1
|
Vermeulen I, Vandenbosch M, Viot D, Mercier J, Cabañas DAW, Martinez-Martinez P, Barton P, Heeren RM, Cillero-Pastor B. Spatial Distribution of Brain PET Tracers by MALDI Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:688-698. [PMID: 40073292 PMCID: PMC11969657 DOI: 10.1021/jasms.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for ex vivo visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates ex vivo with a focus on two compounds: UCB-J and UCB2400. We tested different matrices and introduced washing steps to improve PET tracer detection. Tissue homogenates were prepared to construct calibration curves for quantification. The incorporation of a washing step into the MSI sample preparation protocol enhanced the signal of both PET tracers. Our findings highlight MSI's potential as a cost-effective and efficient method for the evaluation of PET tracer distribution. The optimized approach offered here can provide a protocol that enhances the signal and minimizes ion suppression effect, which can be valuable for future evaluation of PET tracers in MSI studies.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Delphine Viot
- Translational
Science, DMPK, UCB Biopharma SRL, Chemin du Foriest, B1420 Braine-l’Alleud, Belgium
| | - Joel Mercier
- Discovery
Chemistry BE, UCB Biopharma SRL, Chemin du Foriest, B1420 Braine-l’Alleud, Belgium
| | - Diego Asensio-Wandosell Cabañas
- Department
of Psychiatry and Neuropsychology, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department
of Psychiatry and Neuropsychology, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Patrick Barton
- Translational
Science, DMPK, UCB Celltech, Branch of UCB Pharma S.A., 208 Bath
Road, Slough, Berkshire SL1 3WE, United
Kingdom
| | - Ron M.A. Heeren
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Cell Biology-Inspired
Tissue Engineering (cBITE), MERLN, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Shi L, Wang X, Si H, Song W. PDE4D inhibitors: Opening a new era of PET diagnostics for Alzheimer's disease. Neurochem Int 2025; 182:105903. [PMID: 39647702 DOI: 10.1016/j.neuint.2024.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
As the incidence of Alzheimer's disease (AD) continues to rise, the need for an effective PET radiotracer to facilitate early diagnosis has become more pressing than ever before in modern medicine. Phosphodiesterase (PDE) is closely related to cognitive impairment and neuroinflammatory processes in AD. Current research progress shows that specific PDE4D inhibitors radioligands can bind specifically to the PDE4D enzyme in the brain, thereby showing pathology-related signal enhancement in AD animal models, indicating the potential of these ligands as effective radiotracers. At the same time, we need to pay attention to the important role computer aided drug design (CADD) plays in advancing AD drug design and PET imaging. Future research will verify the potential of these ligands in clinical applications through computer simulation techniques, providing patients with timely intervention and treatment, which is of great significance.
Collapse
Affiliation(s)
- Luyang Shi
- College of Life Science, Qingdao University, Qingdao, China
| | - Xue Wang
- College of Life Science, Qingdao University, Qingdao, China
| | - Hongzong Si
- Laboratory of New Fibrous Materials and Modern Textile, The State Key Laboratory, Qingdao University, Qingdao, China.
| | - Wangdi Song
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:9419. [PMID: 39273366 PMCID: PMC11395405 DOI: 10.3390/ijms25179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - David K. Johnson
- Computational Chemical Biology Core, Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
4
|
Wang J, Li Y, El Fakhri G. Advances and Insights in Positron Emission Tomography Tracers for Metabotropic Glutamate Receptor 4 Imaging. J Med Chem 2024; 67:10517-10529. [PMID: 38924702 PMCID: PMC11290609 DOI: 10.1021/acs.jmedchem.3c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Positron emission tomography (PET) imaging employs positron-emitting radioisotopes to visualize biological processes in living subjects with high sensitivity and quantitative accuracy. As the most translational molecular imaging modality, PET can detect and image a wide range of radiotracers with minimal or no modification to parent drugs or targeting molecules. This Perspective provides a comprehensive analysis of developing PET radioligands using allosteric modulators for the metabotropic glutamate receptor subtype 4 (mGluR4) as a therapeutic target for neurological disorders. We focus on the selection of lead compounds from various chemotypes of mGluR4 positive allosteric modulators (PAMs) and discuss the challenges and systematic characterization required in developing brain-penetrant PET tracers specific for mGluR4. Through this analysis, we offer insights into the development and evaluation of PET ligands. Our review concludes that further research and development in this field hold great promise for discovering effective treatments for neurological disorders.
Collapse
Affiliation(s)
- Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Massachusetts, 02114, USA
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Georges El Fakhri
- PET Center, School of Medicine, Yale University, Connecticut, 06520, USA
| |
Collapse
|
5
|
Ahmed H, Wallimann R, Gisler L, Elghazawy NH, Gruber S, Keller C, Liang SH, Sippl W, Haider A, Ametamey SM. Characterization of ( R)- and ( S)-[ 18F]OF-NB1 in Rodents as Positron Emission Tomography Probes for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors. ACS Chem Neurosci 2023; 14:4323-4334. [PMID: 38060344 DOI: 10.1021/acschemneuro.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) subtype 2B (GluN1/2B) is implicated in various neuropathologies. Given the lack of a validated radiofluorinated positron emission tomography (PET) probe for the imaging of GluN1/2B receptors, we comprehensively investigated the enantiomers of [18F]OF-NB1 in rodents. Particularly, the (R)- and (S)- enantiomers were evaluated using in silico docking, in vitro autoradiography, in vivo PET imaging, and ex vivo biodistribution studies. A select panel of GluN1/2B antagonists (CP-101,606, CERC-301, and eliprodil) and the off-target sigma-1 receptor ligands (fluspidine and SA4503) were used to determine the specificity and selectivity of the tested enantiomers. Additionally, a nonmetal-mediated radiofluorination strategy was devised that harnesses the potential of diaryliodoniums in the nucleophilic radiofluorination of nonactivated aromatic compounds. Both enantiomers exhibited known GluN1/2B binding patterns; however, the R-enantiomer showed higher GluN1/2B-specific accumulation in rodent autoradiography and higher brain uptake in PET imaging experiments compared to the S-enantiomer. Molecular simulation studies provided further insights with respect to the difference in binding, whereby a reduced ligand-receptor interaction was observed for the S-enantiomer. Nonetheless, both enantiomers showed dose dependency when two different doses (1 and 5 mg/kg) of the GluN1/2B antagonist, CP-101,606, were used in the PET imaging study. Taken together, (R)-[18F]OF-NB1 appears to exhibit the characteristics of a suitable PET probe for imaging of GluN2B-containing NMDARs in clinical studies.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rahel Wallimann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Stefan Gruber
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Haider A, Wang L, Gobbi L, Li Y, Chaudhary A, Zhou X, Chen J, Zhao C, Rong J, Xiao Z, Hou L, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Ahmed H, Crowe R, Honer M, Rominger A, Grether U, Liang SH, Ametamey SM. Evaluation of [ 18F]RoSMA-18-d 6 as a CB2 PET Radioligand in Nonhuman Primates. ACS Chem Neurosci 2023; 14:3752-3760. [PMID: 37788055 DOI: 10.1021/acschemneuro.3c00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 μM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.
