1
|
Carmona-Carmona CA, Bisello G, Franchini R, Lunardi G, Galavotti R, Perduca M, Ribeiro RP, Belviso BD, Giorgetti A, Caliandro R, Lievens PMJ, Bertoldi M. The CRISPR-Cas9 knockout DDC SH-SY5Y in vitro model for AADC deficiency provides insight into the pathogenicity of R347Q and L353P variants: a cross-sectional structural and functional analysis. FEBS J 2025. [PMID: 40318155 DOI: 10.1111/febs.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Aromatic amino acid decarboxylase (AADC) deficiency is a severe inherited recessive neurotransmitter disorder caused by an impairment in dopamine synthesis due to the lack/modification of AADC, the enzyme converting l-dopa to dopamine. Patients exhibit severe movement disorders and neurodevelopmental delay, with a high risk of premature mortality. Given the lack of a reliable model for the disease, we developed a dopa decarboxylase knockout model using CRISPR/Cas9 technology in the SH-SY5Y neuroblastoma cell line. This model showed a deficiency in AADC protein and activity, with an altered dopamine metabolites profile (low homovanillic acid and high 3-O-methyldopa) and a modified expression of key enzymes, such as dopamine beta-hydroxylase and monoamine oxidases, which are involved in the catecholamine pathway. We then transfected the DDC-KO cells with two AADC catalytic variants, R347Q and L353P, which resulted in loss-of-function and an altered profile of dopamine metabolites. By combining several structural approaches (X-ray crystallography, molecular dynamics, small angle X-ray scattering, dynamic light scattering, and spectroscopy), we determined that both variants alter the flexibility of the structural element to which they belong, whose integrity is essential for catalysis. This change causes a mispositioning of essential residues at the active site, leading, in turn, to an unproductive external aldimine, identifying the molecular basis for the loss-of-function. Overall, the DDC-KO model recapitulates some key features of AADC deficiency, is useful to study the molecular basis of the disease, and represents an ideal system for small molecule screening regarding specific enzyme defects, paving the way for a precision therapeutic approach.
Collapse
Affiliation(s)
| | - Giovanni Bisello
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | - Rossella Franchini
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | - Gianluigi Lunardi
- Clinical Analysis Laboratory and Transfusional Medicine, IRCCS-Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Roberta Galavotti
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | | | - Rui P Ribeiro
- Department of Biotechnology, University of Verona, Italy
| | | | | | | | - Patricia M-J Lievens
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| |
Collapse
|
2
|
Lee NC, Hsu PC, Liu YH, Wang HC, Chen TI, Chien YH, Hwu WL. Nigrostriatal tract defects in mice with aromatic l-amino acid decarboxylase deficiency. Neurobiol Dis 2024; 202:106707. [PMID: 39433135 DOI: 10.1016/j.nbd.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
The development of the nigrostriatal dopaminergic (DA) pathway in the brain involves many transcriptional and chemotactic molecules, and a deficiency of these molecules can cause nigrostriatal tract defects. However, the role of the end product, dopamine, in nigrostriatal pathway development has not been described. In the present study, we analyzed a mouse model of congenital dopamine and serotonin deficiency, namely, the aromatic l-amino acid decarboxylase (AADC) deficiency (DdcKI) mouse model. We found via tyrosine hydroxylase (TH) immunofluorescence staining that the number of DA fibers in the stratum of 14-day-old DdcKI mice decreased. In TH-stained cleared whole brains of DdcKI mice, the numbers of DA neurons in the substantia nigra (SN) and the number of DA nerve bundles leaving the SN were both normal. However, we found that the nigrostriatal bundles in DdcKI mice were dispersed, taking aberrant routes to the striatum and spreading over a wide area. The total volume occupied by the nigrostriatal tract was increased, and the fraction of TH staining in the tract was decreased in DdcKI mice. Single-nucleus RNA sequencing analysis for mice 0, 7, and 14 days of age, revealed delayed axonogenesis and synapse formation in the striatum of DdcKI mice. The CellChat program inferred less cell-cell communication between striatal D1/D2 neurons but increased cell-cell communication involving neural precursors in DdcKI mice. Therefore, a congenital deficiency in dopamine affects nigrostriatal axon extension and striatal innervation. These nigrostriatal tract defects may limit the treatment efficacy for patients with TH or AADC deficiency.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Chun Hsu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Han Liu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hao-Chun Wang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsu-I Chen
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Thöny B, Ng J, Kurian MA, Mills P, Martinez A. Mouse models for inherited monoamine neurotransmitter disorders. J Inherit Metab Dis 2024; 47:533-550. [PMID: 38168036 DOI: 10.1002/jimd.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Joanne Ng
- Genetic Therapy Accelerator Centre, University College London, Queen Square Institute of Neurology, London, UK
| | - Manju A Kurian
- Zayed Centre for Research into Rare Disease in Children, GOS Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Philippa Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurora Martinez
- Department of Biomedicine and Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Hwu WL, Chang K, Liu YH, Wang HC, Lee NC, Chien YH. Gene therapy corrects the neurological deficits of mice with sialidosis. Gene Ther 2024; 31:263-272. [PMID: 38321198 DOI: 10.1038/s41434-024-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where β-Gal binds to this complex to form a multienzyme complex in order to execute its function.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Precision Medical Center, China Medical University Hospital, Taichung City, Taiwan, ROC.
