1
|
Bouteldja A, Marceau L, Srivastava L, Cermakian N. Early-Life Ventral Hippocampal Lesion and Circadian Disruption Result in Altered Behavior in Adult Mice in a Sex-Dependent Manner. Eur J Neurosci 2025; 61:e70134. [PMID: 40356274 PMCID: PMC12069966 DOI: 10.1111/ejn.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
Schizophrenia is believed to arise because of the interaction of early abnormal neurodevelopment with environmental insults during key developmental stages later in life. Furthermore, disrupted circadian rhythms are reported in patients, and circadian disruption is associated with increased symptom severity, hinting at its role as a risk factor. Using the neonatal ventral hippocampal lesion mouse model, we aimed to assess the interaction between disrupted ventral hippocampal development with circadian disruption during adolescence in affecting behavior in male and female C57BL/6N mice. After conducting a series of behavioral tests, we found that the neonatal ventral hippocampal lesion and chronic jet lag during adolescence synergistically led to increased anxiety-like behavior in males. In females, the lesion prevented increased social preference caused by chronic jet lag and led to increased anxiety-like behavior. Mice were then moved to running wheel cages to measure their locomotor activity rhythms. We found that the lesioned male mice exposed to chronic jet lag exhibited fragmented rhythms under constant darkness. Moreover, lesioned male and female mice, especially those exposed to chronic jet lag, had reduced activity counts under constant light. These findings highlight that the interaction of abnormal neurodevelopment in areas relevant to schizophrenia with circadian disruption during adolescence results in lasting behavioral changes in a sex-dependent manner in mice.
Collapse
Affiliation(s)
- Ahmed A. Bouteldja
- Douglas Mental Health University InstituteMontréalQuébecCanada
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuébecCanada
| | | | - Lalit K. Srivastava
- Douglas Mental Health University InstituteMontréalQuébecCanada
- Department of PsychiatryMcGill UniversityMontréalQuébecCanada
| | - Nicolas Cermakian
- Douglas Mental Health University InstituteMontréalQuébecCanada
- Department of PsychiatryMcGill UniversityMontréalQuébecCanada
| |
Collapse
|
2
|
Canonichesi J, Bellingacci L, Rivelli F, Tozzi A. Enhancing sleep quality in synucleinopathies through physical exercise. Front Cell Neurosci 2025; 19:1515922. [PMID: 39959465 PMCID: PMC11825755 DOI: 10.3389/fncel.2025.1515922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
During sleep, several crucial processes for brain homeostasis occur, including the rearrangement of synaptic connections, which is essential for memory formation and updating. Sleep also facilitates the removal of neurotoxic waste products, the accumulation of which plays a key role in neurodegeneration. Various neural components and environmental factors regulate and influence the physiological transition between wakefulness and sleep. Disruptions in this complex system form the basis of sleep disorders, as commonly observed in synucleinopathies. Synucleinopathies are neurodegenerative disorders characterized by abnormal build-up of α-synuclein protein aggregates in the brain. This accumulation in different brain regions leads to a spectrum of clinical manifestations, including hypokinesia, cognitive impairment, psychiatric symptoms, and neurovegetative disturbances. Sleep disorders are highly prevalent in individuals with synucleinopathies, and they not only affect the overall well-being of patients but also directly contribute to disease severity and progression. Therefore, it is crucial to develop effective therapeutic strategies to improve sleep quality in these patients. Adequate sleep is vital for brain health, and the role of synucleinopathies in disrupting sleep patterns must be taken into account. In this context, it is essential to explore the role of physical exercise as a potential non-pharmacological intervention to manage sleep disorders in individuals with synucleinopathies. The current evidence on the efficacy of exercise programs to enhance sleep quality in this patient population is discussed.
Collapse
Affiliation(s)
| | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Nyamugenda E, Rosensweig C, Allada R. Circadian Clocks, Daily Stress, and Neurodegenerative Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:355-374. [PMID: 39423424 DOI: 10.1146/annurev-pathmechdis-031521-033828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Disrupted circadian or 24-h rhythms are among the most common early findings in a wide range of neurodegenerative disorders. Once thought to be a mere consequence of the disease process, increasing evidence points toward a causal or contributory role of the circadian clock in neurodegenerative disease. Circadian clocks control many aspects of cellular biochemistry, including stress pathways implicated in neuronal survival and death. Given the dearth of disease-modifying therapies for these increasingly prevalent disorders, this understanding may lead to breakthroughs in the development of new treatments. In this review, we provide a background on circadian clocks and focus on some potential mechanisms that may be pivotal in neurodegeneration.
Collapse
Affiliation(s)
- Eugene Nyamugenda
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Ravi Allada
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
4
|
He S, Ru Q, Chen L, Xu G, Wu Y. Advances in animal models of Parkinson's disease. Brain Res Bull 2024; 215:111024. [PMID: 38969066 DOI: 10.1016/j.brainresbull.2024.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Parkinson's disease is a complex neurodegenerative disease characterized by progressive movement impairments. Predominant symptoms encompass resting tremor, bradykinesia, limb rigidity, and postural instability. In addition, it also includes a series of non-motor symptoms such as sleep disorders, hyposmia, gastrointestinal dysfunction, autonomic dysfunction and cognitive impairment. Pathologically, the disease manifests through dopaminergic neuronal loss and the presence of Lewy bodies. At present, no significant breakthrough has been achieved in clinical Parkinson's disease treatment. Exploring treatment modalities necessitate the establishment of scientifically sound animal models. In recent years, researchers have focused on replicating the symptoms of human Parkinson's disease, resulting in the establishment of various experimental animal models primarily through drugs and transgenic methods to mimic relevant pathologies and identify more effective treatments. This review examines traditional neurotoxin and transgenic animal models as well as α-synuclein pre-formed fibrils models, non-human primate models and non-mammalian specie models. Additionally, it introduces emerging models, including models based on optogenetics, induced pluripotent stem cells, and gene editing, aiming to provide a reference for the utilization of experimental animal models and clinical research for researchers in this field.
Collapse
Affiliation(s)
- Sui He
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
5
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Negm WA, Bahaa MM, Metawee ME, El-Saber Batiha G. Blunted Melatonin Circadian Rhythm in Parkinson's Disease: Express Bewilderment. Neurotox Res 2024; 42:38. [PMID: 39177895 DOI: 10.1007/s12640-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/17/2023] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, Taif, 21944, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mostafa E Metawee
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Histology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, P.O. Box 14132, AlBeheira, Damanhour, Egypt.