Collapse
Affiliation(s)
- Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
9
|
Ahmed H, Zheng MQ, Smart K, Fang H, Zhang L, Emery PR, Gao H, Ropchan J, Haider A, Tamagnan G, Carson RE, Ametamey SM, Huang Y. Evaluation of ( rac)-, ( R)-, and ( S)- 18F-OF-NB1 for Imaging GluN2B Subunit-Containing N-Methyl-d-Aspartate Receptors in Nonhuman Primates. J Nucl Med 2022; 63:1912-1918. [PMID: 35710735 PMCID: PMC9730915 DOI: 10.2967/jnumed.122.263977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Despite 2 decades of research, no N-methyl-d-aspartate (NMDA) glutamate receptor (GluN) subtype 2B (GluN1/2B) radioligand is yet clinically validated. Previously, we reported on (rac)-18F-OF-NB1 as a promising GluN1/2B PET probe in rodents and its successful application for the visualization of GluN2B-containing NMDA receptors in postmortem brain tissues of patients with amyotrophic lateral sclerosis. In the current work, we report on the in vivo characterization of (rac)-, (R)-, and (S)-18F-OF-NB1 in nonhuman primates. Methods: PET scans were performed on rhesus monkeys. Plasma profiling was used to obtain the arterial input function. Regional brain time-activity curves were generated and fitted with the 1- and 2-tissue-compartment models and the multilinear analysis 1 method, and the corresponding regional volumes of distribution were calculated. Blocking studies with the GluN1/2B ligand Co 101244 (0.25 mg/kg) were performed for the enantiopure radiotracers. Receptor occupancy, nonspecific volume of distribution, and regional binding potential (BP ND) were obtained. Potential off-target binding toward σ1 receptors was assessed for (S)-18F-OF-NB1 using the σ1 receptor ligand FTC-146. Results: Free plasma fraction was moderate, ranging from 12% to 16%. All radiotracers showed high and heterogeneous brain uptake, with the highest levels in the cortex. (R)-18F-OF-NB1 showed the highest uptake and slowest washout kinetics of all tracers. The 1-tissue-compartment model and multilinear analysis 1 method fitted the regional time-activity curves well for all tracers and produced reliable regional volumes of distribution, which were higher for (R)- than (S)-18F-OF-NB1. Receptor occupancy by Co 101244 was 85% and 96% for (S)-18F-OF-NB1 and (R)-18F-OF-NB1, respectively. Pretreatment with FTC-146 at both a low (0.027 mg/kg) and high (0.125 mg/kg) dose led to a similar reduction (48% and 49%, respectively) in specific binding of (S)-18F-OF-NB1. Further, pretreatment with both Co 101244 and FTC-146 did not result in a further reduction in specific binding compared with Co 101244 alone in the same monkey (82% vs. 81%, respectively). Regional BP ND values ranged from 1.3 in the semiovale to 3.4 in the cingulate cortex for (S)-18F-OF-NB1. Conclusion: Both (R)- and (S)-18F-OF-NB1 exhibited high binding specificity to GluN2B subunit-containing NMDA receptors. The fast washout kinetics, good regional BP ND values, and high plasma free fraction render (S)-18F-OF-NB1 an attractive radiotracer for clinical translation.
Collapse
Affiliation(s)
- Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- PET Center, Yale University, New Haven, Connecticut; and
| | | | - Kelly Smart
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hanyi Fang
- PET Center, Yale University, New Haven, Connecticut; and
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- PET Center, Yale University, New Haven, Connecticut; and
| | - Paul R Emery
- PET Center, Yale University, New Haven, Connecticut; and
| | - Hong Gao
- PET Center, Yale University, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Yale University, New Haven, Connecticut; and
| | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland;
| | - Yiyun Huang
- PET Center, Yale University, New Haven, Connecticut; and
| |
Collapse
|
10
|
PET Imaging of the Neuropeptide Y System: A Systematic Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123726. [PMID: 35744852 PMCID: PMC9227365 DOI: 10.3390/molecules27123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) is a vastly studied biological peptide with numerous physiological functions that activate the NPY receptor family (Y1, Y2, Y4 and Y5). Moreover, these receptors are correlated with the pathophysiology of several diseases such as feeding disorders, anxiety, metabolic diseases, neurodegenerative diseases, some types of cancers and others. In order to deepen the knowledge of NPY receptors' functions and molecular mechanisms, neuroimaging techniques such as positron emission tomography (PET) have been used. The development of new radiotracers for the different NPY receptors and their subsequent PET studies have led to significant insights into molecular mechanisms involving NPY receptors. This article provides a systematic review of the imaging biomarkers that have been developed as PET tracers in order to study the NPY receptor family.
Collapse
|
11
|
Boisson F, Serriere S, Cao L, Bodard S, Pilleri A, Thomas L, Sportelli G, Vercouillie J, Emond P, Tauber C, Belcari N, Lefaucheur JL, Brasse D, Galineau L. Performance evaluation of the IRIS XL-220 PET/CT system, a new camera dedicated to non-human primates. EJNMMI Phys 2022; 9:10. [PMID: 35122556 PMCID: PMC8818072 DOI: 10.1186/s40658-022-00440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-human primates (NHP) are critical in biomedical research to better understand the pathophysiology of diseases and develop new therapies. Based on its translational and longitudinal abilities along with its non-invasiveness, PET/CT systems dedicated to non-human primates can play an important role for future discoveries in medical research. The aim of this study was to evaluate the performance of a new PET/CT system dedicated to NHP imaging, the IRIS XL-220 developed by Inviscan SAS. This was performed based on the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard recommendations (NEMA) to characterize the spatial resolution, the scatter fraction, the sensitivity, the count rate, and the image quality of the system. Besides, the system was evaluated in real conditions with two NHP with 18F-FDG and (-)-[18F]FEOBV which targets the vesicular acetylcholine transporter, and one rat using 18F-FDG. RESULTS The full width at half maximum obtained with the 3D OSEM algorithm ranged between 0.89 and 2.11 mm in the field of view. Maximum sensitivity in the 400-620 keV and 250-750 keV energy windows were 2.37% (22 cps/kBq) and 2.81% (25 cps/kBq), respectively. The maximum noise equivalent count rate (NEC) for a rat phantom was 82 kcps at 75 MBq and 88 kcps at 75 MBq for energy window of 250-750 and 400-620 keV, respectively. For the monkey phantom, the maximum NEC was 18 kcps at 126 MBq and 19 kcps at 126 MBq for energy window of 250-750 and 400-620 keV, respectively. The IRIS XL provided an excellent quality of images in non-human primates and rats using 18F-FDG. The images acquired using (-)-[18F]FEOBV were consistent with those previously reported in non-human primates. CONCLUSIONS Taken together, these results showed that the IRIS XL-220 is a high-resolution system well suited for PET/CT imaging in non-human primates.
