1
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Taylor MJ, Thompson AM, Alhajlah S, Tuxworth RI, Ahmed Z. Inhibition of Chk2 promotes neuroprotection, axon regeneration, and functional recovery after CNS injury. SCIENCE ADVANCES 2022; 8:eabq2611. [PMID: 36103534 PMCID: PMC9473583 DOI: 10.1126/sciadv.abq2611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
DNA double-strand breaks occur in many acute and long-term neurological conditions, including neurodegeneration, neurotrauma, and stroke. Nonrepaired breaks chronically activate the DNA damage response in neurons, leading to neural dysfunction and apoptosis. Here, we show that targeting of the central ATM-Chk2 pathway regulating the response to double-strand breaks slows neural decline in Drosophila models of chronic neurodegeneration. Inhibitors of ATM-Chk2, but not the parallel ATR-Chk1 pathway, also promote marked, functional recovery after acute central nervous system injury in rats, suggesting that inhibiting nonhomologous end-joining rather than homologous recombination is crucial for neuroprotection. We demonstrate that the Chk2 inhibitor, prexasertib, which has been evaluated in phase 2 clinical trials for cancer, has potent neuroprotective effects and represents a new treatment option to promote functional recovery after spinal cord or optic nerve injury.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adam M. Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sharif Alhajlah
- Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Richard I. Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Au NPB, Ma CHE. Neuroinflammation, Microglia and Implications for Retinal Ganglion Cell Survival and Axon Regeneration in Traumatic Optic Neuropathy. Front Immunol 2022; 13:860070. [PMID: 35309305 PMCID: PMC8931466 DOI: 10.3389/fimmu.2022.860070] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Traumatic optic neuropathy (TON) refers to a pathological condition caused by a direct or indirect insult to the optic nerves, which often leads to a partial or permanent vision deficit due to the massive loss of retinal ganglion cells (RGCs) and their axonal fibers. Retinal microglia are immune-competent cells residing in the retina. In rodent models of optic nerve crush (ONC) injury, resident retinal microglia gradually become activated, form end-to-end alignments in the vicinity of degenerating RGC axons, and actively internalized them. Some activated microglia adopt an amoeboid morphology that engulf dying RGCs after ONC. In the injured optic nerve, the activated microglia contribute to the myelin debris clearance at the lesion site. However, phagocytic capacity of resident retinal microglia is extremely poor and therefore the clearance of cellular and myelin debris is largely ineffective. The presence of growth-inhibitory myelin debris and glial scar formed by reactive astrocytes inhibit the regeneration of RGC axons, which accounts for the poor visual function recovery in patients with TON. In this Review, we summarize the current understanding of resident retinal microglia in RGC survival and axon regeneration after ONC. Resident retinal microglia play a key role in facilitating Wallerian degeneration and the subsequent axon regeneration after ONC. However, they are also responsible for producing pro-inflammatory cytokines, chemokines, and reactive oxygen species that possess neurotoxic effects on RGCs. Intraocular inflammation triggers a massive influx of blood-borne myeloid cells which produce oncomodulin to promote RGC survival and axon regeneration. However, intraocular inflammation induces chronic neuroinflammation which exacerbates secondary tissue damages and limits visual function recovery after ONC. Activated retinal microglia is required for the proliferation of oligodendrocyte precursor cells (OPCs); however, sustained activation of retinal microglia suppress the differentiation of OPCs into mature oligodendrocytes for remyelination after injury. Collectively, controlled activation of retinal microglia and infiltrating myeloid cells facilitate axon regeneration and nerve repair. Recent advance in single-cell RNA-sequencing and identification of microglia-specific markers could improve our understanding on microglial biology and to facilitate the development of novel therapeutic strategies aiming to switch resident retinal microglia’s phenotype to foster neuroprotection.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|
4
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
5
|
Cui Y, Liu C, Huang L, Chen J, Xu N. Protective effects of intravitreal administration of mesenchymal stem cell-derived exosomes in an experimental model of optic nerve injury. Exp Cell Res 2021; 407:112792. [PMID: 34454924 DOI: 10.1016/j.yexcr.2021.112792] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Traumatic optic neuropathy results in the loss of retinal ganglion cells (RGCs), leading to unavoidable visual impairment. However, there is no effective therapy by far. Accumulated studies support the perception that mesenchymal stem cells (MSCs) secrete exosomes that serve as a protective paracrine factor. The study aimed to explore and evaluate the potential therapeutic effects of intravitreal transplantation of MSC-derived exosomes (MSC-exos) in an experimental model of optic nerve crush (ONC). Exosomes were isolated from rat MSCs and characterized by transmission electron microscope and western blotting. At the onset of ONC, a single intravitreal injection of exosomes or PBS was administered to the rats. At day 30, hematoxylin and eosin staining, immunohistochemistry, and βIII-tubulin staining were performed to evaluate the survival of RGCs. Moreover, TUNEL assay was used to examine the apoptosis of RGCs. Inflammation-relevant factors were identified via quantitative polymerase chain reaction. The expression levels of cell apoptosis-related molecules and key members of the PI3K/AKT signaling pathway were determined via western blot analysis. We found that MSC-exos exhibited typical characteristic morphologies (cup-shaped) and sizes (peak size of 93 nm). Furthermore, they exhibited substantial expression of the exosome markers CD63 and TSG101, but lacked the expression of the cellular marker GM130. Treatment with intravitreal MSC-exos notably promoted the survival of RGCs in ONC rats. The level of pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-8, and MCP-1, were reduced, whereas those of the anti-inflammatory factor IL-10 were increased. Moreover, the apoptosis induced by ONC was decreased by the administration of MSC-exos via upregulation of the Bcl-2/Bax ratio and downregulation of caspase-3 activity. Furthermore, MSC-exos significantly stimulated AKT phosphorylation, whereas LY294002 restored the apoptosis-preventing effects of MSC-exos. The results of our results demonstrated that intravitreal administration of MSC-exos ameliorates ONC-induced injury in a rat model. These findings might aid in the development of effective exosome-based therapeutic strategies for the treatment of optic nerve degeneration.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Chengyi Liu
- Department of Urology, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an City, Anhui Province, 237000, China
| | - Li Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Jing Chen
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Nuo Xu
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, China.