| |
Collapse
|
6
|
Favaro M, Mauri S, Bernardo G, Zordan MA, Mazzotta GM, Ziviani E. Usp14 down-regulation corrects sleep and circadian dysfunction of a Drosophila model of Parkinson's disease. Front Neurosci 2024; 18:1410139. [PMID: 39161651 PMCID: PMC11330830 DOI: 10.3389/fnins.2024.1410139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
PD is a complex, multifactorial neurodegenerative disease, which occurs sporadically in aged population, with some genetically linked cases. Patients develop a very obvious locomotor phenotype, with symptoms such as bradykinesia, resting tremor, muscular rigidity, and postural instability. At the cellular level, PD pathology is characterized by the presence of intracytoplasmic neurotoxic aggregates of misfolded proteins and dysfunctional organelles, resulting from failure in mechanisms of proteostasis. Nonmotor symptoms, such as constipation and olfactory deficits, are also very common in PD. They include alteration in the circadian clock, and defects in the sleep-wake cycle, which is controlled by the clock. These non-motor symptoms precede the onset of the motor symptoms by many years, offering a window of therapeutic intervention that could delay-or even prevent-the progression of the disease. The mechanistic link between aberrant circadian rhythms and neurodegeneration in PD is not fully understood, although proposed underlying mechanisms include alterations in protein homeostasis (proteostasis), which can impact protein levels of core components of the clock. Loss of proteostasis depends on the progressive pathological decline in the proteolytic activity of two major degradative systems, the ubiquitin-proteasome and the lysosome-autophagy systems, which is exacerbated in age-dependent neurodegenerative conditions like PD. Accordingly, it is known that promoting proteasome or autophagy activity increases lifespan, and rescues the pathological phenotype of animal models of neurodegeneration, presumably by enhancing the degradation of misfolded proteins and dysfunctional organelles, which are known to accumulate in these models, and to induce intracellular damage. We can enhance proteostasis by pharmacologically inhibiting or down-regulating Usp14, a proteasome-associated deubiquitinating enzyme (DUB). In a previous work, we showed that inhibition of Usp14 enhances the activity of the ubiquitin-proteasome system (UPS), autophagy and mitophagy, and abolishes motor symptoms of two well-established fly models of PD that accumulate dysfunctional mitochondria. In this work we extended the evidence on the protective effect of Usp14 down-regulation, and investigated the beneficial effect of down-regulating Usp14 in a Pink1 Drosophila model of PD that develop circadian and sleep dysfunction. We show that down-regulation of Usp14 ameliorates sleep disturbances and circadian defects that are associated to Pink1 KO flies.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Rathor P, Ch R. Metabolic Basis of Circadian Dysfunction in Parkinson's Disease. BIOLOGY 2023; 12:1294. [PMID: 37887004 PMCID: PMC10604297 DOI: 10.3390/biology12101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The management of PD is a challenging aspect for general physicians and neurologists. It is characterized by the progressive loss of dopaminergic neurons. Impaired α-synuclein secretion and dopamine release may cause mitochondrial dysfunction and perturb energy metabolism, subsequently altering the activity and survival of dopaminergic neurons, thus perpetuating the neurodegenerative process in PD. While the etiology of PD remains multifactorial, emerging research indicates a crucial role of circadian dysfunction in its pathogenesis. Researchers have revealed that circadian dysfunction and sleep disorders are common among PD subjects and disruption of circadian rhythms can increase the risk of PD. Hence, understanding the findings of circadian biology from translational research in PD is important for reducing the risk of neurodegeneration and for improving the quality of life. In this review, we discuss the intricate relationship between circadian dysfunction in cellular metabolism and PD by summarizing the evidence from animal models and human studies. Understanding the metabolic basis of circadian dysfunction in PD may shed light on novel therapeutic approaches to restore circadian rhythm, preserve dopaminergic function, and ameliorate disease progression. Further investigation into the complex interplay between circadian rhythm and PD pathogenesis is essential for the development of targeted therapies and interventions to alleviate the burden of this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Priya Rathor
- Metabolomics Lab, CSIR—Central Institute of Medicinal & Aromatic Plants, Lucknow 226015, India;
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
| | - Ratnasekhar Ch
- Metabolomics Lab, CSIR—Central Institute of Medicinal & Aromatic Plants, Lucknow 226015, India;
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
8
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
9
|
Samizadeh MA, Fallah H, Toomarisahzabi M, Rezaei F, Rahimi-Danesh M, Akhondzadeh S, Vaseghi S. Parkinson's Disease: A Narrative Review on Potential Molecular Mechanisms of Sleep Disturbances, REM Behavior Disorder, and Melatonin. Brain Sci 2023; 13:914. [PMID: 37371392 DOI: 10.3390/brainsci13060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. There is a wide range of sleep disturbances in patients with PD, such as insomnia and rapid eye movement (REM) sleep behavior disorder (or REM behavior disorder (RBD)). RBD is a sleep disorder in which a patient acts out his/her dreams and includes abnormal behaviors during the REM phase of sleep. On the other hand, melatonin is the principal hormone that is secreted by the pineal gland and significantly modulates the circadian clock and mood state. Furthermore, melatonin has a wide range of regulatory effects and is a safe treatment for sleep disturbances such as RBD in PD. However, the molecular mechanisms of melatonin involved in the treatment or control of RBD are unknown. In this study, we reviewed the pathophysiology of PD and sleep disturbances, including RBD. We also discussed the potential molecular mechanisms of melatonin involved in its therapeutic effect. It was concluded that disruption of crucial neurotransmitter systems that mediate sleep, including norepinephrine, serotonin, dopamine, and GABA, and important neurotransmitter systems that mediate the REM phase, including acetylcholine, serotonin, and norepinephrine, are significantly involved in the induction of sleep disturbances, including RBD in PD. It was also concluded that accumulation of α-synuclein in sleep-related brain regions can disrupt sleep processes and the circadian rhythm. We suggested that new treatment strategies for sleep disturbances in PD may focus on the modulation of α-synuclein aggregation or expression.
Collapse
Affiliation(s)
- Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Hamed Fallah
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Mohadeseh Toomarisahzabi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Fereshteh Rezaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran 13337159140, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| |
Collapse
|
10
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
11
|
Marano M, Rosati J, Magliozzi A, Casamassa A, Rappa A, Sergi G, Iannizzotto M, Yekutieli Z, Vescovi AL, Di Lazzaro V. Circadian profile, daytime activity, and the Parkinson's phenotype: A motion sensor pilot study with neurobiological underpinnings. Neurobiol Sleep Circadian Rhythms 2023; 14:100094. [PMID: 37025301 PMCID: PMC10070882 DOI: 10.1016/j.nbscr.2023.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Circadian rhythm impairment may play a role in Parkinson's disease (PD) pathophysiology. Recent literature associated circadian rhythm features to the risk of developing Parkinson and to its progression through stages. The association between the chronotype and the phenotype should be verified on a clinical and biological point of view. Herein we investigate the chronotype of a sample of 50 PD patients with the Morningness Eveningness Questionnaire and monitor their daily activity with a motion sensor embedded in a smartphone. Fibroblasts were collected from PD patients (n = 5) and from sex/age matched controls (n = 3) and tested for the circadian expression of clock genes (CLOCK, BMAL1, PER1, CRY1), and for cell morphology, proliferation, and death. Our results show an association between the chronotype and the PD phenotype. The most representative clinical chronotypes were "moderate morning" (56%), the "intermediate" (24%) and, in a minor part, the "definite morning" (16%). They differed for axial motor impairment, presence of motor fluctuations and quality of life (p < 0.05). Patients with visuospatial dysfunction and patients with a higher PIGD score had a blunted motor daily activity (p = 0.006 and p = 0.001, respectively), independently by the influence of age and other motor scores. Fibroblasts obtained by PD patients (n = 5) had an impaired BMAL1 cycle compared to controls (n = 3, p = 0.01). Moreover, a PD flat BMAL1 profile was associated with the lowest cell proliferation and the largest cell morphology. This study contributes to the growing literature on CR abnormalities in the pathophysiology of Parkinson's disease providing a link between the clinical and biological patient chronotype and the disease phenomenology.
Collapse
Affiliation(s)
- Massimo Marano
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
- Corresponding author. Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Roma, Italy.
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Magliozzi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Alessia Casamassa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Rappa
- Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriele Sergi
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | - Miriam Iannizzotto
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| | | | | | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy
| |
Collapse
|
12
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
13
|
Kim R, Nijhout HF, Reed MC. Mathematical insights into the role of dopamine signaling in circadian entrainment. Math Biosci 2023; 356:108956. [PMID: 36581152 DOI: 10.1016/j.mbs.2022.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The circadian clock in the mammalian brain comprises interlocked molecular feedback loops that have downstream effects on important physiological functions such as the sleep-wake cycle and hormone regulation. Experiments have shown that the circadian clock also modulates the synthesis and breakdown of the neurotransmitter dopamine. Imbalances in dopamine are linked to a host of neurological conditions including Parkinson's disease, attention-deficit/hyperactivity disorder, and mood disorders, and these conditions are often accompanied by circadian disruptions. We have previously created a mathematical model using nonlinear ordinary differential equations to describe the influences of the circadian clock on dopamine at the molecular level. Recent experiments suggest that dopamine reciprocally influences the circadian clock. Dopamine receptor D1 (DRD1) signaling has been shown to aid in the entrainment of the clock to the 24-hour light-dark cycle, but the underlying mechanisms are not well understood. In this paper, we use our mathematical model to support the experimental hypothesis that DRD1 signaling promotes circadian entrainment by modulating the clock's response to light. We model the effects of a phase advance or delay, as well as the therapeutic potential of a REV-ERB agonist. In addition to phase shifts, we study the influences of photoperiod, or day length, in the mathematical model, connect our findings with the experimental and clinical literature, and determine the parameter that affects the critical photoperiod that signals seasonal changes to physiology.