Collapse
Affiliation(s)
- Frédéric Boisson
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Sophie Serriere
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France.,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France
| | - Liji Cao
- Inviscan SAS, Strasbourg, France
| | - Sylvie Bodard
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Alessandro Pilleri
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Lionel Thomas
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Giancarlo Sportelli
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Johnny Vercouillie
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Patrick Emond
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France.,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Nicola Belcari
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | | | - David Brasse
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Laurent Galineau
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France. .,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France.
| |
Collapse
|
12
|
Li W, Wang Y, Lohith TG, Zeng Z, Tong L, Mazzola R, Riffel K, Miller P, Purcell M, Holahan M, Haley H, Gantert L, Hesk D, Ren S, Morrow J, Uslaner J, Struyk A, Wai JMC, Rudd MT, Tellers DM, McAvoy T, Bormans G, Koole M, Van Laere K, Serdons K, de Hoon J, Declercq R, De Lepeleire I, Pascual MB, Zanotti-Fregonara P, Yu M, Arbones V, Masdeu JC, Cheng A, Hussain A, Bueters T, Anderson MS, Hostetler ED, Basile AS. The PET tracer [ 11C]MK-6884 quantifies M4 muscarinic receptor in rhesus monkeys and patients with Alzheimer's disease. Sci Transl Med 2022; 14:eabg3684. [PMID: 35020407 DOI: 10.1126/scitranslmed.abg3684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wenping Li
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Yuchuan Wang
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Zhizhen Zeng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Ling Tong
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Kerry Riffel
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Mona Purcell
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Hyking Haley
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Liza Gantert
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - David Hesk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Sumei Ren
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - John Morrow
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Arie Struyk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, 3001 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Kim Serdons
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, KU Leuven, 3001 Leuven, Belgium
| | - Ruben Declercq
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Inge De Lepeleire
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Maria B Pascual
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Meixiang Yu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Victoria Arbones
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amy Cheng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
13
|
Nadig V, Herrmann K, Mottaghy FM, Schulz V. Hybrid total-body pet scanners-current status and future perspectives. Eur J Nucl Med Mol Imaging 2022; 49:445-459. [PMID: 34647154 PMCID: PMC8803785 DOI: 10.1007/s00259-021-05536-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
Purpose Since the 1990s, PET has been successfully combined with MR or CT systems. In the past years, especially PET systems have seen a trend towards an enlarged axial field of view (FOV), up to a factor of ten. Methods Conducting a thorough literature research, we summarize the status quo of contemporary total-body (TB) PET/CT scanners and give an outlook on possible future developments. Results Currently, three human TB PET/CT systems have been developed: The PennPET Explorer, the uExplorer, and the Biograph Vision Quadra realize aFOVs between 1 and 2 m and show a tremendous increase in system sensitivity related to their longer gantries. Conclusion The increased system sensitivity paves the way for short-term, low-dose, and dynamic TB imaging as well as new examination methods in almost all areas of imaging.
Collapse
Affiliation(s)
- Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
- German Cancer Consortium (DKTK) - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany.
- Physics Institute III B, RWTH Aachen University, Aachen, Germany.
- Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany.
| |
Collapse
|
14
|
Pharmacodynamic measures within tumors expose differential activity of PD(L)-1 antibody therapeutics. Proc Natl Acad Sci U S A 2021; 118:2107982118. [PMID: 34508005 DOI: 10.1073/pnas.2107982118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 01/22/2023] Open
Abstract
Macromolecules such as monoclonal antibodies (mAbs) are likely to experience poor tumor penetration because of their large size, and thus low drug exposure of target cells within a tumor could contribute to suboptimal responses. Given the challenge of inadequate quantitative tools to assess mAb activity within tumors, we hypothesized that measurement of accessible target levels in tumors could elucidate the pharmacologic activity of a mAb and could be used to compare the activity of different mAbs. Using positron emission tomography (PET), we measured the pharmacodynamics of immune checkpoint protein programmed-death ligand 1 (PD-L1) to evaluate pharmacologic effects of mAbs targeting PD-L1 and its receptor programmed cell death protein 1 (PD-1). For PD-L1 quantification, we first developed a small peptide-based fluorine-18-labeled PET imaging agent, [18F]DK222, which provided high-contrast images in preclinical models. We then quantified accessible PD-L1 levels in the tumor bed during treatment with anti-PD-1 and anti-PD-L1 mAbs. Applying mixed-effects models to these data, we found subtle differences in the pharmacodynamic effects of two anti-PD-1 mAbs (nivolumab and pembrolizumab). In contrast, we observed starkly divergent target engagement with anti-PD-L1 mAbs (atezolizumab, avelumab, and durvalumab) that were administered at equivalent doses, correlating with differential effects on tumor growth. Thus, we show that measuring PD-L1 pharmacodynamics informs mechanistic understanding of therapeutic mAbs targeting PD-L1 and PD-1. These findings demonstrate the value of quantifying target pharmacodynamics to elucidate the pharmacologic activity of mAbs, independent of mAb biophysical properties and inclusive of all physiological variables, which are highly heterogeneous within and across tumors and patients.
Collapse
|
15
|
Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:530. [PMID: 34199622 PMCID: PMC8229778 DOI: 10.3390/ph14060530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Jonas Aronow
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| |
Collapse
|
16
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
17
|
Nishibe H, Tateno A, Sakayori T, Yamamoto M, Kim W, Kakuyama H, Okubo Y. Striatal Dopamine D2 Receptor Occupancy Induced by Daily Application of Blonanserin Transdermal Patches: Phase II Study in Japanese Patients With Schizophrenia. Int J Neuropsychopharmacol 2020; 24:108-117. [PMID: 32936897 PMCID: PMC7883894 DOI: 10.1093/ijnp/pyaa071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Transdermal antipsychotic patch formulations offer potential benefits, including improved adherence. This study investigated the striatal dopamine D2 receptor occupancy with daily blonanserin transdermal patch application. METHODS This open-label, phase II study enrolled 18 Japanese outpatients (20 to <65 years) with schizophrenia (DSM-IV-TR criteria; total Positive and Negative Syndrome Scale score <120 at screening) treated with blonanserin 8-mg or 16-mg tablets. Patients continued tablets for 2-4 weeks at their current dose and were then assigned to once-daily blonanserin patches (10/20/40/60/80 mg daily) for 2-4 weeks based on the oral dose. [11C]raclopride positron emission tomography scanning determined blonanserin striatal dopamine D2 receptor occupancy (primary endpoint). Secondary endpoints included assessment of receptor occupancy by dose, changes in Positive and Negative Syndrome Scale and Clinical Global Impressions-Severity of Illness-Severity scores, patient attitudes towards adherence, and patch adhesiveness. RESULTS Of 18 patients who started the blonanserin tablet treatment period, 14 patients completed treatment. Mean D2 receptor occupancy for blonanserin tablets 8 mg/d (59.2%, n = 5) and 16 mg/d (66.3%, n = 9) was within the values for blonanserin patches: 10 mg/d (33.3%, n = 3), 20 mg/d (29.9%, n = 2), 40 mg/d (61.2%, n = 3), 60 mg/d (59.0%, n = 3), and 80 mg/d (69.9%, n = 3). Occupancy generally increased with increasing blonanserin dose for both formulations with the half maximal receptor occupancy for tablets and patches associated with doses of 6.9 mg/d and 31.9 mg/d, respectively. Diurnal variability in occupancy was lower during transdermal patch treatment than during tablet treatment. Blonanserin transdermal patches were well tolerated with no major safety concerns. CONCLUSIONS Blonanserin patches (40/80 mg/d) have lower diurnal variability in occupancy than blonanserin tablets (8/16 mg/d), and patches at doses of 40 mg/d and 80 mg/d appear to be a suitable alternative for blonanserin tablets at doses of 8 mg/d and 16 mg/d, respectively. Blonanserin patches represent a potential new treatment option for patients with schizophrenia. TRIAL REGISTRY JAPIC Clinical Trials Information registry (www.clinicaltrials.jp; JapicCTI-No: JapicCTI-121914).