| |
Collapse
|
6
|
Alhajlah S, Thompson AM, Ahmed Z. Overexpression of Reticulon 3 Enhances CNS Axon Regeneration and Functional Recovery after Traumatic Injury. Cells 2021; 10:2015. [PMID: 34440784 PMCID: PMC8395006 DOI: 10.3390/cells10082015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
CNS neurons are generally incapable of regenerating their axons after injury due to several intrinsic and extrinsic factors, including the presence of axon growth inhibitory molecules. One such potent inhibitor of CNS axon regeneration is Reticulon (RTN) 4 or Nogo-A. Here, we focused on RTN3 as its contribution to CNS axon regeneration is currently unknown. We found that RTN3 expression correlated with an axon regenerative phenotype in dorsal root ganglion neurons (DRGN) after injury to the dorsal columns, a well-characterised model of spinal cord injury. Overexpression of RTN3 promoted disinhibited DRGN neurite outgrowth in vitro and dorsal column axon regeneration/sprouting and electrophysiological, sensory and locomotor functional recovery after injury in vivo. Knockdown of protrudin, however, ablated RTN3-enhanced neurite outgrowth/axon regeneration in vitro and in vivo. Moreover, overexpression of RTN3 in a second model of CNS injury, the optic nerve crush injury model, enhanced retinal ganglion cell (RGC) survival, disinhibited neurite outgrowth in vitro and survival and axon regeneration in vivo, an effect that was also dependent on protrudin. These results demonstrate that RTN3 enhances neurite outgrowth/axon regeneration in a protrudin-dependent manner after both spinal cord and optic nerve injury.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Applied Medical Science College, Shaqra University, P.O. Box 1678, Ad-Dawadmi 11911, Saudi Arabia
| | - Adam M Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Transection is Driven by Cellular Intravitreal Sciatic Nerve Grafts. Cells 2020; 9:cells9061335. [PMID: 32471105 PMCID: PMC7349876 DOI: 10.3390/cells9061335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurotrophic factors (NTF) secreted by Schwann cells in a sciatic nerve (SN) graft promote retinal ganglion cell (RGC) axon regeneration after either transplantation into the vitreous body of the eye or anastomosis to the distal stump of a transected optic nerve. In this study, we investigated the neuroprotective and growth stimulatory properties of SN grafts in which Schwann cells had been killed (acellular SN grafts, ASN) or remained intact (cellular SN grafts, CSN). We report that both intravitreal (ivit) implanted and optic nerve anastomosed CSN promote RGC survival and when simultaneously placed in both sites, they exert additive RGC neuroprotection. CSN and ASN were rich in myelin-associated glycoprotein (MAG) and axon growth-inhibitory ligand common to both the central nervous system (CNS) and peripheral nervous system (PNS) myelin. The penetration of the few RGC axons regenerating into an ASN at an optic nerve transection (ONT) site is limited into the proximal perilesion area, but is increased >2-fold after ivit CSN implantation and increased 5-fold into a CSN optic nerve graft after ivit CSN implantation, potentiated by growth disinhibition through the regulated intramembranous proteolysis (RIP) of p75NTR (the signalling trans-membrane moiety of the nogo-66 trimeric receptor that binds MAG and associated suppression of RhoGTP). Mϋller cells/astrocytes become reactive after all treatments and maximally after simultaneous ivit and optic nerve CSN/ASN grafting. We conclude that simultaneous ivit CSN plus optic nerve CSN support promotes significant RGC survival and axon regeneration into CSN optic nerve grafts, despite being rich in axon growth inhibitory molecules. RGC axon regeneration is probably facilitated through RIP of p75NTR, which blinds axons to myelin-derived axon growth-inhibitory ligands present in optic nerve grafts.
Collapse
|
8
|
Stevens AR, Ahmed U, Vigneswara V, Ahmed Z. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2019; 56:7490-7507. [PMID: 31049830 PMCID: PMC6815285 DOI: 10.1007/s12035-019-1614-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Although neurons in the adult mammalian CNS are inherently incapable of regeneration after injury, we previously showed that exogenous delivery of pigment epithelium-derived factor (PEDF), a 50-kDa neurotrophic factor (NTF), promoted adult retinal ganglion cell neuroprotection and axon regeneration. Here, we show that PEDF and other elements of the PEDF pathway are highly upregulated in dorsal root ganglion neurons (DRGN) from regenerating dorsal column (DC) injury paradigms when compared with non-regenerating DC injury models. Exogenous PEDF was neuroprotective to adult DRGN and disinhibited neurite outgrowth, whilst overexpression of PEDF after DC injury in vivo promoted significant DC axon regeneration with enhanced electrophysiological, sensory, and locomotor function. Our findings reveal that PEDF is a novel NTF for adult DRGN and may represent a therapeutically useful factor to promote functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Andrew R Stevens
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Umar Ahmed
- King Edward VI Camp Hill School for Boys, Vicarage Road, Kings Heath, Birmingham, B14 7QJ, UK
| | - Vasanthy Vigneswara
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Andries L, De Groef L, Moons L. Neuroinflammation and Optic Nerve Regeneration: Where Do We Stand in Elucidating Underlying Cellular and Molecular Players? Curr Eye Res 2019; 45:397-409. [PMID: 31567007 DOI: 10.1080/02713683.2019.1669664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurodegenerative diseases and central nervous system (CNS) trauma are highly irreversible, in part because adult mammals lack a robust regenerative capacity. A multifactorial problem underlies the limited axonal regeneration potential. Strikingly, neuroinflammation seems able to induce axonal regrowth in the adult mammalian CNS. It is increasingly clear that both blood-borne and resident inflammatory cells as well as reactivated glial cells affect axonal regeneration. The scope of this review is to give a comprehensive overview of the knowledge that links inflammation (with a focus on the innate immune system) to axonal regeneration and to critically reflect on the controversy that still prevails about the cells, molecules and pathways that are dominating the scene. Also, a brief overview is given of what is already known about the crosstalk between and the heterogeneity of cell types that might play a role in axonal regeneration. Recent research indicates that inflammation-induced axonal regrowth is not solely driven by a single-cell population but probably relies on the crosstalk between multiple cell types and the strong regulation of these cell populations in time and space. Moreover, there is growing evidence that the different cell populations are highly heterogeneous and as such can react differently upon injury. This could explain the controversial results that have been obtained over the past years. The primary focus of this manuscript is the retinofugal system of adult mammals, however, when relevant, insights or examples of the spontaneous regenerating zebrafish model and spinal cord research are added.
