Finland
| | - Anu Jalanko
- National Institute for Health and Welfare (THL), Biomedicum Helsinki, Finland and FIMM, Institute for Molecular Medicine in Finland
| | - Aija Kyttälä
- National Institute for Health and Welfare (THL), Biomedicum Helsinki, Finland and FIMM, Institute for Molecular Medicine in Finland
| |
Collapse
|
35
|
Tardy C, Sabourdy F, Garcia V, Jalanko A, Therville N, Levade T, Andrieu-Abadie N. Palmitoyl protein thioesterase 1 modulates tumor necrosis factor alpha-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1250-8. [PMID: 19345705 DOI: 10.1016/j.bbamcr.2009.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/22/2022]
Abstract
Induction of apoptosis by TNF has recently been shown to implicate proteases from lysosomal origin, the cathepsins. Here, we investigated the role in apoptosis of palmitoyl protein thioesterase 1 (PPT1), another lysosomal enzyme that depalmitoylates proteins. We show that transformed fibroblasts derived from patients with the infantile form of neuronal ceroid lipofuscinosis (INCL), a neurodegenerative disease due to deficient activity of PPT1, are partially resistant to TNF-induced cell death (57-75% cell viability vs. 15-30% for control fibroblasts). TNF-initiated proteolytic cleavage of caspase-8, Bid and caspase-3, as well as cytochrome c release was strongly attenuated in INCL fibroblasts as compared to control cells. Noteworthy, activation of p42/p44 mitogen-activated protein kinase and of transcription factor NF-kappaB by TNF, and induction of cell death by staurosporine or chemotherapeutic drugs in INCL cells were unaffected by PPT1 deficiency. Resistance to TNF-induced apoptosis was also observed in embryonic fibroblasts derived from Ppt1/Cln1-deficient mice but not from mice with a targeted deletion of Cln3 or Cln5. Finally, reconstitution of PPT1 activity in mutant cells was accompanied by resensitization to TNF-induced caspase activation and toxicity. These observations emphasize for the first time the role of PPT1 and, likely, protein depalmitoylation in the regulation of TNF-induced apoptosis.
Collapse
|
36
|
von Schantz C, Saharinen J, Kopra O, Cooper JD, Gentile M, Hovatta I, Peltonen L, Jalanko A. Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases. BMC Genomics 2008; 9:146. [PMID: 18371231 PMCID: PMC2323392 DOI: 10.1186/1471-2164-9-146] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 03/28/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The neuronal ceroid lipofuscinoses (NCL) are a group of children's inherited neurodegenerative disorders, characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of the different forms of NCL suggest that common disease mechanisms may be involved. To explore the NCL-associated disease pathology and molecular pathways, we have previously produced targeted knock-out mice for Cln1 and Cln5. Both mouse-models replicate the NCL phenotype and neuropathology; the Cln1-/- model presents with early onset, severe neurodegenerative disease, whereas the Cln5-/- model produces a milder disease with a later onset. RESULTS Here we have performed quantitative gene expression profiling of the cortex from 1 and 4 month old Cln1-/- and Cln5-/- mice. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating neuronal growth cone stabilization display similar aberrations in both models. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products; adenylate cyclase-associated protein 1 (Cap1), protein tyrosine phosphatase receptor type F (Ptprf) and protein tyrosine phosphatase 4a2 (Ptp4a2). The evidence from the gene expression data, indicating changes in the growth cone assembly, was substantiated by the immunofluorescence staining patterns of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in cytoskeleton-associated proteins actin and beta-tubulin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. CONCLUSION Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in INCL and vLINCL. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCLs as well.
Collapse
Affiliation(s)
- Carina von Schantz
- National Public Health Institute and FIMM, Institute for Molecular Medicine, Helsinki, Finland
| | - Juha Saharinen
- National Public Health Institute and FIMM, Institute for Molecular Medicine, Helsinki, Finland
- Genome Informatics Unit, University of Helsinki, Finland
| | - Outi Kopra
- National Public Health Institute and FIMM, Institute for Molecular Medicine, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Finland
| | | | | | - Iiris Hovatta
- National Public Health Institute and FIMM, Institute for Molecular Medicine, Helsinki, Finland
- University of Helsinki, Department of Medical Genetics and Research Program of Molecular Neurology, Biomedicum Helsinki, Finland
| | - Leena Peltonen
- National Public Health Institute and FIMM, Institute for Molecular Medicine, Helsinki, Finland
- University of Helsinki, Department of Medical Genetics and Research Programme of Molecular Medicine, Biomedicum Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anu Jalanko
- National Public Health Institute and FIMM, Institute for Molecular Medicine, Helsinki, Finland
| |
Collapse
|
37
|
Lyly A, Marjavaara SK, Kyttälä A, Uusi-Rauva K, Luiro K, Kopra O, Martinez LO, Tanhuanpää K, Kalkkinen N, Suomalainen A, Jauhiainen M, Jalanko A. Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet 2008; 17:1406-17. [DOI: 10.1093/hmg/ddn028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Qiao X, Lu JY, Hofmann SL. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response. BMC Neurosci 2007; 8:95. [PMID: 18021406 PMCID: PMC2204004 DOI: 10.1186/1471-2202-8-95] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/16/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease) is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1), and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7-9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. RESULTS A total of 267 genes were significantly (approximately 2-fold) up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1) were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF) and a negative regulator of neuronal apoptosis (DAP kinase-1) were upregulated late in the course of the disease. Few genes were downregulated; these included the alpha2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. CONCLUSION A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy.
Collapse
Affiliation(s)
- Xingwen Qiao
- Hamon Center for Therapeutic Oncology Research and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | |
Collapse
|