Collapse
Affiliation(s)
- Hironori Nishibe
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan,Correspondence: Hironori Nishibe, MS, Sumitomo Dainippon Pharma Co., Ltd., 13-1, Kyobashi 1-chome, Chuo-ku, Tokyo 104–8356, Japan ()
| | - Amane Tateno
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | | | - WooChan Kim
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Hiroyoshi Kakuyama
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
18
|
Kim JS, Lee HJ, Lee S, Lee HS, Jeong YJ, Son Y, Kim JM, Lee YJ, Park MH. Conductive Hearing Loss Aggravates Memory Decline in Alzheimer Model Mice. Front Neurosci 2020; 14:843. [PMID: 32903751 PMCID: PMC7438902 DOI: 10.3389/fnins.2020.00843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022] Open
Abstract
The study of cognitive impairment associated with hearing loss has recently garnered considerable interest. Epidemiological data have demonstrated that hearing loss is a risk factor for cognitive decline as a result of aging. However, no previous study has examined the effect of hearing loss in patients with cognitive problems such as Alzheimer’s disease. Therefore, we investigated the effect of conductive hearing loss in an Alzheimer’s mouse model. Positron emission tomography (PET) and magnetic resonance imaging (MRI) were used to evaluate changes in glucose metabolism and gray matter concentrations in the 5xFAD Alzheimer’s Disease (AD) transgenic mouse model with and without conductive hearing loss (HL). Conductive hearing loss was induced using chronic perforation of the tympanic membrane. Behavioral data from the Y-maze and passive avoidance tests revealed greater memory deficits in the AD with HL (AD-HL) group than in the AD group. Following induction of hearing loss, lower cerebral glucose metabolism in the frontal association cortex was observed in the AD-HL group than in the AD group. Although lower glucose metabolism in the hippocampus and cerebellum was found in the AD-HL group than in the AD group at 3 months, the gray matter concentrations in these regions were not significantly different between the groups. Furthermore, the gray matter concentrations in the simple lobule, cingulate/retrosplenial cortex, substantia nigra, retrosigmoid nucleus, medial geniculate nucleus, and anterior pretectal nucleus at 7 months were significantly lower in the AD-HL group than in the AD group. Taken together, these results indicate that even partial hearing loss can aggravate memory impairment in Alzheimer’s disease.
Collapse
Affiliation(s)
- Jin Su Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Radiological and Medico-Oncological Sciences, University of Science and Technology, Seoul, South Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Seonhwa Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Bio-Convergence Engineering, Korea University, Seoul, South Korea
| | - Ho Sun Lee
- Department of Otorhinolaryngology, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, Seoul, South Korea.,Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Ye Ji Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Jung Min Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, South Korea
| | - Yong Jin Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Min-Hyun Park
- Department of Otorhinolaryngology, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, Seoul, South Korea.,Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Hill JR, Shao X, Massey NL, Stauff J, Sherman PS, Robertson AAB, Scott PJH. Synthesis and evaluation of NLRP3-inhibitory sulfonylurea [ 11C]MCC950 in healthy animals. Bioorg Med Chem Lett 2020; 30:127186. [PMID: 32312583 DOI: 10.1016/j.bmcl.2020.127186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023]
Abstract
The diaryl sulfonylurea MCC950/CRID3 is a potent NLRP3 inhibitor (IC50 = 8 nM) and, in animal models, MCC950 protects against numerous NLRP3-related neurodegenerative disorders. To evaluate the brain uptake and investigate target engagement of MCC950, we synthesised [11C-urea]MCC950 via carrier added [11C]CO2 fixation chemistry (activity yield = 237 MBq; radiochemical purity >99%; molar activity = 7 GBq/µmol; radiochemical yield (decay-corrected from [11C]CO2) = 1.1%; synthesis time from end-of-bombardment = 31 min; radiochemically stable for >1 h). Despite preclinical efficacy in neurodegeneration studies, preclinical positron emission tomography (PET) imaging studies in mouse, rat and rhesus monkey revealed poor brain uptake of low molar activity [11C]MCC950 and rapid washout. In silico prediction tools suggest efflux transporter liabilities for MCC950 at microdoses, and this information should be taken into account when developing next generation NLRP3 inhibitors and/or PET radiotracers.
Collapse
Affiliation(s)
- James R Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas L Massey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillip S Sherman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Avril A B Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
21
|
Kath JE, Baranczak A. Target engagement approaches for pharmacological evaluation in animal models. Chem Commun (Camb) 2019; 55:9241-9250. [PMID: 31328738 DOI: 10.1039/c9cc02824b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of chemical biology has introduced several approaches, typically using chemical probes, to measure the direct binding interaction of a small molecule with its biological target in cells. The use of these direct target engagement assays in pharmaceutical development can support mechanism of action hypothesis testing, rank ordering of compounds, and iterative improvements of chemical matter. This Feature Article highlights a newer application of these approaches: the quantification of target engagement in animal models to support late stage preclinical development and the nomination of a drug candidate to clinical trials. Broadly speaking, these efforts can be divided between compounds that covalently and reversibly interact with protein targets; recent examples for both categories are discussed for a range of targets, along with their limitations. New, promising technologies are also highlighted, in addition to the application of target engagement determination to new therapeutic modalities.
Collapse
Affiliation(s)
- James E Kath
- Drug Discovery Science and Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, USA.
| | | |
Collapse
|
22
|
Florian P, Flechsenhar KR, Bartnik E, Ding‐Pfennigdorff D, Herrmann M, Bryce PJ, Nestle FO. Translational drug discovery and development with the use of tissue‐relevant biomarkers: Towards more physiological relevance and better prediction of clinical efficacy. Exp Dermatol 2019; 29:4-14. [DOI: 10.1111/exd.13942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Florian
- Department of Type 1/17 Immunology and Arthritis Sanofi Frankfurt Germany
| | | | - Eckart Bartnik
- Department of Type 1/17 Immunology and Arthritis Sanofi Frankfurt Germany
| | | | - Matthias Herrmann
- Department of Type 1/17 Immunology and Arthritis Sanofi Frankfurt Germany
| | - Paul J. Bryce
- Department of Type 2 Inflammation and Fibrosis Sanofi Cambridge Massachusetts
| | - Frank O. Nestle
- Global Head of Immunology Therapeutic Research Area Sanofi Cambridge Massachusetts
| |
Collapse
|
23
|
Nicolas JM, de Lange ECM. Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity. AAPS JOURNAL 2019; 21:67. [PMID: 31140038 DOI: 10.1208/s12248-019-0340-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Available data on human brain P-glycoprotein ontogeny during infancy and childhood are limited. This review discusses the current body of data relating to maturation of human brain P-glycoprotein including transporter expression levels in post-mortem human brain samples, in vivo transporter activity using probe substrates, surrogate marker endpoints, and extrapolations from animal models. Overall, the data tend to confirm that human brain P-glycoprotein activity keeps developing after birth, although with a developmental time frame that remains unclear. This knowledge gap is a concern given the critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of the pediatric population. Future research could include the measurement of brain P-glycoprotein activity across age groups using positron emission tomography or central pharmacodynamic responses. For now, caution is advised when extrapolating adult data to children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous system activity.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- Quantitative Pharmacology DMPK Department, UCB BioPharma, Chemin du Foriest, 1420, Braine L'Alleud, Belgium.
