1
|
Bankole OO, Elliott MH. Is Caveolin-1 Required for Retinal Neuroprotection? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:287-291. [PMID: 39930210 DOI: 10.1007/978-3-031-76550-6_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The innate ability to produce neurotrophic cytokines is a crucial component of retinal neuroprotection. Reduced levels of these cytokines accelerate neuronal cell death in the retina during injury but prolonged overexpression can lead to inflammation and retinal damage. It is therefore critical to find molecular targets that regulate the endogenous production of retinal neurotrophic factors. Outside of the eye, caveolins play essential roles in preconditioning, pro-survival signaling, and neuronal protection. They amplify the secretion of neuroprotective cytokines such as leukemia inhibitory factor (LIF), an important retinal neurotroph. We hypothesize that Caveolin-1 (Cav1) in the retina is required for retinal neuroprotection. This mini-review summarizes findings on the cytoprotective roles of Cav1 and how it may be required for retinal neuroprotection.
Collapse
Affiliation(s)
- Olawale O Bankole
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michael H Elliott
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Jian T, Xu F, Li G, Song B, Wang H, Yang X, Zhai W, Li X, Li Z, Feng Q, Xu S, Semple JW, Zhang L, Peng J. Quantitative detection of macular microvascular abnormalities identified by optical coherence tomography angiography in different hematological diseases. Sci Rep 2024; 14:25433. [PMID: 39455721 PMCID: PMC11511973 DOI: 10.1038/s41598-024-76753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
It is now understood that hematological diseases can have detrimental effects on the retina, reducing retinal capillaries, compromising visual function, and potentially causing irreversible visual impairment. Over the years, there has been limited research on macular microvascular abnormalities, such as changes in vessel density and the foveal avascular zone (FAZ) and variations in the severity of these effects across different types of blood disorders. This study aims to quantitatively assess the impact of various hematological disorders on the retina using optical coherence tomography angiography (OCTA). Compared with healthy eyes, patients with different blood diseases exhibited reductions in linear vessel density (LVD), perfusion vessel density (PVD), FAZ area, and FAZ perimeter. Notably, patients with erythrocyte diseases showed more significant abnormalities in LVD and PVD, while patients with lymphocytic diseases demonstrated more pronounced abnormalities in the FAZ area and perimeter. OCTA imaging could potentially reflect changes of the retinal microvascular of patients with hematological diseases and may serve as a valuable tool for distinguishing abnormalities affecting different blood cell lines. This approach offers a novel avenue for assessing, treating, and monitoring blood disorders.
Collapse
Affiliation(s)
- Tianzi Jian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Fabao Xu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China.
| | - Guihua Li
- Zibo Central Hospital, Binzhou Medical University, Zibo, Shandong province, China
| | - Boxuan Song
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China
| | - Helei Wang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China
| | - Xueying Yang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China
| | - Weibin Zhai
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiangchen Li
- Department of Computer Science, the University of Manchester, Manchester, UK
| | - Zhiwen Li
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden
- Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Li Zhang
- Department of Ophthalmology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.
- Department of Hematopathy, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
4
|
Bell BA, Kaul C, Dunaief JL, Hollyfield JG, Bonilha VL. A comparison of optophysiological biomarkers of photoreceptor stress and phototoxicity in BALB/cJ, B6 (Cg)-Tyrc-2J/J, and C57Bl/6J mouse strains. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1128311. [PMID: 38689597 PMCID: PMC11057998 DOI: 10.3389/fopht.2023.1128311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ophthalmic imaging instruments, including the confocal scanning laser ophthalmoscope and spectral-domain optical coherence tomography system, originally intended for revealing ocular microstructures in the human eye, have been deployed by vision researchers to evaluate the eyes of numerous small and large animal species for more than two decades. In this study, we have used these two instruments to obtain imaging data sequentially from the retinas of three prominent, widely used experimental mouse models to document changes induced by two contrasting vivarium lighting conditions. Mice studied include albino BALB/cJ and B6(Cg)-Tyrc-2J/J and pigmented C57Bl/6J. Mice were reared under dim light conditions until ~8 weeks of age where they underwent baseline imaging. Following, mice were returned to the dim vivarium or relocated to the top rack cage position in a standard vivarium. Mice were then followed for several months by ocular imaging to catalog the retinal dynamics as a function of long-term dim vs. elevated, standard vivarium lighting exposure levels. Upon exposure to elevated light levels, B6(Cg)-Tyrc-2J/J underwent similar changes as BALB/cJ in regard to photoreceptor outer segment shortening, photoreceptor layer proximal aspect hyperreflective changes, and the development of retinal infoldings and autofluorescent sub-retinal inflammatory monocyte infiltrate. Noteworthy, however, is that infoldings and infiltrate occurred at a slower rate of progression in B6(Cg)-Tyrc-2J/J vs. BALB/cJ. The photoreceptor outer nuclear layer thickness of BALB/cJ degenerated steadily following elevated light onset. In contrast, B6(Cg)-Tyrc-2J/J degeneration was unremarkable for many weeks before experiencing a noticeable change in the rate of degeneration that was concomitant with a plateau and decreasing trend in number of retinal infoldings and monocyte infiltrate. Pathological changes in C57Bl/6J mice were unremarkable for all imaging biomarkers assessed with exception to autofluorescent sub-retinal inflammatory monocyte infiltrate, which showed significant accumulation in dim vs. elevated light exposed mice following ~1 year of observation. These data were evaluated using Spearman's correlation and Predictive Power Score matrices to determine the best imaging optophysiological biomarkers for indicating vivarium light stress and light-induced photoreceptor degeneration. This study suggests that changes in proximal aspect hyperreflectivity, outer segment shortening, retinal infoldings and autofluorescent sub-retinal inflammatory monocyte infiltrate are excellent indicators of light stress and light-induced degeneration in albino B6(Cg)-Tyrc-2J/J and BALB/cJ mouse strains.
Collapse
Affiliation(s)
- Brent A. Bell
- Scheie Eye Institute and Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
| | - Charles Kaul
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
| | - Joshua L. Dunaief
- Scheie Eye Institute and Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joe G. Hollyfield
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Vera L. Bonilha
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Wang L, Wu Q, Wang RQ, Wang RZ, Wang J. Protection of leukemia inhibitory factor against high-glucose-induced human retinal endothelial cell dysfunction. Arch Physiol Biochem 2023; 129:33-40. [PMID: 32658632 DOI: 10.1080/13813455.2020.1792506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE In the study, we aimed to explore the mechanism of leukaemia inhibitory factor (LIF) affects hyperglycaemic induced retinopathy by regulating CaMKII-CREB pathway. METHODS Human retinal endothelial cell (HRECs) induced by high glucose to simulate one of the pathogenesis in the diabetic retinopathy (DR) model. After LIF treatment, cell viability was detected by CCK-8 and apoptosis was detected by flow cytometry. Angiogenesis was detected by in vitro tube formation. The expression levels of inflammatory, angiogenesis related proteins and CaMKII-CREB were detected by western blot. The gene level of angiogenesis was detected by qRT-PCR. HE staining was used to detect pathological changes of retinopathy in diabetic mice after LIF treatment. RESULTS Our results showed that LIF significantly increased hyperglycaemic-induced cell viability and inhibited apoptosis. Western blot results showed that LIF could down-regulate the expression levels of inflammatory cytokines such as IL-1β, IL-6 and TNF-α. In addition, angiogenesis of HRECs was inhibited by LIF in tubulisation experiments. LIF can down-regulate protein and gene levels of VEGF and HIF-1α via western blot and qRT-PCR. In diabetic mice induced by STZ, LIF could down-regulate the protein level of VEGF, HIF-1α, p-CaMKII and p-CREB, which suggest that LIF could inhibit retinal angiogenesis in diabetic mice. The results of HE staining showed that LIF could alleviate the damage of retinopathy in diabetic mice. CONCLUSION LIF could alleviate the damage of diabetic retinopathy by modulating the CaMKII/CREB signalling pathway to inhibit inflammatory response and angiogenesis.