| | - Karine Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yu-Han Liu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hao-Chun Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Chen YC, Hou CY, Hsu MH, Huang LT, Hsiao CC, Sheen JM. The Impact of Gut Microbiota Changes on Methotrexate-Induced Neurotoxicity in Developing Young Rats. Biomedicines 2024; 12:908. [PMID: 38672262 PMCID: PMC11048417 DOI: 10.3390/biomedicines12040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Methotrexate (MTX) is an essential part of therapy in the treatment of acute lymphoblastic leukemia (ALL) in children, and inferior intellectual outcomes have been reported in children who are leukemia survivors. Although several studies have demonstrated that the interaction between gut microbiota changes and the brain plays a vital role in the pathogenesis of chemotherapy-induced brain injury, preexisting studies on the effect of MTX on gut microbiota changes focused on gastrointestinal toxicity only. Based on our previous studies, which revealed that MTX treatment resulted in inferior neurocognitive function in developing young rats, we built a young rat model mimicking MTX treatment in a child ALL protocol, trying to investigate the interactions between the gut and brain in response to MTX treatment. We found an association between gut microbiota changes and neurogenesis/repair processes in response to MTX treatment, which suggest that MTX treatment results in gut dysbiosis, which is considered to be related to MTX neurotoxicity through an alteration in gut-brain axis communication.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Cursio I, Siliquini S, Carducci C, Bisello G, Mastrangelo M, Leuzzi V, Bertoldi M, Marini C. Case report: Childhood epilepsy and borderline intellectual functioning hiding an AADC deficiency disorder associated with compound heterozygous DDC gene pathogenic variants. Front Neurol 2023; 14:1284339. [PMID: 38116105 PMCID: PMC10729769 DOI: 10.3389/fneur.2023.1284339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder leading to severe combined serotonin, dopamine, norepinephrine, and epinephrine deficiency. We report on a female patient with borderline functioning and sporadic clear-cut focal to bilateral seizures from age 10 years. A neuropsychological assessment highlighted a mild impairment in executive functions, affecting attention span and visual-spatial abilities. Following the diagnosis of epilepsy with a presumed genetic etiology, we applied a diagnostic approach inclusive of a next-generation sequencing (NGS) gene panel, which uncovered two variants in trans in the DOPA decarboxylase (DDC) gene underlying an AADC deficiency. This compound heterozygous genotype was associated with a mild reduction of homovanillic acid, a low level of the norepinephrine catabolite, and a significant reduction of 5-hydroxyindoleacetic acid in cerebrospinal fluid. Remarkably, 3-O-methyldopa (3-OMD) and 5-hydroxytryptophan were instead increased. During the genetically guided re-evaluation process, some mild signs of dysautonomic dysfunction (nasal congestion, abnormal sweating, hypotension and fainting, excessive sleepiness, small hands and feet, and increased levels of prolactin, tiredness, and fatigue), more typical of AADC deficiency, were evaluated with new insight. Of the two AADC variants, the R347Q has already been characterized as a loss-of-function with severe catalytic impairments, while the novel L391P variant has been predicted to have a less severe impact. Bioinformatic analyses suggest that the amino acid substitution may affect affinity for the PLP coenzyme. Thus, the genotype corresponds to a phenotype with mild and late-onset symptoms, of which seizures were the clinical sign, leading to medical attention. This case report expands the spectrum of AADC deficiency phenotypes to encompass a less-disabling clinical condition including borderline cognitive functioning, drug-responsive epilepsy, and mild autonomic dysfunction.
Collapse
Affiliation(s)
- Ida Cursio
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Sabrina Siliquini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza - Università di Roma, Rome, Italy
| | - Giovanni Bisello
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mario Mastrangelo
- Department of Women/Child Health and Urological Science, Sapienza - Università di Roma, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza - Università di Roma, Rome, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| |
Collapse
|
7
|
LUHMES Cells: Phenotype Refinement and Development of an MPP +-Based Test System for Screening Antiparkinsonian Drugs. Int J Mol Sci 2023; 24:ijms24010733. [PMID: 36614176 PMCID: PMC9821222 DOI: 10.3390/ijms24010733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The low effectiveness of symptomatic pharmacotherapy for Parkinson's disease (PD), which compensates for dopamine (DA) deficiency under degeneration of nigrostriatal dopaminergic (DAergic) neurons, could apparently be improved with neuroprotective therapy, which slows down neurodegeneration and PD progression. For this, it is necessary to have a DAergic cell line for the development of a PD model to screen neuroprotectors. We used immortalized human embryonic mesencephalon LUHMES cells (LCs) differentiated into DAergic neurons. The aim of this study was to characterize the phenotype of differentiated LCs and develop an 1-methyl-4-phenylpyridinium iodide (MPP+)-based test system for screening neuroprotectors. Using polymerase chain reaction (PCR) and immunocytochemistry, it has been shown that all differentiated LCs express genes and synthesize proteins characteristic of all neurons (microtubule-associated protein 2, bIII-tubulin, synaptotagmin 1) and specifically of DAergic neurons (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, DA transporter, vesicular monoamine transporter 2). Furthermore, LCs are able to produce a small amount of DA, but under special conditions. To assess the mechanisms of neurodegeneration and neuroplasticity under the influence of toxins and antiparkinsonian drugs, including neuroprotectors, we have developed an LCs-based MPP+ PD model and proposed an original panel of markers for testing functional and structural cell disorders.
Collapse
|
8
|
Sheng KY, Nakano T, Yamaguchi S. A region-dependent allele-biased expression of Dopa decarboxylase in mouse brain. Front Cell Dev Biol 2022; 10:1078927. [PMID: 36568970 PMCID: PMC9768605 DOI: 10.3389/fcell.2022.1078927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting is an epigenetic event in which genes are expressed only from either the paternal or maternal allele. Dopa decarboxylase (Ddc), is an imprinted gene that encodes an enzyme which catalyzes the conversion of L-dopa to dopamine. Although Ddc has been reported to be paternally expressed in embryonic and neonatal hearts, its expression pattern in the brain has been controversial. To visualize Ddc-expressing neurons, we established a knock-in mouse carrying a humanized Kusabira orange 1 (hKO1) reporter cassette at the Ddc locus (Ddc-hKO1). The expression of Ddc-hKO1 was detected in all known Ddc-positive cells in the brains of embryonic, neonatal, adult, and aged mice. We further developed an efficient purification method for Ddc-hKO1-positive neurons using a cell sorter. RNA sequencing analysis confirmed the enrichment of dopaminergic, serotonergic and cholinergic neurons in Ddc-hKO1-positive cell population recovered using this method. A detailed analysis of Ddc-hKO1 paternally and maternally derived heterozygous mice combined with immunostaining revealed that Ddc was preferentially expressed from the maternal allele in ventral tegmented area (VTA), substantia nigra pars compacta (SNc), and retrorubral field (RRF); while it was expressed from both alleles in dorsal raphe nucleus (DR). These results indicate that Ddc exhibit an allele-specific expression pattern in different brain regions, presumably reflecting the diverse regulatory mechanisms of imprinting.
Collapse
Affiliation(s)
- Kit-Yeng Sheng
- Department of Pathology, Graduate School of Frontier Biosciences, Osaka, Japan
| | - Toru Nakano
- Department of Pathology, Graduate School of Frontier Biosciences, Osaka, Japan,Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinpei Yamaguchi
- Graduate School of Medicine, Osaka University, Osaka, Japan,Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan,*Correspondence: Shinpei Yamaguchi,
| |
Collapse
|
9
|
Juan AM, Foong YH, Thorvaldsen JL, Lan Y, Leu NA, Rurik JG, Li L, Krapp C, Rosier CL, Epstein JA, Bartolomei MS. Tissue-specific Grb10/Ddc insulator drives allelic architecture for cardiac development. Mol Cell 2022; 82:3613-3631.e7. [PMID: 36108632 PMCID: PMC9547965 DOI: 10.1016/j.molcel.2022.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.