| | - Elizabeth C M de Lange
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
24
|
Prevet H, Collins I. Labelled chemical probes for demonstrating direct target engagement in living systems. Future Med Chem 2019; 11:1195-1224. [PMID: 31280668 DOI: 10.4155/fmc-2018-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Demonstrating target engagement in living systems can help drive successful drug discovery. Target engagement and occupancy studies in cells confirm direct binding of a ligand to its intended target protein and provide the binding affinity. Combined with biomarkers to measure the functional consequences of target engagement, these experiments can increase confidence in the relationship between in vitro pharmacology and observed biological effects. In this review, we focus on chemically and radioactively labelled probes as key reagents for performing such experiments. Using recent examples, we examine how the labelled probes have been employed in combination with unlabelled ligands to quantify target engagement in cells and in animals. Finally, we consider future developments of this emerging methodology.
Collapse
Affiliation(s)
- Hugues Prevet
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK
| |
Collapse
|
25
|
Stadulytė A, Alcaide-Corral CJ, Walton T, Lucatelli C, Tavares AAS. Analysis of PK11195 concentrations in rodent whole blood and tissue samples by rapid and reproducible chromatographic method to support target-occupancy PET studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:33-39. [PMID: 31005772 PMCID: PMC6522057 DOI: 10.1016/j.jchromb.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
In Positron Emission Tomography (PET) research, it is important to assess not only pharmacokinetics of a radiotracer in vivo, but also of the drugs used in blocking/displacement PET studies. Typically, pharmacokinetic/pharmacodynamic (PK/PD) analyses of drugs used in rodent PET studies are based on population average pharmacokinetic profiles of the drugs due to limited blood volume withdrawal while simultaneously maintaining physiological homeostasis. This likely results in bias of PET data quantification, including unknown bias of target occupancy (TO) measurements. This study aimed to develop a High Performance Liquid Chromatography (HPLC) method for PK/PD quantification of drugs used in preclinical rodent PET research, specifically the translocator 18 kDa protein (TSPO) selective drug, PK11195, that used sub-millilitre blood volumes. The lowest detection limit for the proposed HPLC method ranged between 7.5 and 10 ng/mL depending on the method used to calculate the limit of detection, and the measured average relative standard deviation for intermediate precision was equal to 17.2%. Most importantly, we were able to demonstrate a significant difference between calculated PK11195 concentrations at 0.5, 1, 2, 3, 5, 15 and 30 min post-administration and individually measured whole blood levels (significance level range from p < 0.05 to p < 0.001; one-way ANOVA, Dunnet's post hoc test, p < 0.05). The HPLC method developed here uses sub-millilitre sample volumes to reproducibly assess PK/PD of PK11195 in rodent blood. This study highlights the importance of individually measured PK/PD drug concentrations when quantifying the TO from blocking/displacement rodent PET experiments.
Collapse
Affiliation(s)
- Agnė Stadulytė
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK.
| | - Carlos José Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| | - Tashfeen Walton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Christophe Lucatelli
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Adriana Alexandre S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| |
Collapse
|
26
|
Franco Machado J, Silva RD, Melo R, G Correia JD. Less Exploited GPCRs in Precision Medicine: Targets for Molecular Imaging and Theranostics. Molecules 2018; 24:E49. [PMID: 30583594 PMCID: PMC6337414 DOI: 10.3390/molecules24010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Precision medicine relies on individually tailored therapeutic intervention taking into account individual variability. It is strongly dependent on the availability of target-specific drugs and/or imaging agents that recognize molecular targets and patient-specific disease mechanisms. The most sensitive molecular imaging modalities, Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), rely on the interaction between an imaging radioprobe and a target. Moreover, the use of target-specific molecular tools for both diagnostics and therapy, theranostic agents, represent an established methodology in nuclear medicine that is assuming an increasingly important role in precision medicine. The design of innovative imaging and/or theranostic agents is key for further accomplishments in the field. G-protein-coupled receptors (GPCRs), apart from being highly relevant drug targets, have also been largely exploited as molecular targets for non-invasive imaging and/or systemic radiotherapy of various diseases. Herein, we will discuss recent efforts towards the development of innovative imaging and/or theranostic agents targeting selected emergent GPCRs, namely the Frizzled receptor (FZD), Ghrelin receptor (GHSR-1a), G protein-coupled estrogen receptor (GPER), and Sphingosine-1-phosphate receptor (S1PR). The pharmacological and clinical relevance will be highlighted, giving particular attention to the studies on the synthesis and characterization of targeted molecular imaging agents, biological evaluation, and potential clinical applications in oncology and non-oncology diseases. Whenever relevant, supporting computational studies will be also discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rúben D Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
27
|
Development and optimization of a novel automated loop method for production of [ 11C]nicotine. Appl Radiat Isot 2018; 140:76-82. [PMID: 29957537 DOI: 10.1016/j.apradiso.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
A novel, rapid, and automated loop method for the synthesis of [11C]nicotine was developed and optimized. The method involves, a reaction of the precursor, (+) nornicotine or (-) nornicotine, with a gas-phase produced [11C]CH3I in an 800 µL loop at 75 °C for 5 min followed by a semi-preparatory Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) purification. The optimized synthesis and purification process was complete in < 30 min and produced [11C]nicotine with > 99.9% Radiochemical Purity (RCP), no [11C]CH3I, no (+) nornicotine, 105 mCi/µmole specific activity, 7.0 - 7.2 pH, and 16.6% ethanol. The current method can be optimized, to reduce the ethanol content (<10%), and can be translated to a cGMP production of [11C]nicotine for human clinical trials.