Collapse
Affiliation(s)
- Lei Wang
- The 2nd Ward of Ophthalmological, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiong Wu
- Visual Optical Center, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Qi Wang
- The 2nd Ward of Ophthalmological, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Run Ze Wang
- The 2nd Ward of Ophthalmological, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianwen Wang
- The 2nd Ward of Ophthalmological, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Rajala A, Teel K, Bhat MA, Batushansky A, Griffin TM, Purcell L, Rajala RVS. Insulin-like growth factor 1 receptor mediates photoreceptor neuroprotection. Cell Death Dis 2022; 13:613. [PMID: 35840554 PMCID: PMC9287313 DOI: 10.1038/s41419-022-05074-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
Insulin-like growth factor I (IGF-1) is a neurotrophic factor and is the ligand for insulin-like growth factor 1 receptor (IGF-1R). Reduced expression of IGF-1 has been reported to cause deafness, mental retardation, postnatal growth failure, and microcephaly. IGF-1R is expressed in the retina and photoreceptor neurons; however, its functional role is not known. Global IGF-1 KO mice have age-related vision loss. We determined that conditional deletion of IGF-1R in photoreceptors and pan-retinal cells produces age-related visual function loss and retinal degeneration. Retinal pigment epithelial cell-secreted IGF-1 may be a source for IGF-1R activation in the retina. Altered retinal, fatty acid, and phosphoinositide metabolism are observed in photoreceptor and retinal cells lacking IGF-1R. Our results suggest that the IGF-1R pathway is indispensable for photoreceptor survival, and activation of IGF-1R may be an essential element of photoreceptor and retinal neuroprotection.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Kenneth Teel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Mohd A Bhat
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | | | | | - Lindsey Purcell
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
8
|
Naguib SA, Bernardo-Colón A, Rex TS. Intravitreal injection worsens outcomes in a mouse model of indirect traumatic optic neuropathy from closed globe injury. Exp Eye Res 2021; 202:108369. [PMID: 33238184 PMCID: PMC8117180 DOI: 10.1016/j.exer.2020.108369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
It is well established that an intravitreal needle poke or injection of buffer is protective to the retina in models of photoreceptor degeneration due to release of endogenous neurotrophic factors. Here we assess the effect of intravitreal injection of buffer in a model of closed globe trauma that causes air-blast induced indirect traumatic optic neuropathy (bITON). We injected animals 1-day after the last bITON or sham procedure and performed assessments 1-month later. Surprisingly, we detected a lower electroretinogram (ERG), greater optic nerve damage, and increased levels of pro-inflammatory cytokines in animals given an intravitreal injection. The effect was sometimes independent of bITON and sometimes exacerbated by the injury. Retina histology appeared normal, however the total number of axons in the optic nerve was lower even in uninjured animals that were injected. The number of degenerative axons was further increased in injured animals that were injected. In contrast, we detected a decrease in the ERG a wave and b wave amplitudes, but no effect on the visual evoked potential. Levels of the pro-inflammatory cytokines, IL-1α and IL-1β were elevated in the mice that received an intravitreal injection. This increase was even greater in animals that also had a bITON. This suggests that intravitreal injections may be injurious to the optic nerve particularly during the acute stage of optic nerve injury. In addition, the data suggests a role for IL-1α and IL-1β in this response.
Collapse
Affiliation(s)
- Sarah A. Naguib
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine
| | | | - Tonia S. Rex
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine;,Vanderbilt Eye Institute, Vanderbilt University Medical Center,Corresponding Author,
| |
Collapse
|
9
|
Xu L, Brown EE, Santiago CP, Keuthan CJ, Lobanova E, Ash JD. Retinal homeostasis and metformin-induced protection are not affected by retina-specific Pparδ knockout. Redox Biol 2020; 37:101700. [PMID: 32863184 PMCID: PMC7767733 DOI: 10.1016/j.redox.2020.101700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of three nuclear hormone receptors (PPARα, PPARδ, and PPARγ) that are known to regulate expression of lipid metabolism and oxidative stress genes. Given their role in reducing oxidative stress in a variety of tissues, these genes are likely important for retinal homeostasis. This hypothesis has been further supported by recent studies suggesting that PPAR-activating drugs are protective against retinal degenerations. The objective of the present study was to determine the role of PPARδ in the neuroretina. RNA-seq data show that Pparα and Pparδ are both expressed in the retina, but that Pparδ is expressed at 4-fold higher levels. Single-cell RNAseq data show that Pparδ is broadly expressed in all retinal cell types. To determine the importance of Pparδ to the retina, we generated retina-specific Pparδ knockout mice. We found that deletion of Pparδ had a minimal effect on retinal function or morphology out to 12 months of age and did not increase retinal sensitivity to oxidative stress induced by exposure to bright light. While data show that PPARδ levels were increased by the drug metformin, PPARδ was not necessary for metformin-induced protection from light damage. These data suggest that Pparδ either has a redundant function with Pparα or is not essential for normal neuroretina function or resistance to oxidative stress.
Collapse
Affiliation(s)
- Lei Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily E Brown
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Clayton P Santiago
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Casey J Keuthan
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ekaterina Lobanova
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, 32610, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - John D Ash
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep 2020; 10:1488. [PMID: 32001733 PMCID: PMC6992786 DOI: 10.1038/s41598-020-58424-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 11/10/2022] Open
Abstract
Müller glia, the principal glial cell type in the retina, have the potential to reenter the cell cycle after retinal injury. In mammals, proliferation of Müller glia is followed by gliosis, but not regeneration of neurons. Retinal injury is also accompanied by phagocytic removal of degenerated cells. We here investigated the possibility that proliferation and gliosis of Müller glia and phagocytosis of degenerated cells may be regulated by the same molecular pathways. After N-methyl-N–nitrosourea-induced retinal injury, degenerated photoreceptors were eliminated prior to the infiltration of microglia/macrophages into the outer nuclear layer, almost in parallel with cell cycle reentry of Müller glia. Inhibition of microglia/macrophage activation with minocycline did not affect the photoreceptor clearance. Accumulation of lysosomes and rhodopsin-positive photoreceptor debris within the cytoplasm of Müller glia indicated that Müller glia phagocytosed most photoreceptor debris. Pharmacological inhibition of phosphatidylserine and Rac1, key regulators of the phagocytic pathway, prevented cell cycle reentry, migration, upregulation of glial fibrillary acidic protein, and phagocytic activity of Müller glia. These data provide evidence that phosphatidylserine and Rac1 may contribute to the crosstalk between different signaling pathways activated in Müller glia after injury.
Collapse
|
11
|
Guo ZN, Guo WT, Liu J, Chang J, Ma H, Zhang P, Zhang FL, Han K, Hu HH, Jin H, Sun X, Simpson DM, Yang Y. Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology 2019; 93:e8-e19. [PMID: 31142636 PMCID: PMC6659004 DOI: 10.1212/wnl.0000000000007732] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Objective To determine the effect of remote ischemic preconditioning (RIPC) on dynamic cerebral autoregulation (dCA) and various blood biomarkers in healthy adults. Methods A self-controlled interventional study was conducted. Serial measurements of dCA were performed at 7 time points (7, 9, and 11 am; 2, 5, and 8 pm, and 8 am on the next day) without or with RIPC, carried out at 7:20 to 8 am. Venous blood samples were collected at baseline (7 am) and 1 hour after RIPC, and blood biomarkers, including 5 neuroprotective factors and 25 inflammation-related biomarkers, were measured with a quantitative protein chip. Results Fifty participants were enrolled (age 34.54 ± 12.01 years, 22 men). Compared with the results on the day without RIPC, dCA was significantly increased at 6 hours after RIPC, and the increase was sustained for at least 24 hours. After RIPC, 2 neuroprotective factors (glial cell-derived neurotrophic factor and vascular endothelial growth factor-A) and 4 inflammation-related biomarkers (transforming growth factor-β1, leukemia inhibitory factor, matrix metallopeptidase-9, and tissue inhibitor of metalloproteinase-1) were significantly elevated compared with their baseline levels. Conversely, monocyte chemoattractant protein-1 was significantly lower compared with its baseline level. Conclusions RIPC induces a sustained increase of dCA from 6 to at least 24 hours after treatment in healthy adults. In addition, several neuroprotective and inflammation-related blood biomarkers were differentially regulated shortly after RIPC. The increased dCA and altered blood biomarkers may collectively contribute to the beneficial effects of RIPC on cerebrovascular function. ClinicalTrials.gov identifier: NCT02965547.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Wei-Tong Guo
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Jia Liu
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Junlei Chang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Hongyin Ma
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Peng Zhang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Fu-Liang Zhang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Ke Han
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Han-Hwa Hu
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Hang Jin
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Xin Sun
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - David Martin Simpson
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Yi Yang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK.
| |
Collapse
|
12
|
Yang XF, Huang YX, Lan M, Zhang TR, Zhou J. Protective Effects of Leukemia Inhibitory Factor on Retinal Vasculature and Cells in Streptozotocin-induced Diabetic Mice. Chin Med J (Engl) 2019; 131:75-81. [PMID: 29271384 PMCID: PMC5754962 DOI: 10.4103/0366-6999.221263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Leukemia inhibitory factor (LIF) has been reported to possess various pharmacological effects, including displaying vascular and neuroprotective properties, during retinal disease. The aim of this study was to investigate the vascular and structural changes in the retina of diabetic mice and to explore whether LIF prevents experimental diabetes-induced retinal injury in the early stages. METHODS Diabetes was induced in C57Bl/6J mice with streptozotocin (STZ) injections. Successful diabetic animal models were randomly separated into two groups: the diabetic group (n = 15) and the LIF-treated group (n = 15). Normal C57BL/6 mice served as the normal control group (n = 14). Recombinant human LIF was intravitreally injected 8 weeks after the diabetic model was successfully established. Retinas were collected and evaluated using histological and immunohistochemical techniques, and flat-mounted retinas and Western blotting were performed at 18 weeks after the induction of diabetes and 2 days after the intravitreal injection of LIF. The analysis of variance test were used. RESULTS Histological analysis showed that there were fewer retinal ganglion cells (RGCs) and the inner nuclear layer (INL) became thinner in the diabetic model group (RGC 21.8 ± 4.0 and INL 120.2 ± 4.6 μm) compared with the normal control group (RGC 29.0 ± 6.7, t = -3.02, P = 0.007; INL 150.7 ± 10.6 μm, t = -8.88, P < 0.001, respectively). After LIF treatment, the number of RGCs (26.9 ± 5.3) was significantly increased (t = 3.39, P = 0.030) and the INL (134.5 ± 14.2 μm) was thicker compared to the diabetic group (t = 2.75, P = 0.013). In the anti-Brn-3a-labeled retinas, the number of RGCs in the LIF-treated group (3926.0 ± 143.9) was obviously increased compared to the diabetic group (3507.7 ± 286.1, t = 2.38, P = 0.030), while no significance was found between the LIF-treated group and the control group (4188.3 ± 114.7, t = -2.47, P = 0.069). Flat-mounted retinas demonstrated that a disorganized, dense distribution of the vessel was prominent in the diabetic model group. Vessel distribution in the LIF-treated mouse group was typical and the thickness was uniform. The levels of phosphosignal transducer and activator of transcription 3 activation were obviously higher in the LIF-injected retinas than those in the diabetic control group (t = 3.85, P = 0.019) and the normal control (t = -3.20, P = 0.019). CONCLUSION The present study provides evidence that LIF treatment protects the integrity of the vasculature and prevents retinal injury in the early stages of diabetic retinopathy in STZ-induced diabetic models.