Collapse
Affiliation(s)
- Lien Andries
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Thompson A, Berry M, Logan A, Ahmed Z. Activation of the BMP4/Smad1 Pathway Promotes Retinal Ganglion Cell Survival and Axon Regeneration. Invest Ophthalmol Vis Sci 2019; 60:1748-1759. [PMID: 31022296 DOI: 10.1167/iovs.18-26449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigate if the BMP4/Smad1 intracellular signaling pathway is neuroprotective and axogenic in adult rodent retinal ganglion cells (RGC) in vivo and in vitro. Methods Adult retinal cultures were prepared from intact and after optic nerve crush (ONC) injured rats that have been stimulated to survive and regenerate using an intravitreal peripheral nerve (PN) graft. Laser capture microdissection (LCM) then was used to isolate RGC with and without neurites. Quantitative RT-PCR determined changes in BMP4/Smad1 signaling pathway mRNA. Immunohistochemistry confirmed localization of BMP4 and activation of Smad1 in ONC+PN-stimulated RGC in vivo. BMP4 peptide was used to stimulate RGC survival and neurite/axon regeneration in vitro and in vivo. Finally, the rapamycin sensitivity of the effects was determined in BMP4-stimulated RGC in vitro and in vivo. Results In retinal cultures prepared from intact and ONC+PN-stimulated rats, RGC with neurites had upregulated regeneration-related and BMP4/Smad1 signaling pathway mRNA levels, while low levels of these mRNAs were present in RGC isolated without neurites. An optimal dose of 200 ng/mL BMP4 peptide in vitro promoted approximately 30% RGC survival and disinhibited RGC neurite outgrowth, despite the presence of inhibitory CNS myelin extracts. BMP4 also promoted approximately 30% RGC survival in vivo and stimulated significant RGC axon regeneration at 100, 200, and 400 μm beyond the lesion site. Finally, the response of RGC to BMP4 treatment in vitro and in vivo was rapamycin-insensitive. Conclusions Activation of the BMP4/Smad1 pathway promotes survival and axon regeneration independent of mTOR and, therefore, may be of therapeutic interest.
Collapse
Affiliation(s)
- Adam Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
11
|
Tuxworth RI, Taylor MJ, Martin Anduaga A, Hussien-Ali A, Chatzimatthaiou S, Longland J, Thompson AM, Almutiri S, Alifragis P, Kyriacou CP, Kysela B, Ahmed Z. Attenuating the DNA damage response to double-strand breaks restores function in models of CNS neurodegeneration. Brain Commun 2019; 1:fcz005. [PMID: 32954257 PMCID: PMC7425387 DOI: 10.1093/braincomms/fcz005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks are a feature of many acute and long-term neurological disorders, including neurodegeneration, following neurotrauma and after stroke. Persistent activation of the DNA damage response in response to double-strand breaks contributes to neural dysfunction and pathology as it can force post-mitotic neurons to re-enter the cell cycle leading to senescence or apoptosis. Mature, non-dividing neurons may tolerate low levels of DNA damage, in which case muting the DNA damage response might be neuroprotective. Here, we show that attenuating the DNA damage response by targeting the meiotic recombination 11, Rad50, Nijmegen breakage syndrome 1 complex, which is involved in double-strand break recognition, is neuroprotective in three neurodegeneration models in Drosophila and prevents Aβ1-42-induced loss of synapses in embryonic hippocampal neurons. Attenuating the DNA damage response after optic nerve injury is also neuroprotective to retinal ganglion cells and promotes dramatic regeneration of their neurites both in vitro and in vivo. Dorsal root ganglion neurons similarly regenerate when the DNA damage response is targeted in vitro and in vivo and this strategy also induces significant restoration of lost function after spinal cord injury. We conclude that muting the DNA damage response in the nervous system is neuroprotective in multiple neurological disorders. Our results point to new therapies to maintain or repair the nervous system.
Collapse
Affiliation(s)
- Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew J Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ane Martin Anduaga
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Alaa Hussien-Ali
- Centre for Biomedical Science, Centre of Gene and Cell Therapy, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | | | - Joanne Longland
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Adam M Thompson
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sharif Almutiri
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.,Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Pavlos Alifragis
- Centre for Biomedical Science, Centre of Gene and Cell Therapy, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | | | - Boris Kysela
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Aston Medical School, Aston Medical Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Pan D, Chang X, Xu M, Zhang M, Zhang S, Wang Y, Luo X, Xu J, Yang X, Sun X. UMSC-derived exosomes promote retinal ganglion cells survival in a rat model of optic nerve crush. J Chem Neuroanat 2019; 96:134-139. [PMID: 30639447 DOI: 10.1016/j.jchemneu.2019.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Traumatic optic neuropathy or glaucoma lead to retinal ganglion cells loss and cause blindness, and there is no effective therapy strategy by far. Mesenchymal cells from the Wharton's jelly of the umbilical cord (umbilical cord mesenchymal stem cells, UMSCs) and UMSC-derived exosomes (UMSC-Exos) are promising candidates for allogeneic therapy in regenerative medicine, but their effort on optic nerve injury and the underlying mechanism remains undefined. In the present study, we investigated the functions of UMSC-Exos in a rat optic nerve crush (ONC) model. After three times of treatments with an interval of one week, we found that the UMSC-Exos significantly promoted Brn3a+ retinal ganglion cells (RGCs) survival in retinal ganglion cell layer compared with PBS controls. UMSC-Exos also significantly promoted GFAP+ glia cells activation in retina and optic nerve. However, no increase of GAP43+ axon counts in the optic nerve was found after UMSC-Exos treatment. Thus, our results demonstrate that UMSC-derived exosomes may play a role in neuroprotection by promoting the RGCs survival and glia cells activation but not the axon regeneration.