Collapse
Affiliation(s)
- Ruby Kim
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, 48109, MI, USA.
| | - H Frederik Nijhout
- Department of Biology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, 120 Science Drive, Durham, 27708, NC, USA
| |
Collapse
|
14
|
Fifel K, Yanagisawa M, Deboer T. Mechanisms of Sleep/Wake Regulation under Hypodopaminergic State: Insights from MitoPark Mouse Model of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203170. [PMID: 36515271 PMCID: PMC9929135 DOI: 10.1002/advs.202203170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Sleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating sleep problems are currently lacking. The pathophysiological mechanisms of sleep/wake alterations within a hypodopaminergic MitoPark mouse model of Parkinson's disease (PD) are investigated. MitoPark mice replicate most PD-related sleep alterations, including sleep fragmentation, hypersomnia, and daytime sleepiness. Surprisingly, these alterations are not accounted for by a dysfunction in the circadian or homeostatic regulatory processes of sleep, nor by acute masking effects of light or darkness. Rather, the sleep phenotype is linked with the impairment of instrumental arousal and sleep modulation by behavioral valence. These alterations correlate with changes in high-theta (8-11.5 Hz) electroencephalogram power density during motivationally-charged wakefulness. These results demonstrate that sleep/wake alterations induced by dopamine dysfunction are mediated by impaired modulation of sleep by motivational valence and provide translational insights into sleep problems associated with disorders linked to dopamine dysfunction.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
| | - Tom Deboer
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| |
Collapse
|
15
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
16
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
17
|
How Well Do Rodent Models of Parkinson's Disease Recapitulate Early Non-Motor Phenotypes? A Systematic Review. Biomedicines 2022; 10:biomedicines10123026. [PMID: 36551782 PMCID: PMC9775565 DOI: 10.3390/biomedicines10123026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.
Collapse
|
18
|
Mauri S, Favaro M, Bernardo G, Mazzotta GM, Ziviani E. Mitochondrial autophagy in the sleeping brain. Front Cell Dev Biol 2022; 10:956394. [PMID: 36092697 PMCID: PMC9449320 DOI: 10.3389/fcell.2022.956394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
A significant percentage of the mitochondrial mass is replaced on a daily basis via mechanisms of mitochondrial quality control. Through mitophagy (a selective type of autophagy that promotes mitochondrial proteostasis) cells keep a healthy pool of mitochondria, and prevent oxidative stress and inflammation. Furthermore, mitophagy helps adapting to the metabolic demand of the cells, which changes on a daily basis.Core components of the mitophagy process are PINK1 and Parkin, which mutations are linked to Parkinson’s Disease. The crucial role of PINK1/Parkin pathway during stress-induced mitophagy has been extensively studied in vitro in different cell types. However, recent advances in the field allowed discovering that mitophagy seems to be only slightly affected in PINK1 KO mice and flies, putting into question the physiological relevance of this pathway in vivo in the whole organism. Indeed, several cell-specific PINK1/Parkin-independent mitophagy pathways have been recently discovered, which appear to be activated under physiological conditions such as those that promote mitochondrial proteome remodeling during differentiation or in response to specific physiological stimuli.In this Mini Review we want to summarize the recent advances in the field, and add another level of complexity by focusing attention on a potentially important aspect of mitophagy regulation: the implication of the circadian clock. Recent works showed that the circadian clock controls many aspects of mitochondrial physiology, including mitochondrial morphology and dynamic, respiratory activity, and ATP synthesis. Furthermore, one of the essential functions of sleep, which is controlled by the clock, is the clearance of toxic metabolic compounds from the brain, including ROS, via mechanisms of proteostasis. Very little is known about a potential role of the clock in the quality control mechanisms that maintain the mitochondrial repertoire healthy during sleep/wake cycles. More importantly, it remains completely unexplored whether (dys)function of mitochondrial proteostasis feedbacks to the circadian clockwork.
Collapse
Affiliation(s)
| | | | | | | | - Elena Ziviani
- *Correspondence: Gabriella M. Mazzotta, Elena Ziviani,
| |
Collapse
|
19
|
Fifel K, El Farissi A, Cherasse Y, Yanagisawa M. Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200640. [PMID: 35794435 PMCID: PMC9403635 DOI: 10.1002/advs.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Motivation and its hedonic valence are powerful modulators of sleep/wake behavior, yet its underlying mechanism is still poorly understood. Given the well-established role of midbrain dopamine (mDA) neurons in encoding motivation and emotional valence, here, neuronal mechanisms mediating sleep/wake regulation are systematically investigated by DA neurotransmission. It is discovered that mDA mediates the strong modulation of sleep/wake states by motivational valence. Surprisingly, this modulation can be uncoupled from the classically employed measures of circadian and homeostatic processes of sleep regulation. These results establish the experimental foundation for an additional new factor of sleep regulation. Furthermore, an electroencephalographic marker during wakefulness at the theta range is identified that can be used to reliably track valence-related modulation of sleep. Taken together, this study identifies mDA signaling as an important neural substrate mediating sleep modulation by motivational valence.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Amina El Farissi
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| |
Collapse
|
20
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
21
|
Konishi N, Kumagai H, Sawatari H, Hoshino T, Murase Y, Yamaguchi M, Urabe A, Kiyohara Y, Arita A, Baku M, Sasanabe R, Shiomi T. Efficacy of a Combination Therapy for Difficulties Waking Up in Non-School-Attending Students. J Clin Med 2022; 11:jcm11123271. [PMID: 35743342 PMCID: PMC9225467 DOI: 10.3390/jcm11123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
School non-attendance due to difficulties waking up is increasing in Japan, and affected students are commonly diagnosed with orthostatic dysregulation (OD); however, OD-associated sleep problems are overlooked. To date, no sleep-medicine-based treatment for wake-up difficulties in non-school-attending students has been established. This study aimed to assess the efficacy of a novel combination therapy for these students. We assessed the combined effect of sleep hygiene guidance, low-dose aripiprazole administration (3 mg/day), and blue-light exposure on wake-up difficulty in 21 non-school-attending teenage patients. The patients were evaluated using sleep studies and questionnaires before and after treatment. The average subjective total sleep time calculated from sleep diaries before treatment in the patients was 10.3 h. The therapy improved wake-up difficulty by 85.7% and further improved school non-attendance by 66.7%. The subjective sleep time significantly decreased by 9.5 h after treatment (p = 0.0004). The self-rating Depression Scale and mental component summary of the 36-item Short-Form Health Survey significantly improved after treatment (p = 0.002 and p = 0.01, respectively). Wake-up difficulties were caused by the addition of a delayed sleep phase to the patients’ long sleep times. The novel combination therapy was effective in improving wake-up difficulty and mental quality of life in non-school-attending teenage students.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Sleep Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
| | - Hajime Kumagai
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Sleep Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
- Correspondence: ; Tel.: +81-82-257-1922
| | - Hiroyuki Sawatari
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
| | - Tetsuro Hoshino
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Sleep Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
| | - Yoko Murase
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Sleep Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
| | - Maiko Yamaguchi
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
| | - Ayako Urabe
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
| | - Yuka Kiyohara
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Sleep Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
| | - Aki Arita
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Sleep Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
| | - Masayo Baku
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
| | - Ryujiro Sasanabe
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
| | - Toshiaki Shiomi
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Nagakute 4801195, Japan; (N.K.); (H.S.); (T.H.); (Y.M.); (M.Y.); (A.U.); (Y.K.); (A.A.); (M.B.); (R.S.); (T.S.)