Collapse
Affiliation(s)
- Xiu-Fen Yang
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying-Xiang Huang
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ming Lan
- Institute of Laboratory Animals of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Tao-Ran Zhang
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jie Zhou
- Department of Ophthalmology, The Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
13
|
Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants (Basel) 2019; 8:antiox8030053. [PMID: 30832304 PMCID: PMC6466531 DOI: 10.3390/antiox8030053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been documented to be a key factor in the cause and progression of different retinal diseases. Oxidative cellular unbalance triggers a sequence of reactions which prompt cell degeneration and retinal dysfunction, both hallmarks of several retinal pathologies. There is no effective treatment, yet, for many retinal diseases. Antioxidant treatment have been pointed out to be an encouraging palliative treatment; the beneficial effects documented involve slowing the progression of the disease, a reduction of cell degeneration, and improvement of retinal functions. There is a vast information corpus on antioxidant candidates. In this review, we expose three of the main antioxidant treatments, selected for their promising results that has been reported to date. Recently, the sulforaphane, an isothiocyanate molecule, has been unveiled as a neuroprotective candidate, by its antioxidant properties. Progesterone, a neurosteroid has been proposed to be a solid and effective neuroprotective agent. Finally, the lipoic acid, an organosulfur compound, is a well-recognized antioxidant. All of them, have been tested and studied on different retinal disease models. In this review, we summarized the published results of these works, to offer a general view of the current antioxidant treatment advances, including the main effects and mechanisms described.
Collapse
|
14
|
Rajala RVS. Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Retinal Degenerative Diseases. JOURNAL OF MOLECULAR BIOLOGY & THERAPEUTICS 2019; 1:44-55. [PMID: 34528026 PMCID: PMC8439377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several nanotechnology podiums have gained remarkable attention in the area of medical sciences, including diagnostics and treatment. In the past decade, engineered multifunctional nanoparticles have served as drug and gene carriers. The most important aspect of translating nanoparticles from the bench to bedside is safety. These nanoparticles should not elicit any immune response and should not be toxic to humans or the environment. Lipid-based nanoparticles have been shown to be the least toxic for in vivo applications, and significant progress has been made in gene and drug delivery employing lipid-based nanoassemblies. Several excellent reviews and reports discuss the general use and application of lipid-based nanoparticles; our review focuses on the application of lipid-based nanoparticles for the treatment of ocular diseases, and recent advances in and updates on their use.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology and Cell Biology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Labunets IF, Rodnichenko AE, Melnyk NO, Rymar SE, Utko N, Gavrulyk-Skyba GO, Butenko GM. Neuroprotective effect of the recombinant human leukemia inhibitory factor in mice with an experimental cuprizone model of multiple sclerosis: possible mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.7124/bc.000989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- I. F. Labunets
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | | | - N. O Melnyk
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | - S. E. Rymar
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
- Bogomolets National Medical University
| | - N.A. Utko
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| | | | - G. M. Butenko
- Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
| |
Collapse
|
16
|
Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium. Proc Natl Acad Sci U S A 2018; 115:10475-10480. [PMID: 30249643 DOI: 10.1073/pnas.1802724115] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Retinal degenerative diseases are generally characterized by a permanent loss of light-sensitive retinal neurons known as photoreceptors, or their support cells, the retinal pigmented epithelium (RPE). Metabolic dysfunction has been implicated as a common mechanism of degeneration. In this study, we used the drug metformin in a gain-of-function approach to activate adenosine monophosphate-activated protein kinase (AMPK). We found that treatment protected photoreceptors and the RPE from acute injury and delayed inherited retinal degeneration. Protection was associated with decreased oxidative stress, decreased DNA damage, and increased mitochondrial energy production. To determine whether protection was a local or a systemic effect of metformin, we used AMPK retinal knockout mice and found that local expression of AMPK catalytic subunit α2 was required for metformin-induced protection. Our data demonstrate that increasing the activity of AMPK in retinal neurons or glia can delay or prevent degeneration of photoreceptors and the RPE from multiple types of cell-death triggers.
Collapse
|
17
|
Damage-associated molecular pattern recognition is required for induction of retinal neuroprotective pathways in a sex-dependent manner. Sci Rep 2018; 8:9115. [PMID: 29904087 PMCID: PMC6002365 DOI: 10.1038/s41598-018-27479-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Retinal degeneration is a common cause of irreversible blindness and is caused by the death of retinal light-sensitive neurons called photoreceptors. At the onset of degeneration, stressed photoreceptors cause retinal glial cells to secrete neuroprotective factors that slow the pace of degeneration. Leukemia inhibitory factor (LIF) is one such factor that is required for endogenous neuroprotection. Photoreceptors are known to release signals of cellular stress, called damage-associated molecular patterns (DAMPs) early in degeneration, and we hypothesized that receptors for DAMPs or pattern recognition receptors (PRRs) play a key role in the induction of LIF and neuroprotective stress responses in retinal glial cells. Toll-like receptor 2 (TLR2) is a well-established DAMP receptor. In our experiments, activation of TLR2 protected both male and female mice from light damage, while the loss of TLR2 in female mice did not impact photoreceptor survival. In contrast, induction of protective stress responses, microglial phenotype and photoreceptor survival were strongly impacted in male TLR2−/− mice. Lastly, using publicly available gene expression data, we show that TLR2 is expressed highly in resting microglia prior to injury, but is also induced in Müller cells in inherited retinal degeneration.
Collapse
|
18
|
From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4968321. [PMID: 29849898 PMCID: PMC5932428 DOI: 10.1155/2018/4968321] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/04/2018] [Indexed: 11/24/2022]
Abstract
Oxidative stress can alter the expression level of many microRNAs (miRNAs), but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.
Collapse
|
19
|
Gidday JM. Adaptive Plasticity in the Retina: Protection Against Acute Injury and Neurodegenerative Disease by Conditioning Stimuli. CONDITIONING MEDICINE 2018; 1:85-97. [PMID: 31423482 PMCID: PMC6696944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although both preclinical and clinical conditioning studies in heart and brain lead the field of conditioning medicine, investigations of retinal conditioning still number more than 100. In this brief review, we highlight findings to date from animal and cell culture models of conditioning that provide demonstrated protection in acute and chronic retinal injury and disease models. The multitude of stimuli used to condition the retina, the signaling mediators and pathways identified, and the injury- and disease-resilient phenotypes documented are discussed herein, along with our recommendations for the kinds of studies needed to continue to advance this promising field. In our view, the robust protection afforded by these adaptive epigenetic responses to conditioning stress provides significant incentives for both furthering our investment in bench research and underwriting clinical trials, so that the full potential of this therapy can be realized.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Departments of Ophthalmology, Physiology, and the Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
20
|
Iliescu DA, Ciubotaru A, Ghiţă MA, Dumitru A, Zăgrean L. Effect of sevoflurane preconditioning on light-induced retinal damage in diabetic rats. Rom J Ophthalmol 2018; 62:24-33. [PMID: 29796431 PMCID: PMC5959021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 11/29/2022] Open
Abstract
Hyperglycemia and bright light are powerful stress agents that produce an enhanced retinal damage, when simultaneously acting on retina. Previous studies have shown that preconditioning with sevoflurane anesthesia offers a certain degree of protection to retinal cells against light damage. The objective of this study was to explore the effect of sevoflurane anesthetic preconditioning on a model of light-induced retinal degeneration in diabetic rats. Wistar rats that were randomly divided into four groups: control (rats exposed to photostress), group 1 (rats exposed to photostress and sevoflurane preconditioning), group 2 (diabetic rats exposed to photostress), group 3 (diabetic rats exposed to photostress and sevoflurane preconditioning) were used for this experiment. We recorded basal electroretinogram (ERG), at 36 h and 14 days after photostress and performed histological analysis of the retina. Results showed that sevoflurane has a protective effect on light-induced neuroretinal degeneration proved by significantly less variations of the ERG before and after photostress. Diabetes appears to increase the damaging effect of photostress on retina and attenuate the protection provided by sevoflurane preconditioning.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Physiology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Ophthalmology Department, "Dr. Carol Davila" Central Military University Emergency Hospital, Bucharest, Romania
| | - Alexandra Ciubotaru
- Physiology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Aurelian Ghiţă
- Physiology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Ophthalmology Department, University Emergency Hospital, Bucharest, Romania
| | - Adrian Dumitru
- Pathology Department, University Emergency Hospital, Bucharest, Romania
| | - Leon Zăgrean
- Physiology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
21
|
Retinal Pigment Epithelium and Photoreceptor Preconditioning Protection Requires Docosanoid Signaling. Cell Mol Neurobiol 2017; 38:901-917. [PMID: 29177613 PMCID: PMC5882642 DOI: 10.1007/s10571-017-0565-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023]
Abstract
Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are necessary for functional cell integrity. Preconditioning (PC), as we define it, is an acquired protection or resilience by a cell, tissue, or organ to a lethal stimulus enabled by a previous sublethal stressor or stimulus. In this study, we provide evidence that the omega-3 fatty acid docosahexaenoic acid (DHA) and its derivatives, the docosanoids 17-hydroxy docosahexaenoic acid (17-HDHA) and neuroprotectin D1 (NPD1), facilitate cell survival in both in vitro and in vivo models of retinal PC. We also demonstrate that PC requires the enzyme 15-lipoxygenase-1 (15-LOX-1), which synthesizes 17-HDHA and NPD1, and that this is specific to docosanoid signaling despite the concomitant release of the omega-6 arachidonic acid and eicosanoid synthesis. These findings advocate that DHA and docosanoids are protective enablers of PC in photoreceptor and retinal pigment epithelial cells.