Collapse
Affiliation(s)
- Aimee M Juan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yee Hoon Foong
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanne L Thorvaldsen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolae A Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joel G Rurik
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Casey L Rosier
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Manti F, Mastrangelo M, Battini R, Carducci C, Spagnoli C, Fusco C, Tolve M, Carducci C, Leuzzi V. Long-term neurological and psychiatric outcomes in patients with aromatic l-amino acid decarboxylase deficiency. Parkinsonism Relat Disord 2022; 103:105-111. [PMID: 36096017 DOI: 10.1016/j.parkreldis.2022.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION l-amino acid decarboxylase deficiency (AADCD) is an ultrarare autosomal recessive defect of biogenic amine synthesis that presents with early-onset encephalopathy progressing to severe neurological impairment and intellectual disability. We aimed to explore neurocognitive and behavioral profiles associated with AADCD and possible factors predicting outcome in more detail. METHODS Nine AADCD patients (23.2 ± 10.3 years; range 8-40) underwent systematic clinical and neuropsychological assessment. Diagnostic levels of CSF 5-hydroxyindolacetic acid (5-HIAA) and homovanillic acid (HVA), and DDC genotype (as ascertained by American College of Medical Genetics and Genomics grading) were included in the data analysis. RESULTS All AADCD patients were affected by intellectual disability and psychiatric disorders. Movement disorders included parkinsonism-dystonia, dysarthria, and oculogyric crises. CSF 5-HIAA and HVA levels at diagnosis had a significant influence on adaptive behavior and executive function performance. Patients homozygous for DDC pathogenetic variants showed lower CSF 5-HIAA and HVA levels and higher Unified Parkinson's Disease Rating Scale scores. The disease showed a self-limiting clinical course with partial improvement under pharmacological treatment (B6 and dopamine mimetic drugs). CONCLUSIONS Patients with AADCD suffer from neuropsychological and psychopathological impairment, which may be improved but not reversed under the present therapeutic approach. However, cognitive functioning should be specifically examined in order to avoid its underestimation on the basis of movement disorder severity. Genotype and biogenic amine level at diagnosis have an important prognostic value.
Collapse
Affiliation(s)
- Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mario Mastrangelo
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Manuela Tolve
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines. Nat Commun 2021; 12:5529. [PMID: 34545092 PMCID: PMC8452745 DOI: 10.1038/s41467-021-25515-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/12/2021] [Indexed: 01/04/2023] Open
Abstract
Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases presenting with movement disorders and global developmental delay. This study presents the results of the first standardized deep phenotyping approach and describes the clinical and biochemical presentation at disease onset as well as diagnostic approaches of 275 patients from the registry of the International Working Group on Neurotransmitter related Disorders. The results reveal an increased rate of prematurity, a high risk for being small for gestational age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic delay are influenced by the diagnostic methods applied and by disease-specific symptoms. The timepoint of investigation was also a significant factor: delay to diagnosis has decreased in recent years, possibly due to novel diagnostic approaches or raised awareness. Although each disorder has a specific biochemical pattern, we observed confounding exceptions to the rule. The data provide comprehensive insights into the phenotypic spectrum of neurotransmitter disorders. Inherited disorders of neurotransmitter metabolism represent a group of rare neurometabolic diseases characterized by movement disorders and developmental delay. Here, the authors report a standardized evaluation of a registry of 275 patients from 42 countries, and highlight an evolving phenotypic spectrum of this disease group and factors influencing diagnostic processes.
Collapse
|
12
|
Rossignoli G, Krämer K, Lugarà E, Alrashidi H, Pope S, De La Fuente Barrigon C, Barwick K, Bisello G, Ng J, Counsell J, Lignani G, Heales SJR, Bertoldi M, Barral S, Kurian MA. Aromatic l-amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Brain 2021; 144:2443-2456. [PMID: 33734312 PMCID: PMC8418346 DOI: 10.1093/brain/awab123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is a complex inherited neurological disorder of monoamine synthesis which results in dopamine and serotonin deficiency. The majority of affected individuals have variable, though often severe cognitive and motor delay, with a complex movement disorder and high risk of premature mortality. For most, standard pharmacological treatment provides only limited clinical benefit. Promising gene therapy approaches are emerging, though may not be either suitable or easily accessible for all patients. To characterize the underlying disease pathophysiology and guide precision therapies, we generated a patient-derived midbrain dopaminergic neuronal model of AADC deficiency from induced pluripotent stem cells. The neuronal model recapitulates key disease features, including absent AADC enzyme activity and dysregulated dopamine metabolism. We observed developmental defects affecting synaptic maturation and neuronal electrical properties, which were improved by lentiviral gene therapy. Bioinformatic and biochemical analyses on recombinant AADC predicted that the activity of one variant could be improved by l-3,4-dihydroxyphenylalanine (l-DOPA) administration; this hypothesis was corroborated in the patient-derived neuronal model, where l-DOPA treatment leads to amelioration of dopamine metabolites. Our study has shown that patient-derived disease modelling provides further insight into the neurodevelopmental sequelae of AADC deficiency, as well as a robust platform to investigate and develop personalized therapeutic approaches.
Collapse
Affiliation(s)
- Giada Rossignoli
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
- Biological Chemistry, NBM Department, University of Verona, 37134 Verona, Italy
| | - Karolin Krämer
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Eleonora Lugarà
- Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Haya Alrashidi
- Genetics and Genomic Medicine, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Simon Pope
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | - Katy Barwick
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giovanni Bisello
- Biological Chemistry, NBM Department, University of Verona, 37134 Verona, Italy
| | - Joanne Ng
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London WC1E 6HU, UK
| | - John Counsell
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriele Lignani
- Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Simon J R Heales
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
- Centre for Inborn Errors of Metabolism, GOS Institute of Child Health, UniversCity College London, London WC1N 1EH, UK
| | - Mariarita Bertoldi
- Biological Chemistry, NBM Department, University of Verona, 37134 Verona, Italy
- Correspondence may also be addressed to: Prof Mariarita Bertoldi Department of Neuroscience, Biomedicine and Movement Sciences Biological Chemistry Section, Room 1.24 Strada le Grazie 8, 37134 Verona, Italy E-mail:
| | - Serena Barral
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Manju A Kurian
- Developmental Neurosciences, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
- Correspondence to: Prof Manju Kurian Zayed Centre for Research UCL Great Ormond Street Institute of Child Health 20 Guilford St, London WC1N 1DZ, UK E-mail:
| |
Collapse
|
13
|
Prickett AR, Montibus B, Barkas N, Amante SM, Franco MM, Cowley M, Puszyk W, Shannon MF, Irving MD, Madon-Simon M, Ward A, Schulz R, Baldwin HS, Oakey RJ. Imprinted Gene Expression and Function of the Dopa Decarboxylase Gene in the Developing Heart. Front Cell Dev Biol 2021; 9:676543. [PMID: 34239874 PMCID: PMC8258389 DOI: 10.3389/fcell.2021.676543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by Ddc_exon1a, a tissue-specific paternally expressed imprinted gene. Ddc_exon1a shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) Grb10 gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of Ddc_exon1a. Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human. Ddc_exon1a and Grb10 are not co-expressed in heart nor in brain where Grb10 is also paternally expressed, despite sharing an ICR, indicating they are mechanistically linked by their shared ICR but not by Grb10 gene expression. Evidence from a Ddc_exon1a gene knockout mouse model suggests that it mediates the growth of the developing myocardium and a thinning of the myocardium is observed in a small number of mutant mice examined, with changes in gene expression detected by microarray analysis. Comparative studies in the human developing heart reveal a paternal expression bias with polymorphic imprinting patterns between individual human hearts at DDC_EXON1a, a finding consistent with other imprinted genes in human.