Collapse
Affiliation(s)
- Dongyan Pan
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University School of Medicine, Shanghai, China; Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China; Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xin Chang
- Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Mengqiao Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mingke Zhang
- Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China
| | - Shoumei Zhang
- Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Histology and Embryology, Second Military Medical University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China.
| | - Xiangqun Yang
- Department of Anatomy, Second Military Medical University School of Medicine, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
13
|
Stark DT, Anderson DMG, Kwong JMK, Patterson NH, Schey KL, Caprioli RM, Caprioli J. Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry. Invest Ophthalmol Vis Sci 2018; 59:212-222. [PMID: 29340649 PMCID: PMC5770179 DOI: 10.1167/iovs.17-22509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mammalian central nervous system axons fail to regenerate after injury. Contributing factors include limited intrinsic growth capacity and an inhibitory glial environment. Inflammation-induced optic nerve regeneration (IIR) is thought to boost retinal ganglion cell (RGC) intrinsic growth capacity through progrowth gene expression, but effects on the inhibitory glial environment of the optic nerve are unexplored. To investigate progrowth molecular changes associated with reactive gliosis during IIR, we developed an imaging mass spectrometry (IMS)-based approach that identifies discriminant molecular signals in and around optic nerve crush (ONC) sites. Methods ONC was performed in rats, and IIR was established by intravitreal injection of a yeast cell wall preparation. Optic nerves were collected at various postcrush intervals, and longitudinal sections were analyzed with matrix-assisted laser desorption/ionization (MALDI) IMS and data mining. Immunohistochemistry and confocal microscopy were used to compare discriminant molecular features with cellular features of reactive gliosis. Results IIR increased the area of the crush site that was occupied by a dense cellular infiltrate and mass spectral features consistent with lysosome-specific lipids. IIR also increased immunohistochemical labeling for microglia and macrophages. IIR enhanced clearance of lipid sulfatide myelin-associated inhibitors of axon growth and accumulation of simple GM3 gangliosides in a spatial distribution consistent with degradation of plasma membrane from degenerated axons. Conclusions IIR promotes a robust phagocytic response that improves clearance of myelin and axon debris. This growth-permissive molecular remodeling of the crush injury site extends our current understanding of IIR to include mechanisms extrinsic to the RGC.
Collapse
Affiliation(s)
- David T Stark
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - David M G Anderson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jacky M K Kwong
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Nathan Heath Patterson
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Kevin L Schey
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard M Caprioli
- Vanderbilt Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Joseph Caprioli
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
14
|
Almutiri S, Berry M, Logan A, Ahmed Z. Non-viral-mediated suppression of AMIGO3 promotes disinhibited NT3-mediated regeneration of spinal cord dorsal column axons. Sci Rep 2018; 8:10707. [PMID: 30013050 PMCID: PMC6048058 DOI: 10.1038/s41598-018-29124-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/05/2018] [Indexed: 01/13/2023] Open
Abstract
After injury to the mature central nervous system (CNS), myelin-derived inhibitory ligands bind to the Nogo-66 tripartite receptor complex expressed on axonal growth cones, comprised of LINGO-1 and p75NTR/TROY and induce growth cone collapse through the RhoA pathway. We have also shown that amphoterin-induced gene and open reading frame-3 (AMIGO3) substitutes for LINGO-1 and can signal axon growth cone collapse. Here, we investigated the regeneration of dorsal root ganglion neuron (DRGN) axons/neurites after treatment with a short hairpin RNA (sh) AMIGO3 plasmid delivered with a non-viral in vivo-jetPEI vector, and the pro-survival/axogenic neurotrophin (NT) 3 in vitro and in vivo. A bicistronic plasmid, containing both shAMIGO3 and NT3 knocked down >75% of AMIGO3 mRNA in cultured DRGN and significantly overexpressed NT3 production. In vivo, intra-DRG injection of in vivo-jetPEI plasmids containing shAMIGO3/gfp and shAMIGO3/nt3 both knocked down AMIGO3 expression in DRGN and, in combination with NT3 overexpression, promoted DC axon regeneration, recovery of conduction of compound action potentials across the lesion site and improvements in sensory and locomotor function. These findings demonstrate that in vivo-jetPEI is a potential non-viral, translatable DRGN delivery vehicle in vivo and that suppression of AMIGO3 disinhibits the growth of axotomised DRGN enabling NT3 to stimulate the regeneration of their DC axons and enhances functional recovery.