Collapse
|
22
|
Protective effect of resveratrol against light-induced retinal degeneration in aged SAMP8 mice. Oncotarget 2017; 8:65778-65788. [PMID: 29029471 PMCID: PMC5630371 DOI: 10.18632/oncotarget.19473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/24/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to determine the protective effects of Resveratrol (RESV) on acute bright light-induced retinal degeneration in aged senescence accelerated mouse strain. Methods Ten three-month-old male SAMP8 mice (prone to aging) were randomly assigned to two experimental dietary groups: one untreated group and one RESV treatment group (n=20 eyes for each group). After 30 days of treatment, mice were exposed to intense bright light. Ten male SAMR1 mice (resistant to aging) served as control (n=20 eyes). The protective effects of RESV administration on light-induced retinal degeneration in SAMP8 strain as well as the effect of bright light damage in the retinas of SAMP8 mice were analyzed by electroretinography (ERG), retinal histology, mRNA, protein and lipid profile. Results 68%-85% of a-wave amplitude and 72%-92% of b-wave amplitude were persevered by RESV in SAMP8 mice that were exposed to light damage. Also, RESV preserved their photoreceptor nuclei. mRNA expression of neuroprotective factors leukemia inhibitory factor (LIF), brain derived neurotrophic factor (BDNF), oncostatin M (OSM), cardiotrophin 1(CT-1) and cardiotrophin-like cytokine (CLC) were up-regulated 28, 8, 7, 5 and 9-fold in SAMP8 mice after RESV treatment. In addition, RESV could suppress the NF-κB pathway by down-regulating the expression of pIκB. Light damage led to increase of saturated FA, monoenoic FA, n6 PUFA and n6/n3 ratio and decrease of Docosahexaenoic acid (DHA). There was no significant difference on DHA and the ratio of n6/n3-FA between the untreated and RESV treated SAMP8 mice. Conclusions Collectively, our study provides evidence that RESV prevents light-induced retinal damage associated with aging.
Collapse
|
23
|
de la Barca JMC, Huang NT, Jiao H, Tessier L, Gadras C, Simard G, Natoli R, Tcherkez G, Reynier P, Valter K. Retinal metabolic events in preconditioning light stress as revealed by wide-spectrum targeted metabolomics. Metabolomics 2017; 13:22. [PMID: 28706468 PMCID: PMC5486622 DOI: 10.1007/s11306-016-1156-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/20/2016] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Light is the primary stimulus for vision, but may also cause damage to the retina. Pre-exposing the retina to sub-lethal amount of light (or preconditioning) improves chances for retinal cells to survive acute damaging light stress. OBJECTIVES This study aims at exploring the changes in retinal metabolome after mild light stress and identifying mechanisms that may be involved in preconditioning. METHODS Retinas from 12 rats exposed to mild light stress (1000 lux × for 12 h) and 12 controls were collected one and seven days after light stress (LS). One retina was used for targeted metabolomics analysis using the Biocrates p180 kit while the fellow retina was used for histological and immunohistochemistry analysis. RESULTS Immunohistochemistry confirmed that in this experiment, a mild LS with retinal immune response and minimal photoreceptor loss occurred. Compared to controls, LS induced an increased concentration in phosphatidylcholines. The concentration in some amino acids and biogenic amines, particularly those related to the nitric oxide pathway (like asymmetric dimethylarginine (ADMA), arginine and citrulline) also increased 1 day after LS. 7 days after LS, the concentration in two sphingomyelins and phenylethylamine was found to be higher. We further found that in controls, retina metabolome was different between males and females: male retinas had an increased concentration in tyrosine, acetyl-ornithine, phosphatidylcholines and (acyl)-carnitines. CONCLUSIONS Besides retinal sexual metabolic dimorphism, this study shows that preconditioning is mostly associated with re-organisation of lipid metabolism and changes in amino acid composition, likely reflecting the involvement of arginine-dependent NO signalling.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Nuan-Ting Huang
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Haihan Jiao
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Lydie Tessier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Cédric Gadras
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2248 3363grid.7252.2INSERM U1063, Université d’Angers, 49933 Angers, France
| | - Riccardo Natoli
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| | - Guillaume Tcherkez
- 0000 0001 2180 7477grid.1001.0Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601 Australia
| | - Pascal Reynier
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Krisztina Valter
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
24
|
Byrne AM, Ruiz-Lopez AM, Roche SL, Moloney JN, Wyse-Jackson AC, Cotter TG. The synthetic progestin norgestrel modulates Nrf2 signaling and acts as an antioxidant in a model of retinal degeneration. Redox Biol 2016; 10:128-139. [PMID: 27744118 PMCID: PMC5065647 DOI: 10.1016/j.redox.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of the most common retinal degenerative conditions affecting people worldwide, and is currently incurable. It is characterized by the progressive loss of photoreceptors, in which the death of rod cells leads to the secondary death of cone cells; the cause of eventual blindness. As rod cells die, retinal-oxygen metabolism becomes perturbed, leading to increased levels of reactive oxygen species (ROS) and thus oxidative stress; a key factor in the secondary death of cones. In this study, norgestrel, an FDA-approved synthetic analog of progesterone, was found to be a powerful neuroprotective antioxidant, preventing light-induced ROS in photoreceptor cells, and subsequent cell death. Norgestrel also prevented light-induced photoreceptor morphological changes that were associated with ROS production, and that are characteristic of RP. Further investigation showed that norgestrel acts via post-translational modulation of the major antioxidant transcription factor Nrf2; bringing about its phosphorylation, subsequent nuclear translocation, and increased levels of its effector protein superoxide dismutase 2 (SOD2). In summary, these results demonstrate significant protection of photoreceptor cells from oxidative stress, and underscore the potential of norgestrel as a therapeutic option for RP.
Collapse
Affiliation(s)
- Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia. eNeuro 2016; 3:eN-NWR-0143-16. [PMID: 27699209 PMCID: PMC5037323 DOI: 10.1523/eneuro.0143-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/30/2023] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein (IKBKAP). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre (Tα1-Cre). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.
Collapse
|
26
|
Byrne AM, Roche SL, Ruiz-Lopez AM, Jackson ACW, Cotter TG. The synthetic progestin norgestrel acts to increase LIF levels in the rd10 mouse model of retinitis pigmentosa. Mol Vis 2016; 22:264-74. [PMID: 27081297 PMCID: PMC4812511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/23/2016] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Retinal degenerative conditions affect thousands of people worldwide. Retinitis pigmentosa (RP) is among the most common, but it is currently incurable. It is characterized by the progressive death of photoreceptor cells, eventually leading to blindness. Neurotrophic factors play an important role in such retinopathies, and much research has been performed on their use as treatments. Our group previously demonstrated the ability of the synthetic progestin norgestrel to rescue photoreceptors from cell death, the mechanism of which is believed to include upregulation of the neurotrophic factor basic fibroblast growth factor (bFGF). The objective of the present study was to investigate whether the protection provided by norgestrel is likely to be mediated by other neurotrophins. METHODS The 661W photoreceptor cells and retinal explants from P30 to P40 wild-type (wt) C57BL/6 mice were treated with norgestrel over time. Homozygous rd10/rd10 mice that mimic the human form of RP were fed either a control or a norgestrel-containing diet. Changes in neurotrophic factor expression in response to norgestrel were detected with real-time PCR, western blotting, or immunofluorescence staining. Using specific siRNA, leukemia inhibitory factor (Lif) expression was knocked down in 661W photoreceptor cells that were stressed by serum starvation. Cells were treated with norgestrel followed by measurement of cell viability with (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay. RESULTS LIF, a potent neuroprotective cytokine, was found to be upregulated in response to norgestrel in vitro and in vivo. Upregulation of LIF in degenerating rd10 retinas coincided with preservation of the photoreceptor layer. We also found LIF was necessary for the norgestrel-mediated rescue of stressed photoreceptor cells from cell death in vitro. CONCLUSIONS LIF was upregulated in response to norgestrel in all models studied and is necessary for the protective effects of norgestrel in vitro. The increase in LIF expression in rd10 mice undergoing retinal degeneration was concurrent with rescue of the photoreceptor cell layer. These results highlight the ability of norgestrel to induce prosurvival molecules in the compromised retina, underlining norgestrel's potential as a viable drug for treatment of RP.