Collapse
Affiliation(s)
- Adam R. Prickett
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Bertille Montibus
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Nikolaos Barkas
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Samuele M. Amante
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Maurício M. Franco
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Michael Cowley
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - William Puszyk
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Matthew F. Shannon
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Melita D. Irving
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Marta Madon-Simon
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Andrew Ward
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - H. Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca J. Oakey
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Lin CH, Tsai PI, Lin HY, Hattori N, Funayama M, Jeon B, Sato K, Abe K, Mukai Y, Takahashi Y, Li Y, Nishioka K, Yoshino H, Daida K, Chen ML, Cheng J, Huang CY, Tzeng SR, Wu YS, Lai HJ, Tsai HH, Yen RF, Lee NC, Lo WC, Hung YC, Chan CC, Ke YC, Chao CC, Hsieh ST, Farrer M, Wu RM. Mitochondrial UQCRC1 mutations cause autosomal dominant parkinsonism with polyneuropathy. Brain 2021; 143:3352-3373. [PMID: 33141179 PMCID: PMC7719032 DOI: 10.1093/brain/awaa279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder with a multifactorial aetiology. Nevertheless, the genetic predisposition in many families with multi-incidence disease remains unknown. This study aimed to identify novel genes that cause familial Parkinson's disease. Whole exome sequencing was performed in three affected members of the index family with a late-onset autosomal-dominant parkinsonism and polyneuropathy. We identified a novel heterozygous substitution c.941A>C (p.Tyr314Ser) in the mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) gene, which co-segregates with disease within the family. Additional analysis of 699 unrelated Parkinson's disease probands with autosomal-dominant Parkinson's disease and 1934 patients with sporadic Parkinson's disease revealed another two variants in UQCRC1 in the probands with familial Parkinson's disease, c.931A>C (p.Ile311Leu) and an allele with concomitant splicing mutation (c.70-1G>A) and a frameshift insertion (c.73_74insG, p.Ala25Glyfs*27). All substitutions were absent in 1077 controls and the Taiwan Biobank exome database from healthy participants (n = 1517 exomes). We then assayed the pathogenicity of the identified rare variants using CRISPR/Cas9-based knock-in human dopaminergic SH-SY5Y cell lines, Drosophila and mouse models. Mutant UQCRC1 expression leads to neurite degeneration and mitochondrial respiratory chain dysfunction in SH-SY5Y cells. UQCRC1 p.Tyr314Ser knock-in Drosophila and mouse models exhibit age-dependent locomotor defects, dopaminergic neuronal loss, peripheral neuropathy, impaired respiratory chain complex III activity and aberrant mitochondrial ultrastructures in nigral neurons. Furthermore, intraperitoneal injection of levodopa could significantly improve the motor dysfunction in UQCRC1 p.Tyr314Ser mutant knock-in mice. Taken together, our in vitro and in vivo studies support the functional pathogenicity of rare UQCRC1 variants in familial parkinsonism. Our findings expand an additional link of mitochondrial complex III dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-I Tsai
- Department of Biochemistry and Biophysics, University of California San Francisco, USA
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Beomseok Jeon
- Department of Neurology, Movement Disorder Center, Seoul National University Hospital, Parkinson Study Group, Seoul National University College of Medicine, Seoul, Korea
| | - Kota Sato
- Department of Neurology, Okayama University Medical School, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Medical School, Okayama, Japan
| | - Yohei Mukai
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kensuke Daida
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Meng-Ling Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jay Cheng
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yen Huang
- The first core laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Sheng Wu
- Electron Microscope Laboratory of Tzong Jwo Jang, College of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| | - Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chun Lo
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chien Hung
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ci Ke
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Matthew Farrer
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Center for Applied Neurogenetics, University of British Columbia, Canada
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Murillo-Cuesta S, Artuch R, Asensio F, de la Villa P, Dierssen M, Enríquez JA, Fillat C, Fourcade S, Ibáñez B, Montoliu L, Oliver E, Pujol A, Salido E, Vallejo M, Varela-Nieto I. The Value of Mouse Models of Rare Diseases: A Spanish Experience. Front Genet 2020; 11:583932. [PMID: 33173540 PMCID: PMC7591746 DOI: 10.3389/fgene.2020.583932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Animal models are invaluable for biomedical research, especially in the context of rare diseases, which have a very low prevalence and are often complex. Concretely mouse models provide key information on rare disease mechanisms and therapeutic strategies that cannot be obtained by using only alternative methods, and greatly contribute to accelerate the development of new therapeutic options for rare diseases. Despite this, the use of experimental animals remains controversial. The combination of respectful management, ethical laws and transparency regarding animal experimentation contributes to improve society’s opinion about biomedical research and positively impacts on research quality, which eventually also benefits patients. Here we present examples of current advances in preclinical research in rare diseases using mouse models, together with our perspective on future directions and challenges.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rafael Artuch
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Fernando Asensio
- Gregorio Marañón Institute for Health Research (IISGM), Madrid, Spain
| | - Pedro de la Villa
- Faculty of Medicine, University of Alcalá (UAH), Alcalá de Henares, Spain
| | - Mara Dierssen
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Antonio Enríquez
- Spanish National Center for Cardiovascular Research (CNIC), Institute of Health Carlos III, Madrid, Spain.,Biomedical Research Networking Center on Frailty and Healthy Ageing (CIBERFES), Institute of Health Carlos III, Madrid, Spain
| | - Cristina Fillat
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Stéphane Fourcade
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Borja Ibáñez
- Spanish National Center for Cardiovascular Research (CNIC), Institute of Health Carlos III, Madrid, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiology Department, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD), Madrid, Spain
| | - Lluis Montoliu
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,National Center for Biotechnology (CNB), Spanish National Research Council, Madrid, Spain
| | - Eduardo Oliver
- Spanish National Center for Cardiovascular Research (CNIC), Institute of Health Carlos III, Madrid, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Aurora Pujol
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eduardo Salido
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas (ITB), La Laguna, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain.,Biomedical Research Networking Center on Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - Isabel Varela-Nieto
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
16
|
Montioli R, Bisello G, Dindo M, Rossignoli G, Voltattorni CB, Bertoldi M. New variants of AADC deficiency expand the knowledge of enzymatic phenotypes. Arch Biochem Biophys 2020; 682:108263. [PMID: 31953134 DOI: 10.1016/j.abb.2020.108263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
AADC deficiency is a rare genetic disease caused by mutations in the gene of aromatic amino acid decarboxylase, the pyridoxal 5'-phosphate dependent enzyme responsible for the synthesis of dopamine and serotonin. Here, following a biochemical approach together with an in silico bioinformatic analysis, we present a structural and functional characterization of 13 new variants of AADC. The amino acid substitutions are spread over the entire protein from the N-terminal (V60A), to its loop1 (H70Y and F77L), to the large domain (G96R) and its various motifs, i.e. loop2 (A110E), or a core β-barrel either on the surface (P210L, F251S and E283A) or in a more hydrophobic milieu (L222P, F237S and W267R) or loop3 (L353P), and to the C-terminal domain (R453C). Results show that the β-barrel variants exhibit a low solubility and those belonging to the surface tend to aggregate in their apo form, leading to the identification of a new enzymatic phenotype for AADC deficiency. Moreover, five variants of residues belonging to the large interface of AADC (V60A, G96R, A110E, L353P and R453C) are characterized by a decreased catalytic efficiency. The remaining ones (H70Y and F77L) present features typical of apo-to-holo impaired transition. Thus, defects in catalysis or in the acquirement of the correct holo structure are due not only to specific local domain effects but also to long-range effects at either the protein surface or the subunit interface. Altogether, the new characterized enzymatic phenotypes represent a further step in the elucidation of the molecular basis for the disease.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Giovanni Bisello
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Mirco Dindo
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Giada Rossignoli
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 1EH, UK
| | - Carla Borri Voltattorni
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy.