Collapse
|
28
|
Kumar K, Ghosh A. 18F-AlF Labeled Peptide and Protein Conjugates as Positron Emission Tomography Imaging Pharmaceuticals. Bioconjug Chem 2018; 29:953-975. [PMID: 29463084 DOI: 10.1021/acs.bioconjchem.7b00817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The clinical applications of positron emission tomography (PET) imaging pharmaceuticals have increased tremendously over the past several years since the approval of 18fluorine-fluorodeoxyglucose (18F-FDG) by the Food and Drug Administration (FDA). Numerous 18F-labeled target-specific potential imaging pharmaceuticals, based on small and large molecules, have been evaluated in preclinical and clinical settings. 18F-labeling of organic moieties involves the introduction of the radioisotope by C-18F bond formation via a nucleophilic or an electrophilic substitution reaction. However, biomolecules, such as peptides, proteins, and oligonucleotides, cannot be radiolabeled via a C-18F bond formation as these reactions involve harsh conditions, including organic solvents, high temperature, and nonphysiological conditions. Several approaches, including 18F-labeled prosthetic groups, silicon, boron, and aluminum fluoride acceptor chemistry, and click chemistry have been developed, in the past, for 18F labeling of biomolecules. Linear and macrocyclic polyaminocarboxylates and their analogs and derivatives form thermodynamically stable and kinetically inert aluminum chelates. Hence, macrocyclic polyaminocarboxylates have been used for conjugation with biomolecules, such as folate, peptides, affibodies, and protein fragments, followed by 18F-AlF chelation, and evaluation of their targeting abilities in preclinical and clinical environments. The goal of this report is to provide an overview of the 18F radiochemistry and 18F-labeling methodologies for small molecules and target-specific biomolecules, a comprehensive review of coordination chemistry of Al3+, 18F-AlF labeling of peptide and protein conjugates, and evaluation of 18F-labeled biomolecule conjugates as potential imaging pharmaceuticals.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| | - Arijit Ghosh
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| |
Collapse
|
29
|
Krishnan HS, Ma L, Vasdev N, Liang SH. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography. Chemistry 2017; 23:15553-15577. [PMID: 28704575 PMCID: PMC5675832 DOI: 10.1002/chem.201701581] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted.
Collapse
Affiliation(s)
- Hema S. Krishnan
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Longle Ma
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
30
|
Ishii T, Okai T, Iwatani-Yoshihara M, Mochizuki M, Unno S, Kuno M, Yoshikawa M, Shibata S, Nakakariya M, Yogo T, Kawamoto T. CETSA quantitatively verifies in vivo target engagement of novel RIPK1 inhibitors in various biospecimens. Sci Rep 2017; 7:13000. [PMID: 29026104 PMCID: PMC5638916 DOI: 10.1038/s41598-017-12513-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
The proof of target engagement (TE) is a key element for evaluating potential investment in drug development. The cellular thermal shift assay (CETSA) is expected to facilitate direct measurement of intracellular TE at all stages of drug development. However, there have been no reports of applying this technology to comprehensive animal and clinical studies. This report demonstrates that CETSA can not only quantitatively evaluate the drug-TE in mouse peripheral blood, but also confirm TE in animal tissues exemplified by using the receptor interacting protein 1 kinase (RIPK1) lead compound we have developed. Our established semi-automated system allows evaluation of the structure-activity relationship using native RIPK1 in culture cell lines, and also enables estimation of drug occupancy ratio in mouse peripheral blood mononuclear cells. Moreover, optimized tissue homogenisation enables monitoring of the in vivo drug-TE in spleen and brain. Our results indicate that CETSA methodology will provide an efficient tool for preclinical and clinical drug development.
Collapse
Affiliation(s)
- Tsuyoshi Ishii
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Takuro Okai
- Immunology Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Misa Iwatani-Yoshihara
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Manabu Mochizuki
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Satoko Unno
- Immunology Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masako Kuno
- Immunology Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masato Yoshikawa
- Immunology Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sachio Shibata
- Drug Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masanori Nakakariya
- Drug Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takatoshi Yogo
- Immunology Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tomohiro Kawamoto
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
31
|
Taddei C, Bongarzone S, Gee AD. Instantaneous Conversion of [ 11 C]CO 2 to [ 11 C]CO via Fluoride-Activated Disilane Species. Chemistry 2017; 23:7682-7685. [PMID: 28419627 PMCID: PMC5488231 DOI: 10.1002/chem.201701661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/03/2023]
Abstract
The development of a fast and novel methodology to generate carbon-11 carbon monoxide ([11 C]CO) from cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) mediated by a fluoride-activated disilane species is described. This methodology allows up to 74 % conversion of [11 C]CO2 to [11 C]CO using commercially available reagents, readily available laboratory equipment and mild reaction conditions (room temperature). As proof of utility, radiochemically pure [carbonyl-11 C]N-benzylbenzamide was successfully synthesized from produced [11 C]CO in up to 74 % radiochemical yield (RCY) and >99 % radiochemical purity (RCP) in ≤10 min from end of [11 C]CO2 delivery.
Collapse
Affiliation(s)
- Carlotta Taddei
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| | - Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| | - Antony D. Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth WingSt. Thomas' HospitalLondonLambeth Palace RoadSE1 7EHUnited Kingdom
| |
Collapse
|
32
|
Abstract
In the current issue of ACS Chemical Neuroscience, Kim et al. report on the early characterization of 4-(3-[18F] fluorophenethoxy)pyrimidine (18F-FPP) as a new positron emission tomography radiotracer for imaging brain 5-HT2C receptors ( Kim, J., et al. ( 2017 ) A potential PET radiotracer for the 5-HT2c receptor: Synthesis and in vivo evaluation of 4-(3-[18F]Fluorophenethoxy)pyrimidine. ACS Chem. Neurosci. , DOI 10.1021/acschemneuro.6b00445 ). At the present time, the tracer properties of 18F-FPP have only been reported in rats. If 18F-FPP is indeed shown to be suitable as a 5-HT2C receptor PET tracer in humans, it will very likely have an important impact both in the development of any new chemical entities (NCEs) targeted to 5-HT2C receptors, as well as a tool to advance understanding of 5-HT2C receptor function both in normal and abnormal brain states.
Collapse
Affiliation(s)
- Guy A. Higgins
- InterVivo Solutions Inc., 120 Carlton Street, Toronto, ON M5A
4K2, Canada
- Department of Pharmacology & Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
33
|
Yahata M, Chiba K, Watanabe T, Sugiyama Y. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters. J Pharm Sci 2017; 106:2345-2356. [PMID: 28501470 DOI: 10.1016/j.xphs.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro Ki values for human SERT and plasma concentrations of unbound drug (Cu,plasma), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro Ki values were compared with the means of in vivo Ki values (Ki,u,plasma) which were calculated as Cu,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro Ki values for 7 drugs were comparable to their in vivo Ki,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro Ki values and Cu,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments.
Collapse
Affiliation(s)
- Masahiro Yahata
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan.
| | - Koji Chiba
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Takao Watanabe
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan
| |
Collapse
|
34
|
Target Engagement Measures in Preclinical Drug Discovery: Theory, Methods, and Case Studies. TRANSLATING MOLECULES INTO MEDICINES 2017. [DOI: 10.1007/978-3-319-50042-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Dubach JM, Kim E, Yang K, Cuccarese M, Giedt RJ, Meimetis LG, Vinegoni C, Weissleder R. Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol 2016; 13:168-173. [PMID: 27918558 DOI: 10.1038/nchembio.2248] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/22/2016] [Indexed: 12/24/2022]
Abstract
Quantitation of drug target engagement in single cells has proven to be difficult, often leaving unanswered questions in the drug development process. We found that intracellular target engagement of unlabeled new therapeutics can be quantitated using polarized microscopy combined with competitive binding of matched fluorescent companion imaging probes. We quantitated the dynamics of target engagement of covalent BTK inhibitors, as well as reversible PARP inhibitors, in populations of single cells using a single companion imaging probe for each target. We then determined average in vivo tumor concentrations and found marked population heterogeneity following systemic delivery, revealing single cells with low target occupancy at high average target engagement in vivo.