Collapse
|
27
|
Exercise and Cyclic Light Preconditioning Protect Against Light-Induced Retinal Degeneration and Evoke Similar Gene Expression Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:443-8. [PMID: 26427444 DOI: 10.1007/978-3-319-17121-0_59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To compare patterns of gene expression following preconditioning cyclic light rearing versus preconditioning aerobic exercise. BALB/C mice were preconditioned either by rearing in 800 lx 12:12 h cyclic light for 8 days or by running on treadmills for 9 days, exposed to toxic levels of light to cause light-induced retinal degeneration (LIRD), then sacrificed and retinal tissue harvested. Subsets of mice were maintained for an additional 2 weeks and for assessment of retinal function by electroretinogram (ERG). Both preconditioning protocols partially but significantly preserved retinal function and morphology and induced similar leukemia inhibitory factor (LIF) gene expression pattern. The data demonstrate that exercise preconditioning and cyclic light preconditioning protect photoreceptors against LIRD and evoke a similar pattern of retinal LIF gene expression. It may be that similar stress response pathways mediate the protection provided by the two preconditioning modalities.
Collapse
|
28
|
Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, Yu C, Li Y, Kanu L, Miwa T, Song WC, Finnemann SC, Rohrer B, Dunaief JL. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS One 2016; 11:e0166348. [PMID: 27893831 PMCID: PMC5125596 DOI: 10.1371/journal.pone.0166348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
Complement dysregulation plays a key role in the pathogenesis of age-related macular degeneration (AMD), but the specific mechanisms are incompletely understood. Complement also potentiates retinal degeneration in the murine light damage model. To test the retinal function of CD59a, a complement inhibitor, CD59a knockout (KO) mice were used for light damage (LD) experiments. Retinal degeneration and function were compared in WT versus KO mice following light damage. Gene expression changes, endoplasmic reticulum (ER) stress, and glial cell activation were also compared. At baseline, the ERG responses and rhodopsin levels were lower in CD59aKO compared to wild-type (WT) mice. Following LD, the ERG responses were better preserved in CD59aKO compared to WT mice. Correspondingly, the number of photoreceptors was higher in CD59aKO retinas than WT controls after LD. Under normal light conditions, CD59aKO mice had higher levels than WT for GFAP immunostaining in Müller cells, mRNA and protein levels of two ER-stress markers, and neurotrophic factors. The reduction in photon capture, together with the neurotrophic factor upregulation, may explain the structural and functional protection against LD in the CD59aKO.
Collapse
Affiliation(s)
- Delu Song
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Brooks Wilson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Liangliang Zhao
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin, China
| | - Rupak Bhuyan
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | | | - Arkady Lyubarsky
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Chen Yu
- Center for Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Yafeng Li
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Levi Kanu
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - Takashi Miwa
- Department of Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wen-Chao Song
- Department of Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC
- * E-mail: (JLD); (BR)
| | - Joshua L. Dunaief
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- * E-mail: (JLD); (BR)
| |
Collapse
|
29
|
Hoffmann FS, Hofereiter J, Rübsamen H, Melms J, Schwarz S, Faber H, Weber P, Pütz B, Loleit V, Weber F, Hohlfeld R, Meinl E, Krumbholz M. Fingolimod induces neuroprotective factors in human astrocytes. J Neuroinflammation 2015; 12:184. [PMID: 26419927 PMCID: PMC4589103 DOI: 10.1186/s12974-015-0393-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023] Open
Abstract
Background Fingolimod (FTY720) is the first sphingosine-1-phosphate (S1P) receptor modulator approved for the treatment of multiple sclerosis. The phosphorylated active metabolite FTY720-phosphate (FTY-P) interferes with lymphocyte trafficking. In addition, it accumulates in the CNS and reduces brain atrophy in multiple sclerosis (MS), and neuroprotective effects are hypothesized. Methods Human primary astrocytes as well as human astrocytoma cells were stimulated with FTY-P or S1P. We analyzed gene expression by a genome-wide microarray and validated induced candidate genes by quantitative PCR (qPCR) and ELISA. To identify the S1P-receptor subtypes involved, we applied a membrane-impermeable S1P analog (dihydro-S1P), receptor subtype specific agonists and antagonists, as well as RNAi silencing. Results FTY-P induced leukemia inhibitory factor (LIF), interleukin 11 (IL11), and heparin-binding EGF-like growth factor (HBEGF) mRNA, as well as secretion of LIF and IL11 protein. In order to mimic an inflammatory milieu as observed in active MS lesions, we combined FTY-P application with tumor necrosis factor (TNF). In the presence of this key inflammatory cytokine, FTY-P synergistically induced LIF, HBEGF, and IL11 mRNA, as well as secretion of LIF and IL11 protein. TNF itself induced inflammatory, B-cell promoting, and antiviral factors (CXCL10, BAFF, MX1, and OAS2). Their induction was blocked by FTY-P. After continuous exposure of cells to FTY-P or S1P for up to 7 days, the extent of induction of neurotrophic factors and the suppression of TNF-induced inflammatory genes declined but was still detectable. The induction of neurotrophic factors was mediated via surface S1P receptors 1 (S1PR1) and 3 (S1PR3). Conclusions We identified effects of FTY-P on astrocytes, namely induction of neurotrophic mediators (LIF, HBEGF, and IL11) and inhibition of TNF-induced inflammatory genes (CXCL10, BAFF, MX1, and OAS2). This supports the view that a part of the effects of fingolimod may be mediated via astrocytes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0393-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franziska S Hoffmann
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377, Munich, Germany.
| | - Johann Hofereiter
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377, Munich, Germany.
| | - Heike Rübsamen
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377, Munich, Germany.
| | - Johannes Melms
- German Center for Neurodegenerative Diseases (DZNE) and Technical University, 81377, Munich, Germany.
| | - Sigrid Schwarz
- German Center for Neurodegenerative Diseases (DZNE) and Technical University, 81377, Munich, Germany.
| | - Hans Faber
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Peter Weber
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Benno Pütz
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Verena Loleit
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377, Munich, Germany.
| | - Frank Weber
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377, Munich, Germany.
| | - Markus Krumbholz
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377, Munich, Germany. .,Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
30
|
Hu Q, Huang C, Wang Y, Wu R. Expression of leukemia inhibitory factor in the rat retina following acute ocular hypertension. Mol Med Rep 2015; 12:6577-83. [PMID: 26352383 PMCID: PMC4626123 DOI: 10.3892/mmr.2015.4287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/27/2015] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the expression of leukemia inhibitory factor (LIF) and its downstream signaling pathways in the rat retina following acute ocular hypertension. The intraocular pressure of the rats was elevated to 110 mmHg for 1 h by infusing the anterior chamber with normal saline. The retinal tissues were obtained 12 h, 24 h, and 2, 3 and 7 days after termination of the ocular hypertension. Hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were performed to assess the morphological changes and the apoptosis of retinal cells, respectively. Quantification of the retinal ganglion cells (RGCs) was performed using fluorogold retrograde (FG) staining. The expression levels of LIF, LIF receptor (LIFR), signal transducers and activators of transcription 3 (STAT3), phosphorylated STAT3 (P-STAT3), Akt, phosphorylated-Akt (P-Akt), extracellular signal-regulated kinase (ERK) and phosphorylated ERK (P-ERK) were determined at different time-points following acute ocular hypertension using western blot analysis. Reverse transcription-quantitative polymerase chain reaction was performned to detect the mRNA expression levels of LIF and LIFR. The results revealed that 12 h, 24 h, 2, 3 and 7 days after reperfusion, the thickness of the inner nuclear layer and the inner plexiform layer was decreased, with a significant reduction in the number of RGCs, as determined using TUNEL and FG staining. The expression levels of LIF and LIFR were increased following acute ocular hypertension. At 12 h post-retinal reperfusion, the expression levels of P-STAT3 and P-Akt were significantly upregulated, while the expression of P-ERK was decreased. The changes in the expression levels of LIF and LIFR suggested that LIF may be important in the process of degeneration/protection following retinal ischemia induced by acute ocular hypertension, via activation of the Janus kinase/STAT and Akt signaling pathways.