| |
Collapse
|
17
|
Jiang X, Liu H, Shao Y, Peng M, Zhang W, Li D, Li X, Cai Y, Tan T, Lu X, Xu J, Su X, Lin Y, Liu Z, Huang Y, Zeng C, Tang YP, Liu L. A novel GTPCH deficiency mouse model exhibiting tetrahydrobiopterin-related metabolic disturbance and infancy-onset motor impairments. Metabolism 2019; 94:96-104. [PMID: 30742839 DOI: 10.1016/j.metabol.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND GTP cyclohydrolase I (GTPCH) deficiency could impair the synthesis of tetrahydrobiopterin and causes metabolic diseases involving phenylalanine catabolism, neurotransmitter synthesis, nitric oxide production and so on. Though improvements could be achieved by tetrahydrobiopterin and neurotransmitter precursor levodopa supplementation, residual motor and mental deficits remain in some patients. An appropriate GTPCH deficiency animal model with clinical symptoms, especially the motor impairments, is still not available for mechanism and therapy studies yet. OBJECTIVES AND METHODS To investigate whether the heterozygous GTPCH missense mutation p.Leu117Arg identified from a patient with severe infancy-onset dopa-responsive motor impairments is causative and establish a clinical relevant GTPCH deficiency mouse model, we generated a mouse mutant mimicking this missense mutation using the CRISPR/Cas9 technology. Series of characterization experiments on the heterozygous and homozygous mutants were conducted. RESULTS The expressions of GTPCH were not significantly changed in the mutants, but the enzyme activities were impaired in the homozygous mutants. BH4 reduction and phenylalanine accumulation were observed both in the liver and brain of the homozygous mutants. Severer metabolic disturbance occurred in the brain than in the liver. Significant reduction of neurotransmitter dopamine, norepinephrine and serotonin was observed in the brains of homozygous mutants. Live-born homozygous mutants exhibited infancy-onset motor and vocalization deficits similar to the disease symptoms observed in the patient, while no obvious symptoms were observed in the young heterozygous mutant mice. With benserazide-levodopa treatment, survival of the homozygous mutants was improved but not completely rescued. CONCLUSIONS The GTPCH p.Leu117Arg missense mutation is deleterious and could cause tetrahydrobiopterin, phenylalanine and neurotransmitter metabolic disturbances and infancy-onset motor dysfunctions recessively. This is the first GTPCH deficiency mouse model which could be live-born and exhibits significant motor impairments. The different extents of BH4 reduction and phenylalanine accumulation observed between liver and brain in response to GTPCH deficiency gives potential new insights into the vulnerability of brain to GTPCH deficiency.
Collapse
Affiliation(s)
- Xiaoling Jiang
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Huazhen Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Mingzhi Peng
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Duan Li
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xiuzhen Li
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yanna Cai
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ting Tan
- Lab of Neural Development and Behavior Genetics, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xinshuo Lu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jianan Xu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xueying Su
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yunting Lin
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Zongcai Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yonglan Huang
- Department of Neonatal Screening, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Chunhua Zeng
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ya-Ping Tang
- Lab of Neural Development and Behavior Genetics, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Li Liu
- Department of Genetics and Endocrine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| |
Collapse
|
18
|
Ho SY, Chien YH, Tsai LK, Muramatsu SI, Hwu WL, Liou HH, Lee NC. Electrical Abnormalities in Dopaminergic Neurons of the Substantia Nigra in Mice With an Aromatic L-Amino Acid Decarboxylase Deficiency. Front Cell Neurosci 2019; 13:9. [PMID: 30766478 PMCID: PMC6365702 DOI: 10.3389/fncel.2019.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
Aromatic L-acid decarboxylase (AADC) deficiency causes severe motor disturbances in affected children. A putamen-targeted gene therapy improves the motor function of patients. The present study investigated the electrical properties of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) of mice with an AADC deficiency (DdcKI). The basal firing of DA neurons, which determines DA release in the putamen, was abnormal in the DdcKI mice, including a low frequency and irregular firing pattern, because of a decrease in the after-hyperpolarization (AHP) amplitude of action potentials (APs). The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) increased and that of spontaneous inhibitory PSCs (sIPSCs) decreased in the SNc DA neurons from the DdcKI mice, suggesting an elevation in glutamatergic excitatory stimuli and a reduction in GABAergic inhibitory stimuli, respectively. Altered expression patterns of genes encoding receptors and channels were also observed in the DdcKI mice. Administration of a widespread neuron-specific gene therapy to the brains of the DdcKI mice partially corrected these electric abnormalities. The overexcitability of SNc DA neurons in the presence of generalized dopamine deficiency likely underlies the occurrence of motor disturbances.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
19
|
Lee NC, Chien YH, Hwu WL. A review of aromatic l
-amino acid decarboxylase (AADC) deficiency in Taiwan. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:226-229. [DOI: 10.1002/ajmg.c.31670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
20
|
Tsai CR, Lee HF, Chi CS, Yang MT, Hsu CC. Antisense oligonucleotides modulate dopa decarboxylase function in aromatic l-amino acid decarboxylase deficiency. Hum Mutat 2018; 39:2072-2082. [PMID: 30260058 DOI: 10.1002/humu.23659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/22/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADCD), attributed to mutations in the dopa decarboxylase (DDC) gene, is a rare neurometabolic disease resulting from a defect in the biosynthesis of dopamine and serotonin. The DDC c.714+4A>T mutation is the most prevalent mutation among patients with AADCD, and is also a founder mutation among Taiwanese patients. In this study, the molecular consequences and function of this mutation were examined in AADCD patient-derived lymphoblastoid cells. We identified novel DDC mRNA isoforms spliced with a new exon (exon 6a) in normal and c.714+4A>T lymphoblastoid cells. In addition, we identified the SR proteins (SRSF9 and SRSF6), as well as cis-elements involved in modulating the splicing of this mutated transcript. Notably, we demonstrated that antisense oligonucleotides (ASOs) were able to restore the normal mRNA splicing and increase the level of DDC protein, as well as its downstream product serotonin, in lymphoblastoid cells derived from the patient with AADCD, suggesting that these ASOs might represent a feasible alternative strategy for gene therapy of AADCD in patients with the common c.714+4A>T mutation.