Collapse
Affiliation(s)
- Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
15
|
Li HJ, Sun ZL, Yang XT, Zhu L, Feng DF. Exploring Optic Nerve Axon Regeneration. Curr Neuropharmacol 2018; 15:861-873. [PMID: 28029073 PMCID: PMC5652030 DOI: 10.2174/1570159x14666161227150250] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Traumatic optic nerve injury is a leading cause of irreversible blindness across the world and causes progressive visual impairment attributed to the dysfunction and death of retinal ganglion cells (RGCs). To date, neither pharmacological nor surgical interventions are sufficient to halt or reverse the progress of visual loss. Axon regeneration is critical for functional recovery of vision following optic nerve injury. After optic nerve injury, RGC axons usually fail to regrow and die, leading to the death of the RGCs and subsequently inducing the functional loss of vision. However, the detailed molecular mechanisms underlying axon regeneration after optic nerve injury remain poorly understood. Methods: Research content related to the detailed molecular mechanisms underlying axon regeneration after optic nerve injury have been reviewed. Results: The present review provides an overview of regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways involved in intrinsic growth program and the inhibitory environment together with axon guidance cues for correct axon guidance. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which contributes to develop improved treatments for optic nerve regeneration. These findings are encouraging and open the possibility that clinically meaningful regeneration may become achievable in the future. Conclusion: Combination of treatments towards overcoming growth-inhibitory molecules and enhancing intrinsic growth capacity combined with correct guidance using axon guidance cues is crucial for developing promising therapies to promote axon regeneration and functional recovery after ON injury.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Xi-Tao Yang
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Liang Zhu
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| |
Collapse
|
16
|
Bollaerts I, Veys L, Geeraerts E, Andries L, De Groef L, Buyens T, Salinas-Navarro M, Moons L, Van Hove I. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Struct Funct 2017; 223:545-567. [DOI: 10.1007/s00429-017-1571-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
|
17
|
Divya MS, Rasheed VA, Schmidt T, Lalitha S, Hattar S, James J. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models. Front Cell Neurosci 2017; 11:295. [PMID: 28979193 PMCID: PMC5611488 DOI: 10.3389/fncel.2017.00295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
Retinal ganglion cell (RGC) transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC) to RGC lineage, capable of retinal ganglion cell layer (GCL) integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP) were transplanted into N-Methyl-D-Aspartate (NMDA) injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J) having sustained higher intra ocular pressure (IOP). Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.
Collapse
Affiliation(s)
- Mundackal S Divya
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Vazhanthodi A Rasheed
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Tiffany Schmidt
- Department of Biology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Soundararajan Lalitha
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Samer Hattar
- Department of Biology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Jackson James
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| |
Collapse
|
18
|
Garcia TB, Hollborn M, Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev 2017; 34:43-57. [PMID: 27964967 DOI: 10.1016/j.cytogfr.2016.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023]
Abstract
This review summarizes the present knowledge concerning the retinal localization of the nerve growth factor (NGF), its precursor proNGF, and the receptors TrkA and p75NTR in the developing and mature rodent retina. We further discuss the changes in the expression of NGF and the receptors in experimental models of retinal disorders and diseases like inherited retinitis pigmentosa, retinal detachment, glaucoma, and diabetic retinopathy. Since proNGF is now recognized as a bioactive signaling molecule which induces cell death through p75NTR activation, the role of proNGF in the induction of retinal cell loss under neurodegenerative conditions is also highlighted. In addition, we present the evidences for a potential therapeutic intervention with NGF for the treatment of retinal neurodegenerative diseases. Different strategies have been developed and experimentally tested in mice and rats in order to reduce cell loss and Müller cell gliosis, e.g., increasing the availability of endogenous NGF, administration of exogenous NGF, activation of TrkA, and inhibition of p75NTR. Here, we discuss the several lines of evidence supporting a protective effect of NGF on retinal cell loss, with specific emphasis on photoreceptor and retinal ganglion cell degeneration. A better understanding of the mechanisms underlying the effects of NGF and proNGF in the modulation of neurodegeneration and gliosis in the retina will help to develop efficient therapeutic strategies for various retinal diseases.
Collapse
Affiliation(s)
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System. Mediators Inflamm 2017; 2017:9478542. [PMID: 28203046 PMCID: PMC5288536 DOI: 10.1155/2017/9478542] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/05/2016] [Accepted: 12/25/2016] [Indexed: 01/19/2023] Open
Abstract
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.
Collapse
|
20
|
Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury(1,2,3). eNeuro 2015; 2:eN-REV-0077-15. [PMID: 26478910 PMCID: PMC4603254 DOI: 10.1523/eneuro.0077-15.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022] Open
Abstract
Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer "biohybrid" sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome.
Collapse
|
21
|
Vigneswara V, Esmaeili M, Deer L, Berry M, Logan A, Ahmed Z. Eye drop delivery of pigment epithelium-derived factor-34 promotes retinal ganglion cell neuroprotection and axon regeneration. Mol Cell Neurosci 2015; 68:212-21. [PMID: 26260110 PMCID: PMC4604765 DOI: 10.1016/j.mcn.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/16/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
Axotomised retinal ganglion cells (RGCs) die rapidly by apoptosis and fail to regenerate because of the limited availability of neurotrophic factors and a lack of axogenic stimuli. However, we have recently showed that pigment epithelium-derived factor (PEDF) promotes RGC survival and axon regeneration after optic nerve crush injury. PEDF has multiple fragments of the native peptide that are neuroprotective, anti-angiogenic and anti-inflammatory. Here we investigated the neuroprotective and axogenic properties of a fragment of PEDF, PEDF-34, in retinal neurons in vitro and when delivered by intravitreal injection and eye drops in vivo. We found that PEDF-34 was 43% more neuroprotective and 52% more neuritogenic than PEDF-44 in vitro. Moreover, in vivo, intravitreal delivery of 1.88 nM PEDF-34 was 71% RGC neuroprotective at 21 days after optic nerve crush compared to intact controls, whilst daily eye drops containing 1.88 nM PEDF-34 promoted 87% RGC survival. After topical eye drop delivery, PEDF-34 was detected in the vitreous body within 30 min and attained physiologically relevant concentrations in the retina by 4 h peaking at 1.4 ± 0.05 nM by 14 days. In eye drop- compared to intravitreal-treated PEDF-34 animals, 55% more RGC axons regenerated 250 μm beyond the optic nerve lesion. We conclude that daily topical eye drop application of PEDF-34 is superior to weekly intravitreal injections in promoting RGC survival and axon regeneration through both direct effects on retinal neurons and indirect effects on other retinal cells. PEDF-34 is more neuroprotective and neuritogenic than PEDF-44. PEDF-34 is more neuroprotective and neuritogenic than full-length PEDF. PEDF-34 can reach the retina after topical application to the eyes. PEDF-34 eye drops are more neuroprotective and axogenic than intravitreal injection.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maryam Esmaeili
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Louise Deer
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
M K. Present and New Treatment Strategies in the Management of Glaucoma. Open Ophthalmol J 2015; 9:89-100. [PMID: 26069521 PMCID: PMC4460216 DOI: 10.2174/1874364101509010089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by retinal ganglion cell (RGC) death and axonal loss. It remains a major cause of blindness worldwide. All current modalities of treatment are focused on lowering intraocular pressure (IOP), and it is evident that increased IOP is an important risk factor for progression of the disease. However, it is clear that a significant number of glaucoma patients show disease progression despite of pressure lowering treatments. Much attention has been given to the development of neuroprotective treatment strategies, but the identification of such has been hampered by lack of understanding of the etiology of glaucoma. Hence, in spite of many attempts no neuroprotective drug has yet been clinically approved. Even though neuroprotection is without doubt an important treatment strategy, many glaucoma subjects are diagnosed after substantial loss of RGCs. In this matter, recent approaches aim to rescue RGCs and regenerate axons in order to restore visual function in glaucoma. The present review seeks to provide an overview of the present and new treatment strategies in the management of glaucoma. The treatment strategies are divided into current available glaucoma medications, new pressure lowering targets, prospective neuroprotective interventions, and finally possible neuroregenrative strategies.