Collapse
Affiliation(s)
- Qianqian Hu
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| | - Changquan Huang
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| | - Yao Wang
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| | - Renyi Wu
- Department of Glaucoma, Xiamen University Affiliated Eye Center, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|
31
|
Bell BA, Kaul C, Bonilha VL, Rayborn ME, Shadrach K, Hollyfield JG. The BALB/c mouse: Effect of standard vivarium lighting on retinal pathology during aging. Exp Eye Res 2015; 135:192-205. [PMID: 25895728 PMCID: PMC4446204 DOI: 10.1016/j.exer.2015.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
Abstract
BALB/cJ mice housed under normal vivarium lighting conditions can exhibit profound retinal abnormalities, including retinal infoldings, autofluorescent inflammatory cells, and photoreceptor degeneration. To explore the sensitivity of the outer retina to cyclic lighting during aging, a cohort of BALB/cJ mice was evaluated with Scanning Laser Ophthalmoscopy (SLO), Spectral-Domain Optical Coherence Tomography (OCT) and conventional histopathology. Mice were bred and reared in a low-illuminance (extracage/intracage: 13 lx/1 lx) vivarium under cyclic light (14 h light: 10 h dark). Retinal imaging (around postnatal day 70) was performed to screen for any pre-existing abnormalities and to establish a baseline. Mice with normal retinas were separated into groups (A, B, C) and placed on bottom (Groups A & B) or top (Group C) of the cage racks where cage illumination was <10 & 150 lx respectively. Experimental groups B & C were imaged multiple times over a 17 month period. Mice from group A (controls) were imaged only once post-baseline at various times for comparison to groups B & C. Mice were assessed by histology at 8, 15, 20, 36, and 56 weeks and immunohistochemistry at 15 weeks post-baseline. SLO and OCT retinal images were measured and the resulting trends displayed as a function of age and light exposure. Retinal lesions (RL) and autofluorescent foci (AFF) were identified with histology as photoreceptor layer infoldings (IF) and localized microglia/macrophages (MM), respectively. Few RL and AFF were evident at baseline. Retinal infoldings were the earliest changes followed by subjacent punctate autofluorescent MM. The colocalization of IF and MM suggests a causal relationship. The incidence of these pathological features increased in all groups relative to baseline. OCT imaging revealed thinning of the outer nuclear layer (ONL) in all groups at 1 year relative to baseline. ONL thinning followed an exponential rate of change but the decay constant varied depending on intensity of illumination of the groups. Advanced age and top row illuminance conditions resulted in significant photoreceptor cell loss as judged by decreased thickness of the ONL. Photoreceptor loss was preceded by both retinal infoldings and the presence of autofluorescent inflammatory cells in the outer retina, suggesting that these changes are early indicators of light toxicity in the BALB/cJ mouse.
Collapse
Affiliation(s)
- Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles Kaul
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mary E Rayborn
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karen Shadrach
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joe G Hollyfield
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| |
Collapse
|
32
|
Agca C, Boldt K, Gubler A, Meneau I, Corpet A, Samardzija M, Stucki M, Ueffing M, Grimm C. Expression of leukemia inhibitory factor in Müller glia cells is regulated by a redox-dependent mRNA stability mechanism. BMC Biol 2015; 13:30. [PMID: 25907681 PMCID: PMC4462110 DOI: 10.1186/s12915-015-0137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Photoreceptor degeneration is a main hallmark of many blinding diseases making protection of photoreceptors crucial to prevent vision loss. Thus, regulation of endogenous neuroprotective factors may be key for cell survival and attenuation of disease progression. Important neuroprotective factors in the retina include H2O2 generated by injured photoreceptors, and leukemia inhibitory factor (LIF) expressed in Müller glia cells in response to photoreceptor damage. Results We present evidence that H2O2 connects to the LIF response by inducing stabilization of Lif transcripts in Müller cells. This process was independent of active gene transcription and p38 MAPK, but relied on AU-rich elements (AREs), which we identified within the highly conserved Lif 3′UTR. Affinity purification combined with quantitative mass spectrometry identified several proteins that bound to these AREs. Among those, interleukin enhancer binding factor 3 (ILF3) was confirmed to participate in the redox-dependent Lif mRNA stabilization. Additionally we show that KH-type splicing regulatory protein (KHSRP) was crucial for maintaining basal Lif expression levels in non-stressed Müller cells. Conclusions Our results suggest that H2O2-induced redox signaling increases Lif transcript levels through ILF3 mediated mRNA stabilization. Generation of H2O2 by injured photoreceptors may thus enhance stability of Lif mRNA and therefore augment neuroprotective LIF signaling during degenerative conditions in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cavit Agca
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Present address: Department of Biomedicine, University Hospital Basel, Basel, 4031, Switzerland.
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Andrea Gubler
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Isabelle Meneau
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Armelle Corpet
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland. .,Present address: Center for Molecular and Cellular Physiology and Genetics, University Lyon I, Villeurbanne, France.
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland.
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, 8091, Switzerland. .,Neuroscience Center (ZNZ), University of Zurich, Zurich, 8091, Switzerland.
| |
Collapse
|
33
|
STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proc Natl Acad Sci U S A 2014; 111:E5716-23. [PMID: 25512545 DOI: 10.1073/pnas.1411248112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inherited photoreceptor degenerations (IPDs), a group of incurable progressive blinding diseases, are caused by mutations in more than 200 genes, but little is known about the molecular pathogenesis of photoreceptor (PR) death. Increased retinal expression of STAT3 has been observed in response to many retinal insults, including IPDs, but the role of this increase in PR death is unknown. Here, we show that the expression of Stat3 is increased in PRs of the Tg(RHO P347S) and Prph2(rds) (/+) mouse models of IPD and is activated by tyrosine phosphorylation. PR-specific deletion of Stat3 substantially accelerated PR degeneration in both mutant strains. In contrast, increased PR-specific expression of ROSA26 (R26) alleles encoding either WT STAT3 (Stat3(wt)) or the gain-of-function variant STAT3(C) (Stat3(C)) improved PR survival in both models. Moreover, PR signaling in Tg(RHO P347S) mice carrying either a R26-Stat3(wt) or R26-Stat3(C) allele demonstrated increased a-wave amplitude of the scotopic electroretinogram. Phosphorylation of STAT3 at tyrosine 705 was required for the prosurvival effect because an R26-Stat3(Y705F) allele was not protective. The prosurvival role of enhanced Stat3 activity was validated using recombinant adenoassociated virus (rAAV) vector-mediated PR Stat3 expression in Tg(RHO P347S) mice. Our findings (i) establish that the increase in endogenous PR Stat3 expression is a protective response in IPDs, (ii) suggest that therapeutic augmentation of PR Stat3 expression has potential as a common neuroprotective therapy for these disorders, and (iii) indicate that prosurvival molecules whose expression is increased in mutant PRs may have promise as novel therapies for IPDs.
Collapse
|
34
|
Dysregulated production of leukemia inhibitory factor in immune cells of relapsing remitting multiple sclerosis patients. J Neuroimmunol 2014; 278:85-9. [PMID: 25595256 DOI: 10.1016/j.jneuroim.2014.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023]
Abstract
Leukemia inhibitory factor (LIF) is known to potentiate the differentiation and survival of neuronal and oligodendrocyte precursors. Systemic therapy with LIF reportedly ameliorated the severity of experimental autoimmune encephalomyelitis and prevented oligodendrocyte death. We studied the secreted LIF levels from immune cells of relapsing remitting multiple sclerosis (RR-MS) patients compared to age- and gender-matched healthy controls (HCs). LIF was barely detected in the supernatants when the cells were not stimulated. After stimulation with anti-CD3/CD28 monoclonal antibody, LIF levels were up-regulated in both patients and controls, although to a significantly lower extent in RR-MS patients compared to HC. There were no significant differences between untreated patients and interferon-β1a treated patients. This is a heretofore unreported aspect of immune dysregulation in patients with RR-MS that may be related to insufficient remyelination and neurogenesis in MS lesions.
Collapse
|
35
|
Abstract
In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
36
|
von Toerne C, Menzler J, Ly A, Senninger N, Ueffing M, Hauck SM. Identification of a novel neurotrophic factor from primary retinal Müller cells using stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 2014; 13:2371-81. [PMID: 24925906 DOI: 10.1074/mcp.m113.033613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Retinal Müller glial cells (RMGs) have a primary role in maintaining the homeostasis of the retina. In pathological situations, RMGs execute protective and regenerative effects, but they can also contribute to neurodegeneration. It has recently been recognized that cultured primary RMGs secrete pro-survival factors for retinal neurons for up to 2 weeks in culture, but this ability is lost when RMGs are cultivated for longer durations. In our study, we investigated RMG supernatants for novel neuroprotective factors using a quantitative proteomic approach. Stable isotope labeling by amino acids in cell culture (SILAC) was used on primary porcine RMGs. Supernatants of RMGs cultivated for 2 weeks were compared with supernatants from cells that had already lost their protective capacity. Using this approach, we detected established neurotrophic factors such as transferrin, osteopontin, and leukemia inhibitory factor and identified C-X-C motif chemokine 10 (CXCL10) as a novel candidate neuroprotective factor. All factors prolonged photoreceptor survival in vitro. Ex vivo treatment of retinal explants with leukemia inhibitory factor or CXCL10 demonstrated a neuroprotective effect on photoreceptors. Western blots on CXCL10- and leukemia inhibitory factor-stimulated explanted retina and photoreceptor lysates indicated activation of pro-survival signal transducer and activator of transcription signaling and B-cell lymphoma pathways. These findings suggest that CXCL10 contributes to the supportive potential of RMGs toward retinal neurons.