- Department of Sleep Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348553, Japan
| |
Collapse
|
22
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Bougea A, Stefanis L, Chrousos G. Stress system and related biomarkers in Parkinson's disease. Adv Clin Chem 2022; 111:177-215. [DOI: 10.1016/bs.acc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Langley MR, Ghaisas S, Palanisamy BN, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson's disease. Exp Neurol 2021; 341:113716. [PMID: 33839143 PMCID: PMC9797183 DOI: 10.1016/j.expneurol.2021.113716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark mice began around 12-14 wk and became severe by 16-24 wk. Interestingly, MitoPark mice exhibited olfactory deficits in the novel and social scent tests as early as 10-12 wk as compared to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined by the Morris water maze. MitoPark mice between 16 and 24 wk spent more time immobile in forced swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior as determined by immobility in forced swim test was reversible by antidepressant treatment with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can serve as an invaluable model for studying nonmotor deficits in addition to studying the motor deficits related to pathology in PD.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
25
|
Beckstead MJ, Howell RD. Progressive parkinsonism due to mitochondrial impairment: Lessons from the MitoPark mouse model. Exp Neurol 2021; 341:113707. [PMID: 33753138 PMCID: PMC8169575 DOI: 10.1016/j.expneurol.2021.113707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
The cardinal pathophysiological finding of Parkinson's disease (PD) is a chronic, progressive degeneration of dopamine (DA) neurons in the substantia nigra, which is responsible for the motor and some of the non-motor symptomatology. While the primary causes of nigrostriatal degeneration are hotly debated, considerable evidence supports a central role for impaired mitochondrial function. Postmortem analysis of PD patients reveals impaired respiratory chains and increased mutations of mitochondrial DNA (mtDNA), in addition to increased markers of oxidative stress indicative of mitochondrial impairment. Most animal models of PD, both genetic and toxin-based, target some component of mitochondrial function to reproduce aspects of the human disease. One model that continues to gain attention is the MitoPark mouse, created through a cell type-specific knockout of mitochondrial transcription factor A specifically in midbrain DA neurons. This model effectively recapitulates the slowly developing, adult onset motor decline seen in PD due to mass loss of DA neurons. MitoPark mice therefore represent an effective tool for studying the sequence of events that occurs in the early stages of DA neuron degeneration following mitochondrial impairment, as well as for testing the efficacy of potential disease-modifying therapies in a progressive model of neurodegeneration. A targeted review of key findings from MitoPark mice has not been published since the early years following the initial report of the model in 2007. The current review synthesizes findings from several groups that are exploring MitoPark mice and discusses implications for the future identification of disease-modifying treatments for PD.
Collapse
Affiliation(s)
- Michael J Beckstead
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA.
| | - Rebecca D Howell
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA
| |
Collapse
|
26
|
Feng S, Huang H, Wang N, Wei Y, Liu Y, Qin D. Sleep Disorders in Children With Autism Spectrum Disorder: Insights From Animal Models, Especially Non-human Primate Model. Front Behav Neurosci 2021; 15:673372. [PMID: 34093147 PMCID: PMC8173056 DOI: 10.3389/fnbeh.2021.673372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with deficient social skills, communication deficits and repetitive behaviors. The prevalence of ASD has increased among children in recent years. Children with ASD experience more sleep problems, and sleep appears to be essential for the survival and integrity of most living organisms, especially for typical synaptic development and brain plasticity. Many methods have been used to assess sleep problems over past decades such as sleep diaries and parent-reported questionnaires, electroencephalography, actigraphy and videosomnography. A substantial number of rodent and non-human primate models of ASD have been generated. Many of these animal models exhibited sleep disorders at an early age. The aim of this review is to examine and discuss sleep disorders in children with ASD. Toward this aim, we evaluated the prevalence, clinical characteristics, phenotypic analyses, and pathophysiological brain mechanisms of ASD. We highlight the current state of animal models for ASD and explore their implications and prospects for investigating sleep disorders associated with ASD.
Collapse
Affiliation(s)
- Shufei Feng
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Dongdong Qin
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
27
|
Pérez-Lloret S, Cardinali DP. Melatonin as a Chronobiotic and Cytoprotective Agent in Parkinson's Disease. Front Pharmacol 2021; 12:650597. [PMID: 33935759 PMCID: PMC8082390 DOI: 10.3389/fphar.2021.650597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
This article discusses the role that melatonin may have in the prevention and treatment of Parkinson’s disease (PD). In parkinsonian patients circulating melatonin levels are consistently disrupted and the potential therapeutic value of melatonin on sleep disorders in PD was examined in a limited number of clinical studies using 2–5 mg/day melatonin at bedtime. The low levels of melatonin MT1 and MT2 receptor density in substantia nigra and amygdala found in PD patients supported the hypothesis that the altered sleep/wake cycle seen in PD could be due to a disrupted melatonergic system. Motor symptomatology is seen in PD patients when about 75% of the dopaminergic cells in the substantia nigra pars compacta region degenerate. Nevertheless, symptoms like rapid eye movement (REM) sleep behavior disorder (RBD), hyposmia or depression may precede the onset of motor symptoms in PD for years and are index of worse prognosis. Indeed, RBD patients may evolve to an α-synucleinopathy within 10 years of RBD onset. Daily bedtime administration of 3–12 mg of melatonin has been demonstrated effective in RDB treatment and may halt neurodegeneration to PD. In studies on animal models of PD melatonin was effective to curtail symptomatology in doses that allometrically projected to humans were in the 40–100 mg/day range, rarely employed clinically. Therefore, double-blind, placebo-controlled clinical studies are urgently needed in this respect.
Collapse
Affiliation(s)
- Santiago Pérez-Lloret
- Universidad Abierta Interamericana-Centro de Altos Estudios en Ciencias Humanas y de La Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, UAI-CAECIHS. CONICET, Buenos Aires, Argentina.,Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
28
|
He YB, Liu YL, Yang ZD, Lu JH, Song Y, Guan YM, Chen YM. Effect of ginsenoside-Rg1 on experimental Parkinson's disease: A systematic review and meta-analysis of animal studies. Exp Ther Med 2021; 21:552. [PMID: 33850524 PMCID: PMC8027743 DOI: 10.3892/etm.2021.9984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 02/02/2021] [Indexed: 11/06/2022] Open
Abstract
Previous studies have reported that ginsenoside-Rg1 (G-Rg1) was able to mitigate the loss of dopaminergic neurons in animal models of Parkinson's disease (PD). The present study provided a systematic review and meta-analysis of preclinical studies to pool current evidence on the effect of G-Rg1 on neurogenesis in the treatment of PD. Eligible studies were identified through a search from six databases: PubMed, EMBASE, Web of Science, VIP, Chinese National Knowledge Infrastructure and the Wanfang database. Primary outcomes were tyrosine hydroxylase (TH)-positive cells in the nigra, Nissl staining-positive cells in the nigra, pole test time and dopamine (DA) levels in the striatum. A total of 18 eligible studies were identified, involving 343 animals. Of these, 13 reported a significant relationship between G-Rg1 and improved TH-positive cells in the nigra compared with the control group (P<0.00001). Furthermore, 3 studies reported a significant relationship between G-Rg1 and improved Nissl-positive cells in the nigra compared with the control group (P<0.00001). In addition, 4 studies reported a significant effect of G-Rg1 to reduce the total pole test time compared with that in the control group (P=0.001). A total of 3 studies indicated a significant association between G-Rg1 and improved DA levels in the striatum compared with the control group (P<0.00001). These results suggested that G-Rg1 has positive effects in attenuating damage in models of PD, and thus, it is a potential candidate neuroprotective drug for human PD.