Collapse
Affiliation(s)
- J Matthew Dubach
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunha Kim
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine Yang
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Cuccarese
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Randy J Giedt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Labros G Meimetis
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Abstract
The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man.
Collapse
Affiliation(s)
- Roger N Gunn
- Imanova Ltd, London, United Kingdom; Division of Brain Sciences, Imperial College London, London, United Kingdom; Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
| | - Eugenii A Rabiner
- Imanova Ltd, London, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
37
|
Rutkowska A, Thomson DW, Vappiani J, Werner T, Mueller KM, Dittus L, Krause J, Muelbaier M, Bergamini G, Bantscheff M. A Modular Probe Strategy for Drug Localization, Target Identification and Target Occupancy Measurement on Single Cell Level. ACS Chem Biol 2016; 11:2541-50. [PMID: 27384741 DOI: 10.1021/acschembio.6b00346] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Late stage failures of candidate drug molecules are frequently caused by off-target effects or inefficient target engagement in vivo. In order to address these fundamental challenges in drug discovery, we developed a modular probe strategy based on bioorthogonal chemistry that enables the attachment of multiple reporters to the same probe in cell extracts and live cells. In a systematic evaluation, we identified the inverse electron demand Diels-Alder reaction between trans-cyclooctene labeled probe molecules and tetrazine-tagged reporters to be the most efficient bioorthogonal reaction for this strategy. Bioorthogonal biotinylation of the probe allows the identification of drug targets in a chemoproteomics competition binding assay using quantitative mass spectrometry. Attachment of a fluorescent reporter enables monitoring of spatial localization of probes as well as drug-target colocalization studies. Finally, direct target occupancy of unlabeled drugs can be determined at single cell resolution by competitive binding with fluorescently labeled probe molecules. The feasibility of the modular probe strategy is demonstrated with noncovalent PARP inhibitors.
Collapse
Affiliation(s)
- Anna Rutkowska
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Douglas W. Thomson
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Johanna Vappiani
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Thilo Werner
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Katrin M. Mueller
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Lars Dittus
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Jana Krause
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Marcel Muelbaier
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Giovanna Bergamini
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| | - Marcus Bantscheff
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse
1, D- 69117 Heidelberg, Germany
| |
Collapse
|
38
|
Sawant-Basak A, Chen L, Shaffer CL, Palumbo D, Schmidt A, Tseng E, Spracklin DK, Gallezot JD, Labaree D, Nabulsi N, Huang Y, Carson RE, McCarthy T. Quantitative projection of human brain penetration of the H3 antagonist PF-03654746 by integrating rat-derived brain partitioning and PET receptor occupancy. Xenobiotica 2016; 47:119-126. [DOI: 10.3109/00498254.2016.1166531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aarti Sawant-Basak
- Departments of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Cambridge, MA, USA,
| | - Laigao Chen
- Clinical & Translational Imaging, Pfizer Inc., Cambridge, MA, USA,
| | | | - Donna Palumbo
- Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA, and
| | - Anne Schmidt
- Departments of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Cambridge, MA, USA,
| | - Elaine Tseng
- Departments of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Cambridge, MA, USA,
| | - Douglas K. Spracklin
- Departments of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Cambridge, MA, USA,
| | | | - David Labaree
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Richard E. Carson
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Timothy McCarthy
- Clinical & Translational Imaging, Pfizer Inc., Cambridge, MA, USA,
| |
Collapse
|
39
|
Koga K, Yoshinaga M, Uematsu Y, Nagai Y, Miyakoshi N, Shimoda Y, Fujinaga M, Minamimoto T, Zhang MR, Higuchi M, Ohtake N, Suhara T, Chaki S. TASP0434299: A Novel Pyridopyrimidin-4-One Derivative as a Radioligand for Vasopressin V1B Receptor. J Pharmacol Exp Ther 2016; 357:495-508. [PMID: 27029585 DOI: 10.1124/jpet.116.232942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
A novel pyridopyrimidin-4-one derivative, N-tert-butyl-2-[2-(3-methoxyphenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP0434299), was characterized as a radioligand candidate for arginine vasopressin 1B (V1B) receptor. TASP0434299 exhibited high binding affinities for human and rat V1B receptors with IC50 values of 0.526 and 0.641 nM, respectively, and potent antagonistic activity at the human V1B receptor with an IC50 value of 0.639 nM without apparent binding affinities for other molecules at 1 μM. [(3)H]TASP0434299 bound to membranes expressing the human V1B receptor as well as those prepared from the rat anterior pituitary in a saturable manner. The binding of [(3)H]TASP0434299 to the membranes was dose-dependently displaced by several ligands for the V1B receptor. In addition, the intravenous administration of [(3)H]TASP0434299 to rats produced a saturable radioactive accumulation in the anterior pituitary where the V1B receptor is enriched, and it was dose-dependently blocked by the oral administration of 2-[2-(3-chloro-4-fluorophenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]-N-isopropylacetamide hydrochloride, a V1B receptor antagonist, indicating that [(3)H]TASP0434299 can be used as an in vivo radiotracer to measure the occupancy of the V1B receptor. Finally, the intravenous administration of [(11)C]TASP0434299 provided positron emission tomographic images of the V1B receptor in the pituitary in an anesthetized monkey, and the signal was blocked by pretreatment with an excess of unlabeled TASP0434299. These results indicate that radiolabeled TASP0434299 is the first radioligand to be capable of quantifying the V1B receptor selectively in both in vitro and in vivo studies and will provide a clinical biomarker for determining the occupancy of the V1B receptor during drug development or for monitoring the levels of the V1B receptor in diseased conditions.
Collapse
Affiliation(s)
- Kazumi Koga
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Mitsukane Yoshinaga
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Yoshikatsu Uematsu
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Yuji Nagai
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Naoki Miyakoshi
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Yoko Shimoda
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Masayuki Fujinaga
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Takafumi Minamimoto
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Ming-Rong Zhang
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Makoto Higuchi
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Norikazu Ohtake
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Tetsuya Suhara
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Shigeyuki Chaki
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| |
Collapse
|
40
|
Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J. Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology (Bethesda) 2015; 29:421-36. [PMID: 25362636 DOI: 10.1152/physiol.00067.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland; Department of Cardiology, Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Dirk J Duncker
- Department of Cardiology, Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland; and
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
41
|
Durham TB, Blanco MJ. Target Engagement in Lead Generation. Bioorg Med Chem Lett 2015; 25:998-1008. [DOI: 10.1016/j.bmcl.2014.12.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/15/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
|
42
|
Féger J, Hirsch E. In search of innovative therapeutics for neuropsychiatric disorders: The case of neurodegenerative diseases. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 73:3-12. [DOI: 10.1016/j.pharma.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
43
|
Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 2014; 26:1-18. [PMID: 25473848 PMCID: PMC4306521 DOI: 10.1021/bc500475e] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of (18)F into molecules of interest. The significant increase in (18)F radiotracers for PET imaging accentuates the need for simple and efficient (18)F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for (18)F labeling of small molecules and biomolecules.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
44
|
Abstract
![]()
Decades after its discovery, positron emission tomography (PET)
remains the premier tool for imaging neurochemistry in living humans.