Collapse
Affiliation(s)
- Christine von Toerne
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jacob Menzler
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Alice Ly
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Nicole Senninger
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Marius Ueffing
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; §Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Stefanie M Hauck
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| |
Collapse
|
37
|
Kucharska J, Del Río P, Arango-Gonzalez B, Gorza M, Feuchtinger A, Hauck SM, Ueffing M. Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem 2014; 130:227-40. [PMID: 24593181 DOI: 10.1111/jnc.12704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 01/08/2023]
Abstract
Subretinal injections with glial cell line-derived neurotrophic factor (GDNF) rescue morphology as well as function of rod cells in mouse and rat animal models of retinitis pigmentosa. At the same time, it is postulated that this effect is indirect, mediated by activation of retinal Müller glial (RMG) cells. Here, we show that Cyr61/CCN1, one of the secreted proteins up-regulated in primary RMG after glial cell line-derived neurotrophic factor stimulation, provides neuroprotective and pro-survival capacities: Recombinant Cyr61 significantly reduced photoreceptor (PR) cells death in organotypic cultures of Pde6b(rd1) retinas. To identify stimulated pathways in the retina, we treated Pde6b(rd1) retinal explants with Cyr61 and observed an overall increase in activated Erk1/2 and Stat3 signalling molecules characterized by activation-site-specific phosphorylation. To identify Cyr61 retinal target cells, we isolated primary porcine PR, RMG and retinal pigment epithelium (RPE) cells and exposed them separately to Cyr61. Here, RMG as well as RPE cells responded with induced phosphorylation of Erk1/2, Stat3 and Akt. In PR, no increase in phosphorylation in any of the studied proteins was detected, suggesting an indirect neuroprotective effect of Cyr61. Cyr61 may thus act as an endogenous pro-survival factor for PR, contributing to the complex repertoire of neuroprotective activities generated by RMG and RPE cells. We propose the following model of Cyr61 neuroprotection within the retina: Cyr61 stimulates retinal Müller glial (RMG) and retinal pigment epithelium (RPE) cells and activates PI3K/Akt, mitogen-activated protein kinase(MAPK)/Erk and Janus kinase(JAK)/Stat-signalling pathways in these cells. Phosphorylated Stat3 and Erk1/2 presumably translocate to the nucleus, induce transcriptional changes, which increase secretion of neuroprotective agents that protect photoreceptors (PR) from mutation-induced death.
Collapse
Affiliation(s)
- Joanna Kucharska
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
39
|
Uittenboogaard LM, Payan-Gomez C, Pothof J, van Ijcken W, Mastroberardino PG, van der Pluijm I, Hoeijmakers JHJ, Tresini M. BACH2: a marker of DNA damage and ageing. DNA Repair (Amst) 2013; 12:982-92. [PMID: 24075570 DOI: 10.1016/j.dnarep.2013.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 11/25/2022]
Abstract
DNA damage and ageing share expression changes involving alterations in many aspects of metabolism, suppression of growth and upregulation of defence and genome maintenance systems. "Omics" technologies have permitted large-scale parallel measurements covering global cellular constituents and aided the identification of specific response pathways that change during ageing and after DNA damage. We have set out to identify genes with highly conserved response patterns through meta-analysis of mRNA expression datasets collected during natural ageing and accelerated ageing caused by a Transcription-Coupled Nucleotide Excision Repair (TC-NER) defect in a diverse set of organs and tissues in mice, and from in vitro UV-induced DNA damage in a variety of murine cells. The identified set of genes that show similar expression patterns in response to organ ageing (accelerated and normal), and endogenously and exogenously induced DNA damage, consists of genes involved in anti-oxidant systems and includes the transcription factor Bach2 as one of the most consistent markers. BACH2 was originally identified as a partner of the small Maf proteins and antagonist of the NRF2 anti-oxidant defence pathway and has been implicated in B-cell differentiation and immune system homeostasis. Although BACH2 has never before been associated with UV-induced damage or ageing, it shows a strong downregulation in both conditions. We have characterized the dynamics of Bach2 expression in response to DNA damage and show that it is a highly sensitive responder to transcription-blocking DNA lesions. Gene expression profiling using Affymetrix microarray analysis after siRNA-mediated silencing of Bach2 identified cell cycle and transcription regulation as the most significantly altered processes consistent with a function as transcription factor affecting proliferation.
Collapse
Affiliation(s)
- L M Uittenboogaard
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, PO Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Agca C, Gubler A, Traber G, Beck C, Imsand C, Ail D, Caprara C, Grimm C. p38 MAPK signaling acts upstream of LIF-dependent neuroprotection during photoreceptor degeneration. Cell Death Dis 2013; 4:e785. [PMID: 24008729 PMCID: PMC3789181 DOI: 10.1038/cddis.2013.323] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
In many blinding diseases of the retina, loss of function and thus severe visual impairment results from apoptotic cell death of damaged photoreceptors. In an attempt to survive, injured photoreceptors generate survival signals to induce intercellular protective mechanisms that eventually may rescue photoreceptors from entering an apoptotic death pathway. One such endogenous survival pathway is controlled by leukemia inhibitory factor (LIF), which is produced by a subset of Muller glia cells in response to photoreceptor injury. In the absence of LIF, survival components are not activated and photoreceptor degeneration is accelerated. Although LIF is a crucial factor for photoreceptor survival, the detailed mechanism of its induction in the retina has not been elucidated. Here, we show that administration of tumor necrosis factor-alpha (TNF) was sufficient to fully upregulate Lif expression in Muller cells in vitro and the retina in vivo. Increased Lif expression depended on p38 mitogen-activated protein kinase (MAPK) since inhibition of its activity abolished Lif expression in vitro and in vivo. Inhibition of p38 MAPK activity reduced the Lif expression also in the model of light-induced retinal degeneration and resulted in increased cell death in the light-exposed retina. Thus, expression of Lif in the injured retina and activation of the endogenous survival pathway involve signaling through p38 MAPK.
Collapse
Affiliation(s)
- C Agca
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich 8091, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kyosseva SV, Chen L, Seal S, McGinnis JF. Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice. Exp Eye Res 2013; 116:63-74. [PMID: 23978600 DOI: 10.1016/j.exer.2013.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/02/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022]
Abstract
Oxidative stress and inflammation are important pathological mechanisms in many neurodegenerative diseases, including age-related macular degeneration (AMD). The very low-density lipoprotein receptor knockout mouse (Vldlr-/-) has been identified as a model for AMD and in particular for retinal angiomatous proliferation (RAP). In this study we examined the effect of cerium oxide nanoparticles (nanoceria) that have been shown to have catalytic antioxidant activity, on expression of 88 major cytokines in the retinas of Vldlr-/- mice using a PCR array. A single intravitreal injection of nanoceria at P28 caused inhibition of pro-inflammatory cytokines and pro-angiogenic growth factors including Tslp, Lif, Il3, Il7, Vegfa, Fgf1, Fgf2, Fgf7, Egf, Efna3, Lep, and up-regulation of several cytokines and anti-angiogenic genes in the Vldlr-/- retina within one week. We used the Ingenuity Pathway Analysis software to search for biological functions, pathways, and interrelationships between gene networks. Many of the genes whose activities were affected are involved in cell signaling, cellular development, growth and proliferation, and tissue development. Western blot analysis revealed that nanoceria inhibit the activation of ERK 1/2, JNK, p38 MAP kinase, and Akt. These data suggest that nanoceria may represent a novel therapeutic strategy to treat AMD, RAP, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Svetlana V Kyosseva
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
42
|
Han Y, Xu J, Li Z, Yang Z. Neuroprotective effect of leukemia inhibitory factor on antimycin A-induced oxidative injury in differentiated PC12 cells. J Mol Neurosci 2013; 50:577-85. [PMID: 23636893 DOI: 10.1007/s12031-013-0004-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/11/2013] [Indexed: 12/25/2022]
Abstract
As a neurotrophic cytokine, leukemia inhibitory factor (LIF) has neuroendocrine effects and exerts neuroprotective effects on various neuron injuries both in vitro and in vivo. The aim of the present study was to investigate whether LIF can protect PC12 cells from antimycin A (AMA)-induced oxidative stress. LIF (0.5 and 1 ng/ml) increased PC12 cell viability and significantly attenuated AMA-induced cell death as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results from Hoechst 33342 staining and flow cytometry assay showed that AMA induced apoptosis significantly in PC12 cells, while pretreatment with LIF (0.5 and 1 ng/ml) can attenuate this injury. The presence of LIF partly prevented AMA-induced elevated reactive oxygen species level and decreased superoxide dismutase level, which indicated the antioxidative effects of LIF on the neuron oxidative injury. In conclusion, LIF might protect PC12 cells from the injury induced by AMA through the downregulation of oxidative stress, which may provide basic information of using LIF as a potential targeted therapy for oxidative injury in neurons.