Collapse
Affiliation(s)
- Chi-Ren Tsai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Pediatrics, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, 407, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Ching-Shiang Chi
- School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan.,Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Taichung, 435, Taiwan
| | - Ming-Te Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chia-Chi Hsu
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, 407, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| |
Collapse
|
21
|
Caine C, Shohat M, Kim JK, Nakanishi K, Homma S, Mosharov EV, Monani UR. A pathogenic S250F missense mutation results in a mouse model of mild aromatic l-amino acid decarboxylase (AADC) deficiency. Hum Mol Genet 2018; 26:4406-4415. [PMID: 28973165 DOI: 10.1093/hmg/ddx326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency.
Collapse
Affiliation(s)
- Charlotte Caine
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease
| | - Meytal Shohat
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease
| | - Jeong-Ki Kim
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease
| | | | | | - Eugene V Mosharov
- Department of Neurology.,Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,New York State Psychiatric Institute, New York, NY 10032, USA
| | - Umrao R Monani
- Department of Pathology and Cell Biology.,Center for Motor Neuron Biology and Disease.,Department of Neurology
| |
Collapse
|
22
|
Abstract
BACKGROUND The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D2-family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. METHODS To better understand how loss of D2-family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D2 receptors. RESULTS We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D2-family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. CONCLUSIONS Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan.
Collapse
|
23
|
Lee NC, Hwu WL, Muramatsu SI, Falk DJ, Byrne BJ, Cheng CH, Shih NC, Chang KL, Tsai LK, Chien YH. A Neuron-Specific Gene Therapy Relieves Motor Deficits in Pompe Disease Mice. Mol Neurobiol 2017; 55:5299-5309. [PMID: 28895054 DOI: 10.1007/s12035-017-0763-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
In Pompe disease, deficient lysosomal acid α-glucosidase (GAA) activity causes glycogen accumulation in the muscles, which leads to weakness, cardiomyopathy, and respiratory failure. Although glycogen accumulation also occurs in the nervous system, the burden of neurological deficits in Pompe disease remains obscure. In this study, a neuron-specific gene therapy was administered to Pompe mice through intracerebroventricular injection of a viral vector carrying a neuron-specific promoter. The results revealed that gene therapy increased GAA activity and decreased glycogen content in the brain and spinal cord but not in the muscles of Pompe mice. Gene therapy only slightly increased the muscle strength of Pompe mice but substantially improved their performance on the rotarod, a test measuring motor coordination. Gene therapy also decreased astrogliosis and increased myelination in the brain and spinal cord of Pompe mice. Therefore, a neuron-specific treatment improved the motor coordination of Pompe mice by lowering glycogen accumulation, decreasing astrogliosis, and increasing myelination. These findings indicate that neurological deficits are responsible for a significant burden in Pompe disease.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 10041, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 10041, Taipei, Taiwan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, 3290498, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Darin J Falk
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, 32601, USA
| | - Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, 32601, USA
| | - Chia-Hao Cheng
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan
| | - Nien-Chu Shih
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan
| | - Kai-Ling Chang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, 10041, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 10041, Taiwan. .,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 10041, Taipei, Taiwan.
| |
Collapse
|
24
|
Lee NC, Lee YM, Chen PW, Byrne BJ, Hwu WL. Mutation-adapted U1 snRNA corrects a splicing error of the dopa decarboxylase gene. Hum Mol Genet 2017; 25:5142-5147. [PMID: 27658936 DOI: 10.1093/hmg/ddw323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is an inborn error of monoamine neurotransmitter synthesis, which results in dopamine, serotonin, epinephrine and norepinephrine deficiencies. The DDC gene founder mutation IVS6 + 4A > T is highly prevalent in Chinese patients with AADC deficiency. In this study, we designed several U1 snRNA vectors to adapt U1 snRNA binding sequences of the mutated DDC gene. We found that only the modified U1 snRNA (IVS-AAA) that completely matched both the intronic and exonic U1 binding sequences of the mutated DDC gene could correct splicing errors of either the mutated human DDC minigene or the mouse artificial splicing construct in vitro. We further injected an adeno-associated viral (AAV) vector to express IVS-AAA in the brain of a knock-in mouse model. This treatment was well tolerated and improved both the survival and brain dopamine and serotonin levels of mice with AADC deficiency. Therefore, mutation-adapted U1 snRNA gene therapy can be a promising method to treat genetic diseases caused by splicing errors, but the efficiency of such a treatment still needs improvements.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-May Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pin-Wen Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Barry J Byrne
- Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
25
|
Abstract
Although serotonin neurotransmission has been implicated in several neurodevelopmental and psychological disorders, the factors that drive dysfunction of the serotonin system are poorly understood. Current research regarding the serotonin system revolves around its dysfunction in neuropsychiatric disorders, but there is no database collating genetic mutations that result in serotonin abnormalities. To bridge this gap, we developed a list of genes in mice that, when perturbed, result in altered levels of serotonin either in brain or blood. Due to the intrinsic limitations of search, the current list should be considered a preliminary subset of all relevant cases. Nevertheless, it offered an opportunity to gain insight into what types of genes have the potential to impact serotonin by using gene ontology (GO). This analysis found that genes associated with monoamine metabolism were more often associated with increases in brain serotonin than decreases. Speculatively, this could be because several pathways (and therefore many genes) are responsible for the clearance and metabolism of serotonin whereas only one pathway (and therefore fewer genes) is directly involved in the synthesis of serotonin. Another contributor could be cross talk between monoamine systems such as dopamine. In contrast, genes that were associated with decreases in brain serotonin were more likely linked to a developmental process. Sensitivity of serotonin neurons to developmental perturbations could be due to their complicated neuroanatomy or possibly they may be negatively regulated by dysfunction of their innervation targets. Thus, these observations suggest hypotheses regarding the mechanisms underlying the vulnerability of brain serotonin neurotransmission.