Collapse
Affiliation(s)
- Yi-Bo He
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong-Lin Liu
- Reproductive Center, Sanya Maternal and Child Health Center, Sanya, Hainan 572000, P.R. China
| | - Zheng-Dong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jia-Hong Lu
- Department of Obstetrics and Gynecology, The First People's Hospital of Xiaoshan, Hangzhou, Zhejiang 311200, P.R. China
| | - Yao Song
- Department of Acupuncture, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yan-Ming Guan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yi-Min Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
29
|
Yang Z, Zhang X, Li C, Chi S, Xie A. Molecular Mechanisms Underlying Reciprocal Interactions Between Sleep Disorders and Parkinson's Disease. Front Neurosci 2021; 14:592989. [PMID: 33642969 PMCID: PMC7902929 DOI: 10.3389/fnins.2020.592989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Sleep-wake disruptions are among the most prevalent and burdensome non-motor symptoms of Parkinson's disease (PD). Clinical studies have demonstrated that these disturbances can precede the onset of typical motor symptoms by years, indicating that they may play a primary function in the pathogenesis of PD. Animal studies suggest that sleep facilitates the removal of metabolic wastes through the glymphatic system via convective flow from the periarterial space to the perivenous space, upregulates antioxidative defenses, and promotes the maintenance of neuronal protein homeostasis. Therefore, disruptions to the sleep-wake cycle have been associated with inefficient metabolic clearance and increased oxidative stress in the central nervous system (CNS). This leads to excessive accumulation of alpha-synuclein and the induction of neuronal loss, both of which have been proposed to be contributing factors to the pathogenesis and progression of PD. Additionally, recent studies have suggested that PD-related pathophysiological alterations during the prodromal phase disrupt sleep and circadian rhythms. Taken together, these findings indicate potential mechanistic interactions between sleep-wake disorders and PD progression as proposed in this review. Further research into the hypothetical mechanisms underlying these interactions would be valuable, as positive findings may provide promising insights into novel therapeutic interventions for PD.
Collapse
Affiliation(s)
- Zhengjie Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaona Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqian Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Timing of Morphine Administration Differentially Alters Paraventricular Thalamic Neuron Activity. eNeuro 2019; 6:ENEURO.0377-19.2019. [PMID: 31801741 PMCID: PMC6920517 DOI: 10.1523/eneuro.0377-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region involved in regulating arousal, goal-oriented behaviors, and drug seeking, all key factors playing a role in substance use disorder. Given this, we investigated the temporal effects of administering morphine, an opioid with strongly addictive properties, on PVT neuronal function in mice using acute brain slices. Here, we show that morphine administration and electrophysiological recordings that occur during periods of animal inactivity (light cycle) elicit increases in PVT neuronal function during a 24-h abstinence time point. Furthermore, we show that morphine-induced increases in PVT neuronal activity at 24-h abstinence are occluded when morphine administration and recordings are performed during an animals' active state (dark cycle). Based on our electrophysiological results combined with previous findings demonstrating that PVT neuronal activity regulates drug-seeking behaviors, we investigated whether timing morphine administration with periods of vigilance (dark cycle) would decrease drug-seeking behaviors in an animal model of substance use disorder. We found that context-induced morphine-seeking behaviors were intact regardless of the time morphine was administered (e.g., light cycle or dark cycle). Our electrophysiological results suggest that timing morphine with various states of arousal may impact the firing of PVT neurons during abstinence. Although, this may not impact context-induced drug-seeking behaviors.
Collapse
|
31
|
Medeiros DDC, Lopes Aguiar C, Moraes MFD, Fisone G. Sleep Disorders in Rodent Models of Parkinson's Disease. Front Pharmacol 2019; 10:1414. [PMID: 31827439 PMCID: PMC6892229 DOI: 10.3389/fphar.2019.01414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sleep disorders are frequently diagnosed in Parkinson's disease and manifested in the prodromal and advanced stages of the disease. These conditions, which in some cases affect more than 50% of Parkinson's disease (PD) patients, include hypersomnia, often manifested as excessive daytime sleepiness, insomnia, characterized by delayed initiation and fragmentation of sleep at night, and disruption of rapid eye movement (REM) sleep, resulting in loss of atonia and dream enactment. Standard dopamine replacement therapies for the treatment of motor symptoms are generally inadequate to combat sleep abnormalities, which seriously affect the quality of life of PD patients. Rodent models still represent a major tool for the study of many aspects of PD. They have been primarily designed to eliminate midbrain dopamine neurons and elicit motor impairment, which are the traditional pathological features of PD. However, rodent models are increasingly employed to investigate non-motor symptoms, which are often caused by degenerative processes affecting multiple monoaminergic and peptidergic structures. This review describes how neurotoxic and genetic manipulations of rats and mice have been utilized to reproduce some of the major sleep disturbances associated with PD and to what extent these abnormalities can be linked to nondopaminergic dysfunction, affecting for instance noradrenaline, serotonin, and orexin transmission. Strengths and limitations are discussed, as well as the consistency of results obtained so far, and the need for models that better reproduce the multisystemic neurodegenerative nature of PD, thereby allowing to replicate the complex etiology of sleep-related disorders.
Collapse
Affiliation(s)
- Daniel de Castro Medeiros
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cleiton Lopes Aguiar
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Abstract
Many processes in the human body - including brain function - are regulated over the 24-hour cycle, and there are strong associations between disrupted circadian rhythms (for example, sleep-wake cycles) and disorders of the CNS. Brain disorders such as autism, depression and Parkinson disease typically develop at certain stages of life, and circadian rhythms are important during each stage of life for the regulation of processes that may influence the development of these disorders. Here, we describe circadian disruptions observed in various brain disorders throughout the human lifespan and highlight emerging evidence suggesting these disruptions affect the brain. Currently, much of the evidence linking brain disorders and circadian dysfunction is correlational, and so whether and what kind of causal relationships might exist are unclear. We therefore identify remaining questions that may direct future research towards a better understanding of the links between circadian disruption and CNS disorders.
Collapse
Affiliation(s)
- Ryan W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Colleen A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. Int J Mol Sci 2018; 19:ijms19123911. [PMID: 30563246 PMCID: PMC6321023 DOI: 10.3390/ijms19123911] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical and research studies have suggested a link between Parkinson’s disease (PD) and alterations in the circadian clock. Drosophila melanogaster may represent a useful model to study the relationship between the circadian clock and PD. Apart from the conservation of many genes, cellular mechanisms, signaling pathways, and neuronal processes, Drosophila shows an organized central nervous system and well-characterized complex behavioral phenotypes. In fact, Drosophila has been successfully used in the dissection of the circadian system and as a model for neurodegenerative disorders, including PD. Here, we describe the fly circadian and dopaminergic systems and report recent studies which indicate the presence of circadian abnormalities in some fly PD genetic models. We discuss the use of Drosophila to investigate whether, in adults, the disruption of the circadian system might be causative of brain neurodegeneration. We also consider approaches using Drosophila, which might provide new information on the link between PD and the circadian clock. As a corollary, since PD develops its symptomatology over a large part of the organism’s lifespan and given the relatively short lifespan of fruit flies, we suggest that genetic models of PD could be used to perform lifelong screens for drug-modulators of general and/or circadian-related PD traits.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Mauro Agostino Zordan
- Department of Biology, University of Padova, 35131 Padova, Italy.
- Cognitive Neuroscience Center, University of Padova, 35100 Padova, Italy.
| | | |
Collapse
|
34
|
LeSauter J, Balsam PD, Simpson EH, Silver R. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. Eur J Neurosci 2018; 51:71-81. [PMID: 30362616 DOI: 10.1111/ejn.14219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor-overexpressing (D2R-OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R-OE mice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayed FAA. In contrast, under 8-hr food availability, control mice showed FAA, but D2R-OE mice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescued FAA under 8-hr restricted food. We next tested for circadian regulation of FAA. When given ad libitum access to food, neither D2R-OE nor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R-OE mice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reduces FAA by modulating motivation and not by acting on a clock mechanism.