Collapse
Affiliation(s)
- Yangguang Han
- College of Medicine, Nankai University, Tianjin, 300071, China
| | | | | | | |
Collapse
|
43
|
Tang J, Du Y, Lee CA, Talahalli R, Eells JT, Kern TS. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro. Invest Ophthalmol Vis Sci 2013; 54:3681-90. [PMID: 23557732 DOI: 10.1167/iovs.12-11018] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Treatment with light in the far-red to near-infrared region of the spectrum (photobiomodulation [PBM]) has beneficial effects in tissue injury. We investigated the therapeutic efficacy of 670-nm PBM in rodent and cultured cell models of diabetic retinopathy. METHODS Studies were conducted in streptozotocin-induced diabetic rats and in cultured retinal cells. Diabetes-induced retinal abnormalities were assessed functionally, biochemically, and histologically in vivo and in vitro. RESULTS We observed beneficial effects of PBM on the neural and vascular elements of retina. Daily 670-nm PBM treatment (6 J/cm(2)) resulted in significant inhibition in the diabetes-induced death of retinal ganglion cells, as well as a 50% improvement of the ERG amplitude (photopic b wave responses) (both P < 0.01). To explore the mechanism for these beneficial effects, we examined physiologic and molecular changes related to cell survival, oxidative stress, and inflammation. PBM did not alter cytochrome oxidase activity in the retina or in cultured retinal cells. PBM inhibited diabetes-induced superoxide production and preserved MnSOD expression in vivo. Diabetes significantly increased both leukostasis and expression of ICAM-1, and PBM essentially prevented both of these abnormalities. In cultured retinal cells, 30-mM glucose exposure increased superoxide production, inflammatory biomarker expression, and cell death. PBM inhibited all of these abnormalities. CONCLUSIONS PBM ameliorated lesions of diabetic retinopathy in vivo and reduced oxidative stress and cell death in vitro. PBM has been documented to have minimal risk. PBM is noninvasive, inexpensive, and easy to administer. We conclude that PBM is a simple adjunct therapy to attenuate the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Johnny Tang
- Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
44
|
DeParis SW, Caprara C, Grimm C. Intrinsically photosensitive retinal ganglion cells are resistant to N-methyl-D-aspartic acid excitotoxicity. Mol Vis 2012; 18:2814-27. [PMID: 23233784 PMCID: PMC3519378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/27/2012] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin (OPN4) and are mainly responsible for non-image-forming visual tasks such as circadian photoentrainment and the pupillary light reflex. Compared to other classes of RGCs, ipRGCs are more resistant to cell death in several experimental models such as ocular hypertension, optic nerve transection, and others. Here, we tested whether ipRGCs are also resistant to N-methyl-D-aspartic acid (NMDA)-induced excitotoxicity. METHODS Mice were injected intravitreally with NMDA, and subsequent expression levels of Opn4 and Brn3a mRNA were analyzed with semiquantitative real-time PCR. Cells immunopositive for BRN3A and OPN4 were quantified in retinal flat mounts of NMDA- and PBS-injected eyes. The molecular response of the retina to NMDA treatment was analyzed with real-time PCR and western blotting. Intravitreal injections of wortmannin and AG-490 were used to inhibit phosphatidylinositol 3-kinase (PI3K)/AKT and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling, respectively. RESULTS In contrast to retinal Brn3a expression and BRN3A-containing cells, levels of Opn4 mRNA and the number of OPN4-expressing cells were not reduced after NMDA injection. Survival of ipRGCs after NMDA injection was not strain specific, did not require the presence of photoreceptor cells, and did not depend on PI3K/AKT or JAK/STAT signaling, although both signaling pathways were activated after NMDA treatment. CONCLUSIONS Our data support the existence of an efficient survival system for ipRGCs. This system does not depend on PI3K/AKT or JAK/STAT signaling. Identification of the responsible molecular survival mechanisms may provide clues to protect "traditional" ganglion cells in diseases such as glaucoma.
Collapse
Affiliation(s)
- SW DeParis
- Lab of Retinal Cell Biology, Dept Ophthalmology, University of Zurich, Switzerland
| | - C Caprara
- Lab of Retinal Cell Biology, Dept Ophthalmology, University of Zurich, Switzerland
| | - C Grimm
- Lab of Retinal Cell Biology, Dept Ophthalmology, University of Zurich, Switzerland,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
45
|
Chollangi S, Mather T, Rodgers KK, Ash JD. A unique loop structure in oncostatin M determines binding affinity toward oncostatin M receptor and leukemia inhibitory factor receptor. J Biol Chem 2012; 287:32848-59. [PMID: 22829597 DOI: 10.1074/jbc.m112.387324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Oncostatin M (OSM) and leukemia inhibitory factor are pleiotropic cytokines that belong to the interleukin-6 (IL-6) family. These cytokines play a crucial role in diverse biological events like inflammation, neuroprotection, hematopoiesis, metabolism, and development. The family is grouped together based on structural similarities and their ability to activate the transmembrane receptor glycoprotein 130 (gp130). The common structure among these cytokines defines the spacing and the orientation of binding sites for cell surface receptors. OSM is unique in this family as it can signal using heterodimers of gp130 with either leukemia inhibitory factor receptor (LIFR) (type I) or oncostatin M receptor (OSMR) (type II). We have identified a unique helical loop on OSM between its B and C helices that is not found on other IL-6 family cytokines. This loop is located near the "FXXK" motif in active site III, which is essential for OSM's binding to both LIFR and OSMR. In this study, we show that the BC loop does not play a role in OSM's unique ability to bind OSMR. Shortening of the loop enhanced OSM's interaction with OSMR and LIFR as shown by kinetic and equilibrium binding analysis, suggesting the loop may hinder receptor interactions. As a consequence of improved binding, these structurally modified OSMs exhibited enhanced biological activity, including suppressed proliferation of A375 melanoma cells.
Collapse
Affiliation(s)
- Srinivas Chollangi
- Department of Bioengineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | |
Collapse
|
46
|
Xu J, Li Z, Xu P, Yang Z. Protective effects of leukemia inhibitory factor against oxidative stress during high glucose-induced apoptosis in podocytes. Cell Stress Chaperones 2012; 17:485-93. [PMID: 22270613 PMCID: PMC3368028 DOI: 10.1007/s12192-012-0325-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 02/01/2023] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic glycoprotein belonging to the interleukin-6 family of cytokines. In kidney, LIF regulates nephrogenesis, involves in tubular regeneration, responds to pro- and anti-inflammatory stimuli, and so on. LIF also plays an essential role in protective mechanisms triggered by preconditioning-induced oxidative stress. Although LIF shows a wide range of biologic activities, effects of LIF on high glucose-induced oxidative stress in podocytes remain unclear. The aim of the study was to assess whether LIF can attenuate high glucose-induced apoptosis in podocytes. The result of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that LIF protected podocytes against high glucose-induced cytotoxicity. The flow cytometry assay showed that LIF attenuated high glucose-induced apoptosis in podocytes. Meanwhile, the result of flow cytometric assay gave the clear indication that LIF decreased high glucose-induced elevated level of reactive oxygen species (ROS). The measurement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), malondialdehyde (MDA), and caspase-3 activity levels showed that LIF attenuated the high glucose-induced decreased level of SOD and elevated level of NADPH oxidase, MDA and caspase-3 activity. These results may provide potential therapy for diabetic nephropathy in the future.
Collapse
Affiliation(s)
- Jing Xu
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Zhigui Li
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Pengjuan Xu
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, 300071 China
| |
Collapse
|
47
|
Samardzija M, Wariwoda H, Imsand C, Huber P, Heynen SR, Gubler A, Grimm C. Activation of survival pathways in the degenerating retina of rd10 mice. Exp Eye Res 2012; 99:17-26. [DOI: 10.1016/j.exer.2012.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 02/02/2023]
|
48
|
Chucair-Elliott AJ, Elliott MH, Wang J, Moiseyev GP, Ma JX, Politi LE, Rotstein NP, Akira S, Uematsu S, Ash JD. Leukemia inhibitory factor coordinates the down-regulation of the visual cycle in the retina and retinal-pigmented epithelium. J Biol Chem 2012; 287:24092-102. [PMID: 22645143 DOI: 10.1074/jbc.m112.378240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor (LIF), an interleukin-6 family neurocytokine, is up-regulated in response to different types of retinal stress and has neuroprotective activity through activation of the gp130 receptor/STAT3 pathway. We observed that LIF induces rapid, robust, and sustained activation of STAT3 in both the retina and retinal pigmented epithelium (RPE). Here, we tested whether LIF-induced STAT3 activation within the RPE can down-regulate RPE65, the central enzyme in the visual cycle that provides the 11-cis-retinal chromophore to photoreceptors in vivo. We generated conditional knock-out mice to specifically delete STAT3 or gp130 in RPE, retina, or both RPE and retina. After intravitreal injection of LIF, we analyzed the expression levels of visual cycle genes and proteins, isomerase activity of RPE65, levels of rhodopsin protein, and the rates of dark adaptation and rhodopsin regeneration. We found that RPE65 protein levels and isomerase activity were reduced and recovery of bleachable rhodopsin was delayed in LIF-injected eyes. In mice with functional gp130/STAT3 signaling in the retina, rhodopsin protein was also reduced by LIF. However, the LIF-induced down-regulation of RPE65 required a functional gp130/STAT3 cascade intrinsic to RPE. Our data demonstrate that a single cytokine, LIF, can simultaneously and independently affect both RPE and photoreceptors through the same signaling cascade to reduce the generation and utilization of 11-cis-retinal.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Albarracin R, Valter K. 670 nm Red Light Preconditioning Supports Müller Cell Function: Evidence from the White Light-induced Damage Model in the Rat Retina†. Photochem Photobiol 2012; 88:1418-27. [DOI: 10.1111/j.1751-1097.2012.01130.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2012; 24:892-914. [PMID: 22038797 DOI: 10.1002/jmr.1138] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We took a different approach to reviewing the commercial biosensor literature this year by inviting 22 biosensor users to serve as a review committee. They set the criteria for what to expect in a publication and ultimately decided to use a pass/fail system for selecting which papers to include in this year's reference list. Of the 1514 publications in 2009 that reported using commercially available optical biosensor technology, only 20% passed their cutoff. The most common criticism the reviewers had with the literature was that "the biosensor experiments could have been done better." They selected 10 papers to highlight good experimental technique, data presentation, and unique applications of the technology. This communal review process was educational for everyone involved and one we will not soon forget.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|