Collapse
Affiliation(s)
- Kolko M
- Department of Neuroscience and Pharmacology, the Panum Institute, University of Copenhagen, Denmark ; Department of Ophthalmology, Roskilde University Hospital, Copenhagen, Denmark ; Center of Healthy Aging, Department of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-dos-Santos G, Gubert F, de Figueirêdo ABP, Torres AL, Paredes BD, Teixeira C, Tovar-Moll F, Mendez-Otero R, Santiago MF. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 2014; 9:e110722. [PMID: 25347773 PMCID: PMC4210195 DOI: 10.1371/journal.pone.0110722] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.
Collapse
Affiliation(s)
- Louise Alessandra Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Zaverucha-do-Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Beatriz Padilha de Figueirêdo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Luiza Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Bruno D. Paredes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Teixeira
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Marcelo F. Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
24
|
Vigneswara V, Akpan N, Berry M, Logan A, Troy CM, Ahmed Z. Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. ACTA ACUST UNITED AC 2014; 137:1656-75. [PMID: 24727569 DOI: 10.1093/brain/awu037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that crushing the optic nerve induces death of retinal ganglion cells by apoptosis, but suppression of CASP2, which is predominantly activated in retinal ganglion cells, using a stably modified short interfering RNA CASP2, inhibits retinal ganglion cell apoptosis. Here, we report that combined delivery of short interfering CASP2 and inhibition of CASP6 using a dominant negative CASP6 mutant activates astrocytes and Müller cells, increases CNTF levels in the retina and leads to enhanced retinal ganglion cell axon regeneration. In dissociated adult rat mixed retinal cultures, dominant negative CASP6 mutant + short interfering CASP2 treatment also significantly increases GFAP+ glial activation, increases the expression of CNTF in culture, and subsequently increases the number of retinal ganglion cells with neurites and the mean retinal ganglion cell neurite length. These effects are abrogated by the addition of MAB228 (a monoclonal antibody targeted to the gp130 component of the CNTF receptor) and AG490 (an inhibitor of the JAK/STAT pathway downstream of CNTF signalling). Similarly, in the optic nerve crush injury model, MAB228 and AG490 neutralizes dominant negative CASP6 mutant + short interfering CASP2-mediated retinal ganglion cell axon regeneration, Müller cell activation and CNTF production in the retina without affecting retinal ganglion cell survival. We therefore conclude that axon regeneration promoted by suppression of CASP2 and CASP6 is CNTF-dependent and mediated through the JAK/STAT signalling pathway. This study offers insights for the development of effective therapeutics for promoting retinal ganglion cell survival and axon regeneration.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nsikan Akpan
- 2 Department of Pathology and Cell Biology, Neurology, Taub Institute for Research on Alzheimer's Disease and the Ageing Brain, Columbia University Medical Centre, New York, USA
| | - Martin Berry
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Carol M Troy
- 2 Department of Pathology and Cell Biology, Neurology, Taub Institute for Research on Alzheimer's Disease and the Ageing Brain, Columbia University Medical Centre, New York, USA
| | - Zubair Ahmed
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
25
|
Butt GF, Habib A, Mahgoub K, Sofela A, Tilley M, Guo L, Cordeiro MF. Optic nerve regeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Abstract
Experimental visual pathway lesion in the form of optic nerve (ON) crush or transection injury results in massive death of retinal ganglion cells (RGCs) and permanent loss of synaptic connections (Berkelaar et al., J Neurosci 14:4368-4374, 1994). Despite the fact that RGC axon regeneration is inhibited in a manner typical of other CNS lesions, the rodent ON injury model is one of the few models where robust axon regeneration has been achieved after therapeutic intervention (Berry et al., Restor Neurol Neurosci 26:147-174, 2008). However, assessment of the efficacy of therapeutic approaches in promoting ON regeneration has traditionally relied on histological methods, which necessitate the sacrifice of experimental animals and thus preclude longitudinal in vivo monitoring of individual subjects. Manganese-enhanced MRI (MEMRI) utilizes the paramagnetic properties and uptake and transport mechanisms of manganese ions (Mn(2+)) by neurons, thus enabling serial in vivo monitoring of the entire axonal projections (Sandvig et al., J Magn Reson Imaging 34:670-675, 2011; Thuen et al., J Magn Reson Imaging 4:492-500, 2005; Pautler et al., Magn Res Med 50:33-39, 2003; Saleem et al., Neurotechnique 34:685-700, 2000). The above properties of Mn(2+) render MEMRI a highly suitable technique for assessment of ON regeneration after injury, especially with a view to in vivo monitoring of neuronal connectivity and axon-regenerative responses to treatment. In this chapter, we provide a generic protocol for ON lesioning and MEMRI application for assessment of ON regeneration in rodents.