Technological improvements in radiolabeling methods, camera design,
and image analysis have kept PET in the forefront. In addition, the
use of PET imaging has expanded because researchers have developed
new radiotracers that visualize receptors, transporters, enzymes,
and other molecular targets within the human brain. However,
of the thousands of proteins in the central nervous system
(CNS), researchers have successfully imaged fewer than 40 human proteins.
To address the critical need for new radiotracers, this Account expounds
on the decisions, strategies, and pitfalls of CNS radiotracer development
based on our current experience in this area. We discuss the
five key components of radiotracer development for
human imaging: choosing a biomedical question, selection of a biological
target, design of the radiotracer chemical structure, evaluation of
candidate radiotracers, and analysis of preclinical imaging. It is
particularly important to analyze the market of scientists or companies
who might use a new radiotracer and carefully select a relevant biomedical
question(s) for that audience. In the selection of a specific biological
target, we emphasize how target localization and identity can constrain
this process and discuss the optimal target density and affinity ratios
needed for binding-based radiotracers. In addition, we discuss various
PET test–retest variability requirements for monitoring changes
in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput,
modular syntheses have proved valuable, and these processes provide
compounds with sites for late-stage radioisotope installation. As
a result, researchers can manage the time constraints associated with
the limited half-lives of isotopes. In order to evaluate brain uptake,
a number of methods are available to predict bioavailability, blood–brain
barrier (BBB) permeability, and the associated issues of nonspecific
binding and metabolic stability. To evaluate the synthesized chemical
library, researchers need to consider high-throughput affinity assays,
the analysis of specific binding, and the importance of fast binding
kinetics. Finally, we describe how we initially assess preclinical
radiotracer imaging, using brain uptake, specific binding, and preliminary
kinetic analysis to identify promising radiotracers that may be useful
for human brain imaging. Although we discuss these five design components
separately and linearly in this Account, in practice we develop new
PET-based radiotracers using these design components nonlinearly and
iteratively to develop new compounds in the most efficient way possible.
Collapse
Affiliation(s)
- Genevieve C. Van de Bittner
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Emily L. Ricq
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
45
|
Abstract
Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative diseases have a significant impact on clinical diagnosis and patient care. The examples of Parkinson's Disease (PD) and Alzheimer's Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, i.e. radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays.
Collapse
Affiliation(s)
- Lin Zhu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| | | | | |
Collapse
|
46
|
Janero DR. Medications development for substance-use disorders: contextual influences (dis)incentivizing pharmaceutical-industry positioning. Expert Opin Drug Discov 2014; 9:1265-79. [PMID: 25162124 DOI: 10.1517/17460441.2014.951631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The significant contribution of substance-use disorders (SUDs) to the global-disease burden and associated unmet medical needs has not engendered a commensurate level of pharma-industry research and development (R&D) for novel SUD therapeutics invention. Analysis of contextual factors shaping this position suggests potential routes toward incentivizing R&D commitment for that purpose. AREAS COVERED This article considers multiple primary factors that have consorted to disincentivize pharma industry's operating in the SUD space: ill-understood pathology; variegated treatments and patient profiles; involved clinical trials; and - with particular reference to SUDs-negative cultural/business stigmas and shallow commercial precedent. Industry incentivization for SUD drug innovation requires progress on several fronts, including: translational experimental data and systems; personalized, holistic SUD treatment approaches; interactions among pharma, nonindustry constituencies, and the medical profession with vested interests in countering negative stereotypes and expanding SUD treatment options; and public-private alliances focused on improving SUD pharmacotherapy. EXPERT OPINION Given the well-entrenched business stance whereby the prospect of future profits in major markets largely determines drug-company R&D investment trajectory, strategic initiatives offering substantial reductions in the risks and opportunity (i.e., time and money) costs associated with SUD drug discovery are likely to be the most potent drivers for encouraging mainstream industry positioning in this therapeutic area. Such initiatives could originate from front-loaded R&D operational and back-loaded patent, regulatory, marketing and health-care policy reforms. These may be too involved and protracted for the turbulent pharmaceutical industry to entertain amid its recent retrenchment from psychiatric/CNS diseases and intense pressures to increase productivity and shareholder value.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, Health Sciences Entrepreneurs , 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000 , USA +1 617 373 2208 ; +1 617 373 7493 ;
| |
Collapse
|
47
|
Hicks JW, Parkes J, Tong J, Houle S, Vasdev N, Wilson AA. Radiosynthesis and ex vivo evaluation of [(11)C-carbonyl]carbamate- and urea-based monoacylglycerol lipase inhibitors. Nucl Med Biol 2014; 41:688-94. [PMID: 24969632 DOI: 10.1016/j.nucmedbio.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are the two primary enzymes that regulate the tone of endocannabinoid signaling. Although new PET radiotracers have been discovered for imaging FAAH in vivo, no such radiotracer exists for imaging MAGL. Here we report the radiosynthesis of five candidate MAGL radiotracers and their ex vivo evaluations in mice and rats. METHODS Candidate carbamate and urea MAGL inhibitors were radiolabeled at the carbonyl position by [(11)C]CO2 fixation. Radiotracers were administered (tail-vein injection) to rodents and brain uptake of radioactivity measured at early and late time points ex vivo. Specificity of uptake was explored by pretreatment with unlabeled inhibitors (2 mg/kg, ip) 30 min prior to radiotracer administration. RESULTS All five candidate MAGL radiotracers were prepared in high specific activity (>65 GBq/μmol) and radiochemical purity (>98%). Moderate brain uptake (0.2-0.8 SUV) was observed for each candidate while pretreatment did not reduce uptake for four of the five tested. For two candidates ([(11)C]12 and [(11)C]14), high retention of radioactivity was observed in the blood (ca. 10 and 4 SUV at 40 min) which was blocked by pretreatment with unlabeled inhibitors. The most promising candidate, [(11)C]18, demonstrated moderate brain uptake (ca. 0.8 SUV) which showed circa 50% blockade by pretreatment with unlabeled 18. CONCLUSION One putative and four reported potent and selective MAGL inhibitors have been radiolabeled via [(11)C]CO2 fixation as radiotracers for this enzyme. Despite the promising in vitro pharmacological profile, none of the five candidate radiotracers exhibited in vivo behavior suitable for PET neuroimaging.
Collapse
Affiliation(s)
- Justin W Hicks
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8; Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | - Jun Parkes
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Junchao Tong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Neil Vasdev
- Department of Radiology, Harvard Medical School and Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA, 02114
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8; Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|