Collapse
Affiliation(s)
- Joseph LeSauter
- Department of Psychology, Barnard College, New York City, New York
| | - Peter D Balsam
- Department of Psychology, Barnard College, New York City, New York.,Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Rae Silver
- Department of Psychology, Barnard College, New York City, New York.,Departments of Psychology and of Pathology and Cell Biology, Columbia University, New York City, New York
| |
Collapse
|
35
|
Low-Grade Inflammation Aggravates Rotenone Neurotoxicity and Disrupts Circadian Clock Gene Expression in Rats. Neurotox Res 2018; 35:421-431. [PMID: 30328585 DOI: 10.1007/s12640-018-9968-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/08/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
A single injection of LPS produced low-grade neuroinflammation leading to Parkinson's disease (PD) in mice several months later. Whether such a phenomenon occurs in rats and whether such low-grade neuroinflammation would aggravate rotenone (ROT) neurotoxicity and disrupts circadian clock gene/protein expressions were examined in this study. Male rats were given two injections of LPS (2.5-7.5 mg/kg), and neuroinflammation and dopamine neuron loss were evident 3 months later. Seven months after a single LPS (5 mg/kg) injection, rats received low doses of ROT (0.5 mg/kg, sc, 5 times/week for 4 weeks) to examine low-grade neuroinflammation on ROT toxicity. LPS plus ROT produced more pronounced non-motor and motor dysfunctions than LPS or ROT alone in behavioral tests, and decreased mitochondrial complex 1 activity, together with aggravated neuroinflammation and neuron loss. The expressions of clock core genes brain and muscle Arnt-like protein-1 (Bmal1), locomotor output cycles kaput (Clock), and neuronal PAS domain protein-2 (Npas2) were decreased in LPS, ROT, and LPS plus ROT groups. The expressions of circadian feedback genes Periods (Per1 and Per2) were also decreased, but Cryptochromes (Cry1 and Cry2) were unaltered. The circadian clock target genes nuclear receptor Rev-Erbα (Nr1d1), and D-box-binding protein (Dbp) expressions were also decreased. Consistent with the transcript levels, circadian clock protein BMAL1, CLOCK, NR1D1, and DBP were also decreased. Thus, LPS-induced chronic low-grade neuroinflammation potentiated ROT neurotoxicity and disrupted circadian clock gene/protein expression, suggesting a role of disrupted circadian in PD development and progression. Graphical Abstract ᅟ.
Collapse
|
36
|
Jiang P, Dickson DW. Parkinson's disease: experimental models and reality. Acta Neuropathol 2018; 135:13-32. [PMID: 29151169 PMCID: PMC5828522 DOI: 10.1007/s00401-017-1788-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive movement disorder of adults and the second most common neurodegenerative disease after Alzheimer's disease. Neuropathologic diagnosis of PD requires moderate-to-marked neuronal loss in the ventrolateral substantia nigra pars compacta and α-synuclein (αS) Lewy body pathology. Nigrostriatal dopaminergic neurodegeneration correlates with the Parkinsonian motor features, but involvement of other peripheral and central nervous system regions leads to a wide range of non-motor features. Nigrostriatal dopaminergic neurodegeneration is shared with other parkinsonian disorders, including some genetic forms of parkinsonism, but many of these disorders do not have Lewy bodies. An ideal animal model for PD, therefore, should exhibit age-dependent and progressive dopaminergic neurodegeneration, motor dysfunction, and abnormal αS pathology. Rodent models of PD using genetic or toxin based strategies have been widely used in the past several decades to investigate the pathogenesis and therapeutics of PD, but few recapitulate all the major clinical and pathologic features of PD. It is likely that new strategies or better understanding of fundamental disease processes may facilitate development of better animal models. In this review, we highlight progress in generating rodent models of PD based on impairments of four major cellular functions: mitochondrial oxidative phosphorylation, autophagy-lysosomal metabolism, ubiquitin-proteasome protein degradation, and endoplasmic reticulum stress/unfolded protein response. We attempt to evaluate how impairment of these major cellular systems contribute to PD and how they can be exploited in rodent models. In addition, we review recent cell biological studies suggesting a link between αS aggregation and impairment of nuclear membrane integrity, as observed during cellular models of apoptosis. We also briefly discuss the role of incompetent phagocytic clearance and how this may be a factor to consider in developing new rodent models of PD.
Collapse
Affiliation(s)
- Peizhou Jiang
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
37
|
Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, Zielonka J, Brenza T, Bennett B, Jin H, Ghaisas S, Schlichtmann B, Kim D, Anantharam V, Kanthasamy A, Narasimhan B, Kalyanaraman B, Kanthasamy AG. Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice. Antioxid Redox Signal 2017; 27:1048-1066. [PMID: 28375739 PMCID: PMC5651937 DOI: 10.1089/ars.2016.6905] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive motor deficits and degeneration of dopaminergic neurons. Caused by a number of genetic and environmental factors, mitochondrial dysfunction and oxidative stress play a role in neurodegeneration in PD. By selectively knocking out mitochondrial transcription factor A (TFAM) in dopaminergic neurons, the transgenic MitoPark mice recapitulate many signature features of the disease, including progressive motor deficits, neuronal loss, and protein inclusions. In the present study, we evaluated the neuroprotective efficacy of a novel mitochondrially targeted antioxidant, Mito-apocynin, in MitoPark mice and cell culture models of neuroinflammation and mitochondrial dysfunction. RESULTS Oral administration of Mito-apocynin (10 mg/kg, thrice a week) showed excellent central nervous system bioavailability and significantly improved locomotor activity and coordination in MitoPark mice. Importantly, Mito-apocynin also partially attenuated severe nigrostriatal degeneration in MitoPark mice. Mechanistic studies revealed that Mito-apo improves mitochondrial function and inhibits NOX2 activation, oxidative damage, and neuroinflammation. INNOVATION The properties of Mito-apocynin identified in the MitoPark transgenic mouse model strongly support potential clinical applications for Mito-apocynin as a viable neuroprotective and anti-neuroinflammatory drug for treating PD when compared to conventional therapeutic approaches. CONCLUSION Collectively, our data demonstrate, for the first time, that a novel orally active apocynin derivative improves behavioral, inflammatory, and neurodegenerative processes in a severe progressive dopaminergic neurodegenerative model of PD. Antioxid. Redox Signal. 27, 1048-1066.
Collapse
Affiliation(s)
- Monica Langley
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Anamitra Ghosh
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Adhithiya Charli
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Souvarish Sarkar
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Muhammet Ay
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Jie Luo
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Jacek Zielonka
- 2 Department of Biophysics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Timothy Brenza
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | - Brian Bennett
- 4 Department of Physics, Marquette University , Milwaukee, Wisconsin
| | - Huajun Jin
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Shivani Ghaisas
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Benjamin Schlichtmann
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | - Dongsuk Kim
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Vellareddy Anantharam
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Arthi Kanthasamy
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Balaji Narasimhan
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | | | - Anumantha G Kanthasamy
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| |
Collapse
|
38
|
Calvey T. The extended evolutionary synthesis and addiction: the price we pay for adaptability. PROGRESS IN BRAIN RESEARCH 2017; 235:1-18. [PMID: 29054284 DOI: 10.1016/bs.pbr.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Humans are more likely to become addicted and to stay addicted than are other animals. This chapter is a neurobiological and molecular review of addiction and the cooccurring traits and psychiatric disorders from the perspective of the Extended Evolutionary Synthesis (EES). Addiction is an example of pleiotropy as many common haplotypes that are associated with individual differences in vulnerability to substance dependence express a variety of important brain-based phenotypes such as neuroadaptive processes. The neurochemical mechanisms of addiction are shared with behavioral flexibility and the ability to innovate, which are hallmark features of our species. The dopaminergic system provides a link between addiction and the cooccurring traits and psychiatric disorders evident in the shared genetic profile. A hypofunctioning dopaminergic system is also a common characteristic feature of addiction and the cooccurring traits and psychiatric disorders. Epigenetics allows for environmental factors to create lasting and heritable phenotypic changes enabling rapid adaptation to an environment. Addiction "high-jacks" this system as well as the neurochemical mechanisms that control flexibility and innovation and is, thus, the price we pay for adaptability.