Collapse
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, 7489, Trondheim, Norway,
| | | |
Collapse
|
27
|
Stirling DP, Cummins K, Mishra M, Teo W, Yong VW, Stys P. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain 2013; 137:707-23. [DOI: 10.1093/brain/awt341] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Vohra R, Tsai JC, Kolko M. The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol 2013; 58:311-20. [PMID: 23768921 DOI: 10.1016/j.survophthal.2012.08.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 10/26/2022]
Abstract
Glaucoma is an ocular disorder characterized by the progressive loss of retinal ganglion cells (RGC) and their axons. There are various hypotheses concerning the cause of RGC death. Previously, glaucoma was defined by high intraocular pressure (IOP); during the past decade, however, glaucoma specialists have acknowledged that elevated IOP is the most important risk factor for glaucoma, but does not define the disease. Other factors such as genetics, blood flow, and excitotoxicity are suggested as potential causal factors for progressive RGC death observed in glaucoma. We review recent studies elucidating a possible role of low-grade inflammation as a causal factor in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Ahmed Z, Douglas MR, John G, Berry M, Logan A. AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury. PLoS One 2013; 8:e61878. [PMID: 23613963 PMCID: PMC3628841 DOI: 10.1371/journal.pone.0061878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/17/2013] [Indexed: 12/18/2022] Open
Abstract
Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN) axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration.
Collapse
Affiliation(s)
- Zubair Ahmed
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Tian XM, Zhu Y. Apoptosis of rabbit retinal cell after eyeball rupture. ASIAN PAC J TROP MED 2013; 6:273-9. [PMID: 23608328 DOI: 10.1016/s1995-7645(13)60056-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To establish rabbit eyeball rupture model by air gun in order to observe and analyze the early injury condition and reasons of retinal cell after eyeball rupture. METHODS Forty eight healthy rabbits were randomly divided into control group and 1, 3, 6, 12 and 24 h after injury groups. After anesthesia, the rabbit eyeball rupture model was established by air gun. Then the early pathological changes of rabbit retina were observed, and apoptotic index (AI), oncosis index (OI), the relationship between the expression amounts of apoptosis-related genes and AI were analyzed. RESULTS Obvious pathological lesion appeared in retina 6 h after injury. Irreversible damage occurred 12-24 h after injury. The results of AI and OI indicated that the OI peak appeared 6 h after injury and then gradually declined, while the AI increased with the prolongation of time, and the AI was higher than OI in 12 h after injury. Immunohistochemical results indicated that there was no obvious bcl-2 protein expression change. Compared with the control group and the 3, 6, 12 and 24 h after the injury groups, the expressions of p53 and Caspase-3 were significantly improved and peaked at 12 h (P<0.01). Positive correlation existed among p53, Caspase-3 expression amount and cell apoptosis amount. CONCLUSIONS Apoptosis and oncosis of visual cells are the main reasons of retinal cell injury. p53 and Caspase-3 are the important factors in promoting the retinal cell apoptosis after eyeball rupture.
Collapse
Affiliation(s)
- Xue-Min Tian
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | | |
Collapse
|
31
|
Vigneswara V, Berry M, Logan A, Ahmed Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Invest Ophthalmol Vis Sci 2013; 54:2624-33. [PMID: 23513062 DOI: 10.1167/iovs.13-11803] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate neuroprotective and axogenic properties of pigment epithelium-derived factor (PEDF) in retinal ganglion cells (RGC) in vitro and in vivo. METHODS Adult rat retinal cultures were treated with combinations of PBS and PEDF with or without a cell permeable analogue of cAMP, and RGC survival and neurite lengths quantified. The optic nerves of anesthetised rats were also crushed intraorbitally to transect all RGC axons followed by intravitreal injections of either PBS, PEDF, or cAMP+PEDF every 7 days. RGC were back filled with FluoroGold to quantify RGC survival and longitudinal optic nerve sections were stained with GAP43 antibodies to detect regenerating RGC axons. RESULTS An optimal dose of 2.5 × 10(-5) μg/μL, promoted 65% more RGC survival than controls in vitro, increasing by 4.4- and 5-fold the number of RGC with neurites and the mean neurite length, respectively. Addition of cAMP with or without PEDF did not potentiate RGC survival or the mean number of RGC with neurites, but enhanced RGC neurite length by 1.4-fold, compared with PEDF alone. After optic nerve crush (ONC), PEDF protected RGC from apoptosis and increased the numbers of regenerating RGC axons in the optic nerve by 4.6- and 3.4-fold, respectively when compared with controls. cAMP did not enhance PEDF-induced RGC neuroprotection, but potentiated its neuroregenerative effects by 2- to 3-fold, increasing the number of RGC axons regenerating at 500 and 1000 μm from the lesions site. CONCLUSIONS This study is the first to demonstrate that PEDF enhances both RGC survival and axon regeneration in vitro and in vivo.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
32
|
Diekmann H, Fischer D. Glaucoma and optic nerve repair. Cell Tissue Res 2013; 353:327-37. [PMID: 23512141 DOI: 10.1007/s00441-013-1596-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/21/2013] [Indexed: 01/10/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and causes progressive visual impairment attributable to the dysfunction and death of retinal ganglion cells (RGCs). Progression of visual field damage is slow and typically painless. Thus, glaucoma is often diagnosed after a substantial percentage of RGCs has been damaged. To date, clinical interventions are mainly restricted to the reduction of intraocular pressure (IOP), one of the major risk factors for this disease. However, the lowering of IOP is often insufficient to halt or reverse the progress of visual loss, underlining the need for the development of alternative treatment strategies. Several lines of evidence suggest that axonal damage of RGCs occurs primary at the optic nerve head, where axons appear to be most vulnerable. Axonal injury leads to the functional loss of RGCs and subsequently induces the death of the neurons. However, the detailed molecular mechanism(s) underlying IOP-induced optic nerve injury remain poorly understood. Moreover, whether glaucoma pathophysiology is primarily axonal, glial, or vascular remains unclear. Therefore, protective strategies to prevent further axonal and subsequent soma degeneration are of great importance to limit the progression of sight loss. In addition, strategies that stimulate injured RGCs to regenerate and reconnect axons with their central targets are necessary for functional restoration. The present review provides an overview of the context of glaucoma pathogenesis and surveys recent findings regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways.