Collapse
Affiliation(s)
- Richard C. Tenpenny
- Department of Anesthesiology, Perioperative, and Pain
Medicine, Boston Children’s Hospital and Department of Anesthesia,
Harvard Medical School, 300 Longwood
Avenue, Boston, Massachusetts 02115, United States
| | - Kathryn G. Commons
- Department of Anesthesiology, Perioperative, and Pain
Medicine, Boston Children’s Hospital and Department of Anesthesia,
Harvard Medical School, 300 Longwood
Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Korner G, Noain D, Ying M, Hole M, Flydal MI, Scherer T, Allegri G, Rassi A, Fingerhut R, Becu-Villalobos D, Pillai S, Wueest S, Konrad D, Lauber-Biason A, Baumann CR, Bindoff LA, Martinez A, Thöny B. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain 2015; 138:2948-63. [PMID: 26276013 DOI: 10.1093/brain/awv224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2023] Open
Abstract
Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.
Collapse
Affiliation(s)
- Germaine Korner
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Daniela Noain
- 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Ming Ying
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Magnus Hole
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marte I Flydal
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tanja Scherer
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Gabriella Allegri
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | - Anahita Rassi
- 6 Division of Clinical Chemistry and Biochemistry, Department of Paediatrics, University of Zürich, Zürich, Switzerland
| | - Ralph Fingerhut
- 7 Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| | | | - Samyuktha Pillai
- 9 Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Stephan Wueest
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Daniel Konrad
- 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland 10 Division of Endocrinology, Department of Pediatrics, University of Zurich, Switzerland
| | - Anna Lauber-Biason
- 11 Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian R Baumann
- 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 4 Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | - Laurence A Bindoff
- 12 Department of Clinical Medicine K1, University of Bergen, Norway 13 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Aurora Martinez
- 5 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Beat Thöny
- 1 Division of Metabolism, Department of Paediatrics, University of Zürich, Zürich, Switzerland 2 Affiliated with the Neuroscience Centre Zurich ZNZ, Zürich, Switzerland 3 Affiliated with the Children's Research Centre CRC, Zürich, Switzerland
| |
Collapse
|
27
|
Benefits of Neuronal Preferential Systemic Gene Therapy for Neurotransmitter Deficiency. Mol Ther 2015; 23:1572-81. [PMID: 26137853 DOI: 10.1038/mt.2015.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/24/2015] [Indexed: 11/08/2022] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disease that impairs synthesis of dopamine and serotonin. Children with AADC deficiency exhibit severe motor, behavioral, and autonomic dysfunctions. We previously generated an IVS6+4A>T knock-in mouse model of AADC deficiency (Ddc(KI) mice) and showed that gene therapy at the neonatal stage can rescue this phenotype. In the present study, we extended this treatment to systemic therapy on young mice. After intraperitoneal injection of AADC viral vectors into 7-day-old Ddc(KI) mice, the treated mice exhibited improvements in weight gain, survival, motor function, autonomic function, and behavior. The yfAAV9/3-Syn-I-mAADC-treated mice showed greater neuronal transduction and higher brain dopamine levels than AAV9-CMV-hAADC-treated mice, whereas AAV9-CMV-hAADC-treated mice exhibited hyperactivity. Therefore, neurotransmitter-deficient animals can be rescued at a young age using systemic gene therapy, although a vector for preferential neuronal expression may be necessary to avoid hyperactivity caused by this treatment.
Collapse
|
28
|
Zielonka M, Makhseed N, Blau N, Bettendorf M, Hoffmann GF, Opladen T. Dopamine-Responsive Growth-Hormone Deficiency and Central Hypothyroidism in Sepiapterin Reductase Deficiency. JIMD Rep 2015; 24:109-13. [PMID: 26006722 PMCID: PMC4582026 DOI: 10.1007/8904_2015_450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/20/2023] Open
Abstract
Sepiapterin reductase (SR) deficiency is a rare autosomal recessively inherited error of tetrahydrobiopterin (BH4) biosynthesis, resulting in disturbed dopaminergic and serotonergic neurotransmission. The clinical phenotype is characterized by dopa-responsive movement disorders including muscular hypotonia, dystonia, and parkinsonism. Due to the rarity of the disease, the phenotype of SR deficiency is far from being completely understood. Here, we report a 7-year-old boy, who was referred for diagnostic evaluation of combined psychomotor retardation, spastic tetraplegia, extrapyramidal symptoms, and short stature. Due to discrepancy between motor status and mental condition, analyses of biogenic amines and pterins in CSF were performed, leading to the diagnosis of SR deficiency. The diagnosis was confirmed by a novel homozygous mutation c.530G>C; p.(Arg177Pro) in exon 2 of the SPR gene. Because of persistent short stature, systematic endocrinological investigations were initiated. Insufficient growth-hormone release in a severe hypoglycemic episode after overnight fasting confirmed growth-hormone deficiency as a cause of short stature. In addition, central hypothyroidism was present. A general hypothalamic affection could be excluded. Since dopamine is known to regulate growth-hormone excretion, IGF-1, IGF-BP3, and peripheral thyroid hormone levels were monitored under L-dopa/carbidopa supplementation. Both growth-hormone-dependent factors and thyroid function normalized under treatment. This is the first report describing growth-hormone deficiency and central hypothyroidism in SR deficiency. It extends the phenotypic spectrum of the disease and identifies dopamine depletion as cause for the endocrinological disturbances.
Collapse
Affiliation(s)
- Matthias Zielonka
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Nawal Makhseed
- />Pediatric Department, Jahra Hospital, Qadisiya, Kuwait
| | - Nenad Blau
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Markus Bettendorf
- />Division of Pediatric Endocrinology, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Friedrich Hoffmann
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Thomas Opladen
- />Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Varmuza S, Miri K. What does genetics tell us about imprinting and the placenta connection? Cell Mol Life Sci 2015; 72:51-72. [PMID: 25194419 PMCID: PMC11114082 DOI: 10.1007/s00018-014-1714-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/07/2023]
Abstract
Genomic imprinting is an epigenetic gene silencing phenomenon that is specific to eutherians in the vertebrate lineage. The acquisition of both placentation and genomic imprinting has spurred interest in the possible evolutionary link for many years. In this review we examine the genetic evidence and find that while many imprinted domains are anchored by genes required for proper placenta development in a parent of origin fashion, an equal number of imprinted genes have no apparent function that depends on imprinting. Examination of recent data from studies of molecular and genetic mechanisms points to a maternal control of the selection and maintenance of imprint marks, reinforcing the importance of the oocyte in the healthy development of the placenta and fetus.