Collapse
Affiliation(s)
- Tanya Calvey
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
39
|
Willis GL, Freelance CB. Emerging preclinical interest concerning the role of circadian function in Parkinson's disease. Brain Res 2017; 1678:203-213. [PMID: 28958865 DOI: 10.1016/j.brainres.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/08/2023]
Abstract
The importance of circadian function in the aetiology, progression and treatment of Parkinson's disease is a topic of increasing interest to the scientific and clinical community. While clinical studies on this theme are relatively new and limited in number there are many preclinical studies which explore possible circadian involvement in Parkinson's disease and speculate as to the mechanism by which clinical benefit can be derived by manipulating the circadian system. The present review explores the sequelae of circadian related studies from a historical perspective and reveals mechanisms that may be involved in the aetiology and progression of the disease. A systematic review of these studies also sets the stage for understanding the basic neuroscientific approaches which have been applied and provides new direction from which circadian function can be explored.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia.
| | - Christopher B Freelance
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia
| |
Collapse
|
40
|
Li H, Fan X, Luo Y, Song S, Liu J, Fan Q. Repeated manganese administration produced abnormal expression of circadian clock genes in the hypothalamus and liver of rats. Neurotoxicology 2017; 62:39-45. [DOI: 10.1016/j.neuro.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
|
41
|
Cruz-Monteagudo M, Schürer S, Tejera E, Pérez-Castillo Y, Medina-Franco JL, Sánchez-Rodríguez A, Borges F. Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery. Drug Discov Today 2017; 22:994-1007. [PMID: 28274840 PMCID: PMC5487293 DOI: 10.1016/j.drudis.2017.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/02/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Current advances in systems biology suggest a new change of paradigm reinforcing the holistic nature of the drug discovery process. According to the principles of systems biology, a simple drug perturbing a network of targets can trigger complex reactions. Therefore, it is possible to connect initial events with final outcomes and consequently prioritize those events, leading to a desired effect. Here, we introduce a new concept, 'Systemic Chemogenomics/Quantitative Structure-Activity Relationship (QSAR)'. To elaborate on the concept, relevant information surrounding it is addressed. The concept is challenged by implementing a systemic QSAR approach for phenotypic virtual screening (VS) of candidate ligands acting as neuroprotective agents in Parkinson's disease (PD). The results support the suitability of the approach for the phenotypic prioritization of drug candidates.
Collapse
Affiliation(s)
- Maykel Cruz-Monteagudo
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal.
| | - Stephan Schürer
- Department of Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Eduardo Tejera
- Instituto de Investigaciones Biomédicas (IIB), Universidad de Las Américas, 170513 Quito, Ecuador
| | - Yunierkis Pérez-Castillo
- Sección Físico Química y Matemáticas, Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, EC1101608 Loja, Ecuador
| | - José L Medina-Franco
- Universidad Nacional Autónoma de México, Departamento de Farmacia, Facultad de Química, Avenida Universidad 3000, Mexico City, 04510, Mexico
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Calle París S/N, EC1101608 Loja, Ecuador
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
42
|
Hood S, Amir S. Neurodegeneration and the Circadian Clock. Front Aging Neurosci 2017; 9:170. [PMID: 28611660 PMCID: PMC5447688 DOI: 10.3389/fnagi.2017.00170] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/15/2017] [Indexed: 01/25/2023] Open
Abstract
Despite varied etiologies and symptoms, several neurodegenerative diseases—specifically, Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s diseases (HDs)—share the common feature of abnormal circadian rhythms, such as those in behavior (e.g., disrupted sleep/wake cycles), physiological processes (e.g., diminished hormone release) and biochemical activities (e.g., antioxidant production). Circadian disturbances are among the earliest symptoms of these diseases, and the molecular mechanisms of the circadian system are suspected to play a pivotal, and possibly causal, role in their natural histories. Here, we review the common circadian abnormalities observed in ADs, PDs and HDs, and summarize the evidence that the molecular circadian clockwork directly influences the course of these disease states. On the basis of this research, we explore several circadian-oriented interventions proposed as treatments for these neurological disorders.
Collapse
Affiliation(s)
- Suzanne Hood
- Department of Psychology, Bishop's UniversitySherbrooke, QC, Canada
| | - Shimon Amir
- Department of Psychology, Concordia UniversityMontreal, QC, Canada
| |
Collapse
|
43
|
Oskamp A, Wedekind F, Kroll T, Elmenhorst D, Bauer A. Neurotransmitter receptor availability in the rat brain is constant in a 24 hour-period. Chronobiol Int 2017; 34:866-875. [PMID: 28548869 DOI: 10.1080/07420528.2017.1325370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Wakefulness and sleep are fundamental characteristics of the brain. We, therefore, hypothesized that transmitter systems contribute to their regulation and will exhibit circadian alterations. We assessed the concentration of various neurotransmitter receptors and transporters including adenosinergic (A1AR, A2AAR, and ENT1), dopaminergic (D1R, D2R, and DAT), and serotonergic (5-HT2AR) target proteins. Adult male Sprague Dawley rats were used and maintained in a 12 h light: 12 h dark cycle (lights on from 07:00 h to 19:00 h). We measured receptor and transporter concentrations in different brain regions, including caudate putamen, basal forebrain, and cortex in 4 hour-intervals over a 24 hour-period using quantitative in vitro autoradiography. Investigated receptors and transporters showed no fluctuations in any of the analyzed regions using one-way ANOVA. Only in the horizontal diagonal band of Broca, the difference of A1AR concentration between light and dark phases (t-test) as well as the cosinor analysis of the 24 hour-course were significant, suggesting that this region underlies receptor fluctuations. Our findings suggest that the availability of the investigated neurotransmitter receptors and transporters does not undergo changes in a 24 hour-period. While there are reports on changes in adenosine and dopamine receptors during sleep deprivation, we found no changes in the investigated adenosine, dopamine, and serotonin receptors during regular and undisturbed day-night cycles.
Collapse
Affiliation(s)
- A Oskamp
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany
| | - F Wedekind
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany
| | - T Kroll
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany
| | - D Elmenhorst
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany.,b Psychiatry and Psychotherapy, Medical Psychology , Rheinische Friedrich-Wilhelms-University Bonn , Bonn , Germany
| | - A Bauer
- a Institute for Neuroscience and Medicine (INM-2) , Forschungszentrum Jülich , Jülich , Germany.,c Neurological Department , Heinrich-Heine-University Düsseldorf , Düsseldorf , Germany
| |
Collapse
|
44
|
Matsui K, Takaesu Y, Inoue T, Inada K, Nishimura K. Effect of aripiprazole on non-24-hour sleep-wake rhythm disorder comorbid with major depressive disorder: a case report. Neuropsychiatr Dis Treat 2017; 13:1367-1371. [PMID: 28579782 PMCID: PMC5449127 DOI: 10.2147/ndt.s136628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with non-24-hour sleep-wake rhythm disorder (N24SWD) exhibit a sleep pattern that is asynchronous with the external light-dark cycle, typically involving a cycling, relapsing-remitting pattern of sleep disturbances, including nighttime insomnia and daytime sleepiness. Here, we report the case of a patient with N24SWD comorbid with major depressive disorder, who was successfully treated with a low dose of aripiprazole. CASE PRESENTATION A 47-year-old female presented with an 8-year complaint of difficulty falling asleep and waking up in the morning. The patient was diagnosed with major depressive disorder at the age of 35 years and was treated with various antidepressants since that time. At the age of 40 years, the patient's sleep-wake cycle began to extend without exacerbation of depressive symptoms. The patient was diagnosed with N24SWD at the age of 43 years. Ramelteon 8 mg/d and then melatonin 1 mg/d were administered, but these did not provide effective treatment. In January 2016, after treatment with aripiprazole 3 mg/d in the morning for 4 weeks, the patient's sleep-wake cycle became markedly synchronized to the environmental light-dark cycle. Her sleep-wake cycle remained synchronized when the same dose of aripiprazole was administered for at least 6 months. CONCLUSION Treatment-refractory asynchrony of the sleep-wake cycle in an N24SWD patient with depression was successfully treated with aripiprazole. Although the detailed mechanism of action is unclear, aripiprazole may be an appropriate treatment for patients with circadian rhythm sleep-wake disorders.