Collapse
Affiliation(s)
- Heike Diekmann
- Department of Neurology, Experimental Neurology, Heinrich Heine University, Merowingerplatz 1a, 40225, Düsseldorf, Germany
| | | |
Collapse
|
33
|
Vigneswara V, Berry M, Logan A, Ahmed Z. Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats. PLoS One 2012; 7:e53473. [PMID: 23285297 PMCID: PMC3532067 DOI: 10.1371/journal.pone.0053473] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Severing the axons of retinal ganglion cells (RGC) by crushing the optic nerve (ONC) causes the majority of RGC to degenerate and die, primarily by apoptosis. We showed recently that after ONC in adult rats, caspase-2 activation occurred specifically in RGC while no localisation of caspase-3 was observed in ganglion cells but in cells of the inner nuclear layer. We further showed that inhibition of caspase-2 using a single injection of stably modified siRNA to caspase-2 protected almost all RGC from death at 7 days, offering significant protection for up to 1 month after ONC. In the present study, we confirmed that cleaved caspase-2 was localised and activated in RGC (and occasional neurons in the inner nuclear layer), while TUNEL⁺ RGC were also observed after ONC. We then investigated if suppression of caspase-2 using serial intravitreal injections of the pharmacological inhibitor z-VDVAD-fmk (z-VDVAD) protected RGC from death for 15 days after ONC. Treatment of eyes with z-VDVAD suppressed cleaved caspase-2 activation by >85% at 3-4 days after ONC. Increasing concentrations of z-VDVAD protected greater numbers of RGC from death at 15 days after ONC, up to a maximum of 60% using 4000 ng/ml of z-VDVAD, compared to PBS treated controls. The 15-day treatment with 4000 ng/ml of z-VDVAD after ONC suppressed levels of cleaved caspase-2 but no significant changes in levels of cleaved caspase-3, -6, -7 or -8 were detected. Although suppression of caspase-2 protected 60% of RGC from death, RGC axon regeneration was not promoted. These results suggest that caspase-2 specifically mediates death of RGC after ONC and that suppression of caspase-2 may be a useful therapeutic strategy to enhance RGC survival not only after axotomy but also in diseases where RGC death occurs such as glaucoma and optic neuritis.
Collapse
Affiliation(s)
| | | | | | - Zubair Ahmed
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:153-72. [PMID: 23211463 DOI: 10.1016/b978-0-12-407178-0.00007-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The optic nerve has been widely studied for insights into mechanisms that suppress or promote axon regeneration after central nervous system injury. Following optic nerve damage in adult mammals, retinal ganglion cells (RGCs) normally fail to regenerate their axons, resulting in blindness in patients who suffer from neurodegenerative diseases such as glaucoma or who have sustained traumatic injury to the optic nerve. Over the past several decades, many groups have investigated the basis of regenerative failure in the hope of developing strategies to stimulate the regrowth of axons and restore visual function. New findings show that a combination of therapies that act synergistically to activate RGCs' intrinsic growth state enables these cells to regenerate their axons the full length of the optic nerve, across the optic chiasm, and into the brain, where they establish synapses in appropriate target zones and restore limited visual responses. These treatments involve the induction of a limited inflammatory response in the eye to increase levels of oncomodulin and other growth factors; elevation of intracellular cAMP; and deletion of the pten gene in RGCs. Although these methods cannot be applied in the clinic, they point to strategies that might be.
Collapse
|
35
|
Citron kinase regulates axon growth through a pathway that converges on cofilin downstream of RhoA. Neurobiol Dis 2010; 41:421-9. [PMID: 20971191 DOI: 10.1016/j.nbd.2010.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/29/2010] [Accepted: 10/15/2010] [Indexed: 11/20/2022] Open
Abstract
Axon regeneration in the adult central nervous system (CNS) is prevented by inhibitory molecules present in myelin, which bind to a receptor complex that leads to downstream RhoGTP activation and axon growth cone collapse. Here, we compared expression of Citron kinase (Citron-K), a target molecule of RhoGTP in non-regenerating dorsal root ganglion neurons (DRGN) after dorsal column (DC) injury, and in regenerating DRGN after either sciatic nerve (SN) injury or preconditioning SN+DC lesion models. We show by microarray that Citron-K mRNA levels in DRGN of a non-regenerating DC injury model were elevated 2-fold compared to those of intact control DRGN. Conversely, Citron-K levels were reduced by 2 and 2.4-fold at 10 days post lesion in the regenerating SN and preconditioning SN+DC lesion models, respectively, compared to levels in control intact DRGN. Western blotting and immunohistochemistry confirmed these observations and localised Citron-K immunostaining to both DRGN and satellite glia. In dissociated, adult rat DRG cell cultures, 80% knockdown of Citron-K, in the presence of inhibitory concentrations of CNS myelin extract (CME), promoted significant disinhibited DRGN neurite outgrowth, only when cells were stimulated with neurotrophic factors. The levels of RhoGTP remained unchanged after Citron-K knockdown in the presence of CME while enhanced cofilin levels correlated with disinhibited DRGN neurite outgrowth. This observation suggests that Citron-K plays a role in axon growth downstream of Rho activation. We conclude that Citron-K regulates actin polymerisation downstream of RhoA and may offer a potentially novel therapeutic approach for promoting CNS axon regeneration.
Collapse
|