Collapse
Affiliation(s)
- Susannah Varmuza
- Department of Cell and Systems Biology, University of Toronto, 611-25 Harbord Street, Toronto, M5S 3G5, Canada,
| | | |
Collapse
|
30
|
|
31
|
Helman G, Pappa MB, Pearl PL. Widening Phenotypic Spectrum of AADC Deficiency, a Disorder of Dopamine and Serotonin Synthesis. JIMD Rep 2014; 17:23-7. [PMID: 25001633 DOI: 10.1007/8904_2014_327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Aromatic amino acid decarboxylase deficiency presents with prominent extrapyramidal and autonomic features and CSF monoamine deficiency with increased 3-O-methyldopa, a by-product of accumulated L-DOPA. Less than 100 cases have been identified. The disease is typically associated with a severe phenotype and worse prognosis in females. Gene transfer technology has been implemented using an adeno-associated virus encoding AADC in the putamen bilaterally. METHODS We describe the phenotype/genotype in a cohort of five cases showing a heterogeneous phenotype and variably intact response to pharmacologic therapy. RESULTS Five patients (age range 2-10 years, mean 5 years, 3M/2F) with confirmed AADC deficiency are described. Four (3M/1F) have had improvement on combinations of dopaminergic agonists, MAO inhibitors, pyridoxine/P5P, and folinic acid. Each presented with hypotonia, decreased voluntary movement, dystonia, irritability, and oculogyric crises. Two (1M/1F) are independently ambulatory and are not dependent on gastrostomy tube feedings; the 9-year-old girl is reading single words. One female has a severe phenotype including recurrent hypoglycemic events associated with bradycardia, although the latter have resolved with chronic anticholinergic therapy. One Taiwanese boy had the common homozygous mutation, and otherwise we describe five new DDC mutations. CONCLUSIONS We report a wider phenotypic spectrum including intact response to pharmacologic management and milder outcome in a female, as well as five new mutations. Four of five patients have improved on combination therapy including a dopamine agonist, MAO inhibitor, pyridoxal-5'-phosphate, and folinic acid. The advent of viral-mediated gene therapy in AADC deficiency renders expanded knowledge of the outcome increasingly important.
Collapse
Affiliation(s)
- Guy Helman
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
32
|
Report of two never treated adult sisters with aromatic L-amino Acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype? JIMD Rep 2014. [PMID: 24788355 DOI: 10.1007/8904_2014_295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Two sisters were diagnosed in their adulthood with aromatic L-amino acid decarboxylase (AADC) deficiency (OMIM#608643). They experienced early myasthenia-like manifestations, myoclonic jerks, oculogyric crises, tremors, and developmental delay during childhood; clinical stabilization afterwards; and spontaneous improvement during adolescence and young adulthood. Two novel pathogenic mutations on DDC gene [p.Tyr37Thrfs*5 (c.105delC) and p.F237S (c.710 T>C)] were associated with undetectable enzyme activity in plasma and only a mild reduction of biogenic amines in cerebrospinal fluid (CSF). The increase of both 3-O-methyldopa and 5-hydroxytryptophan on CSF was the most relevant biochemical alteration denoting AADC defect in these subjects. Transdermal rotigotine remarkably improved their gross motor functions and the asthenic status they complained. The present cases broaden the phenotypic spectrum of AADC deficiency and suggest that (1) AADC defect is not a progressive neurological disease and behaves rather as a neurodevelopmental disorder that improves during the second decade of life; (2) treatment-naïve adults can still respond well to neurotransmitter therapy; and (3) the possibility of a mild presentation of AADC deficiency should be considered when examining young adults with asthenic and parkinsonian symptoms.
Collapse
|
33
|
Lee NC, Chien YH, Hu MH, Liu WS, Chen PW, Wang WH, Tzen KY, Byrne BJ, Hwu WL. Treatment of congenital neurotransmitter deficiencies by intracerebral ventricular injection of an adeno-associated virus serotype 9 vector. Hum Gene Ther 2014; 25:189-98. [PMID: 24251946 DOI: 10.1089/hum.2013.170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dopamine and serotonin are produced by distinct groups of neurons in the brain, and gene therapies other than direct injection have not been attempted to correct congenital deficiencies in such neurotransmitters. In this study, we performed gene therapy to treat knock-in mice with dopamine and serotonin deficiencies caused by a mutation in the aromatic L-amino acid decarboxylase (AADC) gene (Ddc(KI) mice). Intracerebral ventricular injection of neonatal mice with an adeno-associated virus (AAV) serotype 9 (AAV9) vector expressing the human AADC gene (AAV9-hAADC) resulted in widespread AADC expression in the brain. Without treatment, 4-week-old Ddc(KI) mice exhibited whole-brain homogenate dopamine and serotonin levels of 25% and 15% of normal, respectively. After gene therapy, the levels rose to 100% and 40% of normal, respectively. The gene therapy improved the growth rate and survival of Ddc(KI) mice and normalized their hindlimb clasping and cardiovascular dysfunctions. The behavioral abnormalities of the Ddc(KI) mice were partially corrected, and the treated Ddc(KI) mice were slightly more active than normal mice. No immune reactions resulted from the treatment. Therefore, a congenital neurotransmitter deficiency can be treated safely through inducing widespread expression of the deficient gene in neonatal mice.
Collapse
Affiliation(s)
- Ni-Chung Lee
- 1 Department of Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei 10041, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hwu WL, Lee NC, Chien YH, Muramatsu SI, Ichinose H. AADC deficiency: occurring in humans, modeled in rodents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:273-84. [PMID: 24054149 DOI: 10.1016/b978-0-12-411512-5.00013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Aromatic l-amino acid decarboxylase (AADC) is a homodimeric pyridoxal phosphate-dependent enzyme responsible for the syntheses of dopamine and serotonin. Defects in the AADC gene result in neurotransmitter deficiencies. Patients with AADC deficiency have severe motor and autonomic dysfunctions. A mouse model of AADC deficiency was recently established. These mice grow poorly and move awkwardly during infancy. They also show high anxiety when they grow up. Because drug therapy provides little or no benefit for many patients with AADC deficiency, a gene therapy has been attempted. The gene therapy employed an adeno-associated virus viral vector that can express the human AADC protein. The vector was injected to the brain of several children with AADC deficiency. The therapy was well tolerated, and all treated patients showed improvement. In the future, the mouse model will also help the development of treatments for AADC deficiency.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|