Collapse
Affiliation(s)
- Kentaro Matsui
- Department of Psychiatry, Tokyo Women’s Medical University
- Japan Somnology Center, Neuropsychiatric Research Institute
| | - Yoshikazu Takaesu
- Japan Somnology Center, Neuropsychiatric Research Institute
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Ken Inada
- Department of Psychiatry, Tokyo Women’s Medical University
| | | |
Collapse
|
45
|
Julienne H, Buhl E, Leslie DS, Hodge JJL. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes. Neurobiol Dis 2017; 104:15-23. [PMID: 28435104 PMCID: PMC5469398 DOI: 10.1016/j.nbd.2017.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is more commonly associated with its motor symptoms and the related degeneration of dopamine (DA) neurons. However, it is becoming increasingly clear that PD patients also display a wide range of non-motor symptoms, including memory deficits and disruptions of their sleep-wake cycles. These have a large impact on their quality of life, and often precede the onset of motor symptoms, but their etiology is poorly understood. The fruit fly Drosophila has already been successfully used to model PD, and has been used extensively to study relevant non-motor behaviours in other contexts, but little attention has yet been paid to modelling non-motor symptoms of PD in this genetically tractable organism. We examined memory performance and circadian rhythms in flies with loss-of-function mutations in two PD genes: PINK1 and parkin. We found learning and memory abnormalities in both mutant genotypes, as well as a weakening of circadian rhythms that is underpinned by electrophysiological changes in clock neurons. Our study paves the way for further work that may help us understand the mechanisms underlying these neglected aspects of PD, thus identifying new targets for treatments to address these non-motor problems specifically and perhaps even to halt disease progression in its prodromal phase.
Collapse
Affiliation(s)
- Hannah Julienne
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - David S Leslie
- Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster LA1 4YF, United Kingdom
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
46
|
Masini D, Lopes-Aguiar C, Bonito-Oliva A, Papadia D, Andersson R, Fisahn A, Fisone G. The histamine H3 receptor antagonist thioperamide rescues circadian rhythm and memory function in experimental parkinsonism. Transl Psychiatry 2017; 7:e1088. [PMID: 28398338 PMCID: PMC5416699 DOI: 10.1038/tp.2017.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by motor impairment and a wide range of non-motor symptoms, including sleep disorders and cognitive and affective deficits. In this study, we used a mouse model of PD based on 6-hydroxydopamine (6-OHDA) to examine the effect of thioperamide, a histamine H3 receptor antagonist, on circadian activity, recognition memory and anxiety. A partial, bilateral 6-OHDA lesion of the striatum reduces motor activity during the active phase of the 24 h cycle. In addition, the lesion disrupts the endogenous circadian rhythm observed when mice are maintained in constant darkness. Administration of thioperamide to 6-OHDA-lesion mice rescues the normal rest/activity cycle. Moreover, thioperamide counteracts the deficit of novel object recognition produced by 6-OHDA. Our experiments show that this memory impairment is accompanied by disrupted gamma oscillations in the hippocampus, which are also rescued by thioperamide. In contrast, we do not observe any modification of the anxiogenic effect of 6-OHDA in response to administration of thioperamide. Our results indicate that thioperamide may act as a multifunctional drug, able to counteract disruptions of circadian rhythm and cognitive deficits associated with PD.
Collapse
Affiliation(s)
- D Masini
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - C Lopes-Aguiar
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A Bonito-Oliva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - D Papadia
- Neuronal Oscillations Laboratory, Division for Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - R Andersson
- Neuronal Oscillations Laboratory, Division for Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - A Fisahn
- Neuronal Oscillations Laboratory, Division for Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Korshunov KS, Blakemore LJ, Trombley PQ. Dopamine: A Modulator of Circadian Rhythms in the Central Nervous System. Front Cell Neurosci 2017; 11:91. [PMID: 28420965 PMCID: PMC5376559 DOI: 10.3389/fncel.2017.00091] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythms are daily rhythms that regulate many biological processes – from gene transcription to behavior – and a disruption of these rhythms can lead to a myriad of health risks. Circadian rhythms are entrained by light, and their 24-h oscillation is maintained by a core molecular feedback loop composed of canonical circadian (“clock”) genes and proteins. Different modulators help to maintain the proper rhythmicity of these genes and proteins, and one emerging modulator is dopamine. Dopamine has been shown to have circadian-like activities in the retina, olfactory bulb, striatum, midbrain, and hypothalamus, where it regulates, and is regulated by, clock genes in some of these areas. Thus, it is likely that dopamine is essential to mechanisms that maintain proper rhythmicity of these five brain areas. This review discusses studies that showcase different dopaminergic mechanisms that may be involved with the regulation of these brain areas’ circadian rhythms. Mechanisms include how dopamine and dopamine receptor activity directly and indirectly influence clock genes and proteins, how dopamine’s interactions with gap junctions influence daily neuronal excitability, and how dopamine’s release and effects are gated by low- and high-pass filters. Because the dopamine neurons described in this review also release the inhibitory neurotransmitter GABA which influences clock protein expression in the retina, we discuss articles that explore how GABA may contribute to the actions of dopamine neurons on circadian rhythms. Finally, to understand how the loss of function of dopamine neurons could influence circadian rhythms, we review studies linking the neurodegenerative disease Parkinson’s Disease to disruptions of circadian rhythms in these five brain areas. The purpose of this review is to summarize growing evidence that dopamine is involved in regulating circadian rhythms, either directly or indirectly, in the brain areas discussed here. An appreciation of the growing evidence of dopamine’s influence on circadian rhythms may lead to new treatments including pharmacological agents directed at alleviating the various symptoms of circadian rhythm disruption.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Program in Neuroscience, Florida State University,Tallahassee, FL, USA.,Department of Biological Science, Florida State University,Tallahassee, FL, USA
| | - Laura J Blakemore
- Program in Neuroscience, Florida State University,Tallahassee, FL, USA.,Department of Biological Science, Florida State University,Tallahassee, FL, USA
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University,Tallahassee, FL, USA.,Department of Biological Science, Florida State University,Tallahassee, FL, USA
| |
Collapse
|
48
|
Liu F, Chang HC. Physiological links of circadian clock and biological clock of aging. Protein Cell 2017; 8:477-488. [PMID: 28108951 PMCID: PMC5498335 DOI: 10.1007/s13238-016-0366-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hung-Chun Chang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
49
|
Videnovic A, Golombek D. Circadian Dysregulation in Parkinson's Disease. Neurobiol Sleep Circadian Rhythms 2017; 2:53-58. [PMID: 28713867 PMCID: PMC5509072 DOI: 10.1016/j.nbscr.2016.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/19/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects over one million individuals in the US alone. PD is characterized by a plethora of motor and non-motor manifestations, resulting from a progressive degeneration of dopaminergic neurons and disbalance of several other neurotransmitters. A growing body of evidence points to significant alterations of the circadian system in PD. This is not surprising given the pivotal role that dopamine plays in circadian regulation as well as the role of circadian influences in dopamine metabolism. In this review we present basic and clinical investigations that examined the function of the circadian system in PD.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital Harvard Medical School, MGH Neurological Clinical Research Institute, 165 Cambridge Street, Suite 600, Boston, MA 02446, United States
| | - Diego Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, R.S. Peña 352, 1876 Bernal, Buenos Aires, Argentina
| |
Collapse
|
50
|
Bouabid S, Fifel K, Benazzouz A, Lakhdar-Ghazal N. Consequences of manganese intoxication on the circadian rest-activity rhythms in the rat. Neuroscience 2016; 331:13-23. [DOI: 10.1016/j.neuroscience.2016.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|