1
|
Mishra AK, Dixit S, Singh A, Shukla T, Rizvi SI. Molecular Determinants of A9 Dopaminergic Neurons. Neuromolecular Med 2025; 27:43. [PMID: 40397062 DOI: 10.1007/s12017-025-08861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
In the human brain, the nigrostriatal pathway regulates motor functions, and its selective deterioration leads to the onset of Parkinson's disease (PD), a neurodegenerative disorder characterized by motor dysfunction and significant disability. The A9 neurons, a subgroup of ventral mesencephalic dopaminergic (DA) neurons, form the nigrostriatal pathway that emerges from the nigral region and innervates into the striatum. These DA neurons exhibit extensive and arborized axonal terminals projecting into the dorsal striatum. This review examines the distinct molecular determinants underlying the development, projection pattern, survival, maintenance, and vulnerability of A9 neurons, distinguishing them from other ventral midbrain DA subgroups such as A8 and A10. Key transcription factors (e.g., Lmx1a/b, FoxA2, Pitx3), signaling cascade pathways (e.g., Sonic Hedgehog, Wnt/β-catenin), and molecular markers (e.g., Aldh1a1, GIRK2, ANT2) are discussed in detail. A comparative assessment of the electrophysiology, cytoarchitecture, energy demand, and antioxidant reserves of A9 DA neurons versus the neighboring ventral mesencephalic DA subgroups elucidates the role of intrinsic determinants in susceptibility and selective degeneration in PD. The unique susceptibility of A9 cells to redox imbalance, neuronal inflammation, and mitochondrial dysfunction is also explored. Furthermore, recent advancements in stem cell-based approaches for generating A9-like neurons and their application in cell transplantation therapies for PD are discussed. Current challenges, including integration and long-term survival of transplanted neurons, are highlighted alongside prospects of cell replacement therapy. By evaluating the molecular biology of A9 neurons, this review aims to understand PD pathology and develop strategies for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, Chhattisgarh, 494 337, India.
| | - Shreya Dixit
- Department of Neurology, University of California, Irvine, USA
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Toyaj Shukla
- Government Rani Durgawati College, Wadrafnagar, Balrampur, Chhattisgarh, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Kim TW, Piao J, Bocchi VD, Koo SY, Choi SJ, Chaudhry F, Yang D, Cho HS, Hergenreder E, Perera LR, Joshi S, Mrad ZA, Claros N, Donohue SA, Frank AK, Walsh R, Mosharov EV, Betel D, Tabar V, Studer L. Enhanced yield and subtype identity of hPSC-derived midbrain dopamine neuron by modulation of WNT and FGF18 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631400. [PMID: 39829874 PMCID: PMC11741396 DOI: 10.1101/2025.01.06.631400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
While clinical trials are ongoing using human pluripotent stem cell-derived midbrain dopamine (mDA) neuron precursor grafts in Parkinson's disease (PD), current protocols to derive mDA neurons remain suboptimal. In particular, the yield of TH+ mDA neurons after in vivo grafting and the expression of some mDA neuron and subtype-specific markers can be further improved. For example, characterization of mDA grafts by single cell transcriptomics has yielded only a small proportion of mDA neurons and a considerable fraction of contaminating cell populations. Here we present an optimized mDA neuron differentiation strategy that builds on our clinical grade ("Boost") protocol but includes the addition of FGF18 and IWP2 treatment ("Boost+") at the mDA neurogenesis stage. We demonstrate that Boost+ mDA neurons show higher expression of EN1, PITX3 and ALDH1A1. Improvements in both mDA neurons yield and transcriptional similarity to primary mDA neurons is observed both in vitro and in grafts. Furthermore, grafts are enriched in authentic A9 mDA neurons by single nucSeq. Functional studies in vitro demonstrate increased dopamine production and release and improved electrophysiological properties. In vivo analyses show increased percentages of TH+ mDA neurons resulting in efficient rescue of amphetamine induced rotation behavior in the 6-OHDA rat model and rescue of some motor deficits in non-drug induced assays, including the ladder rung assay that is not improved by Boost mDA neurons. The Boost+ conditions present an optimized protocol with advantages for disease modeling and mDA neuron grafting paradigms.
Collapse
|
3
|
Joyner AL, Ortigão-Farias JR, Kornberg T. Conserved roles of engrailed: patterning tissues and specifying cell types. Development 2024; 151:dev204250. [PMID: 39671171 DOI: 10.1242/dev.204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
More than 40 years ago, studies of the Drosophila engrailed and Hox genes led to major discoveries that shaped the history of developmental biology. We learned that these genes define the state of determination of cells that populate particular spatially defined regions: the identity of segmental domains by Hox genes, and the identity of posterior developmental compartments by engrailed. Hence, the boundaries that delimit spatial domains depend on engrailed. Here, we review the engrailed field, which now includes orthologs in Drosophila and mouse, as well as many other animals. We focus on fly and mouse and highlight additional functions that span early stages of embryogenesis and neural development.
Collapse
Affiliation(s)
- Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Biochemistry, Cell & Molecular Biology Program and Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | - Thomas Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Chen Y, Jiang C, Yan B, Zhang J. Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function. J Neurosci Res 2024; 102:e70007. [PMID: 39704330 DOI: 10.1002/jnr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/31/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection. Additionally, we observed a decrease in the number of PV neurons in PV-Cre:En1fl/fl mice, accompanied by an increased level of cleaved caspase-3 in PV neurons. Furthermore, the genetic ablation of PV neurons in the retina through intraocular AAV-DIO-Caspase3 injection in PV-Cre mice was sufficient to disrupt retinogeniculate segregation. Finally, we observed that PV-Cre:En1fl/fl mice exhibited enhanced visual depth perception in the visual cliff test. These results demonstrate that En1 in PV neurons participates in eye-specific retinogeniculate segregation through cell survival and regulates binocular vision.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Stetzik L, Mercado G, Steiner JA, Lindquist A, Gilliland C, Schulz E, Meyerdirk L, Smith L, Molina J, Moore DJ. Heterozygous loss of Engrailed-1 and α-synucleinopathy (En1/SYN): A dual-hit preclinical mouse model of Parkinson's disease, analyzed with artificial intelligence. Neurobiol Dis 2024; 200:106647. [PMID: 39187209 PMCID: PMC11513166 DOI: 10.1016/j.nbd.2024.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
In this study, we develop and validate a new Parkinson's disease (PD) mouse model that can be used to better understand how the disease progresses and to test the effects of new, potentially disease-modifying, PD therapies. Our central hypothesis is that mitochondrial dysfunction intercalates with misfolded α-synuclein (α-syn) accumulation in a vicious cycle, leading to the loss of nigral neurons. Our hypothesis builds on the concept that PD involves multiple molecular insults, including mitochondrial dysfunction and aberrant α-syn handling. We predicted that mitochondrial deficits, due to heterozygous loss of Engrailed-1 (En1+/-), combined with bilateral injections of pathogenic α-syn fibrils (PFFs), will act to generate a highly relevant PD model - the En1/SYN model. Here, En1+/- mice received bilateral intrastriatal stereotaxic injections of either PBS or α-syn fibrils and were analyzed using automated behavioral tests and deep learning-assisted histological analysis at 2, 4, and 6 months post-injection. We observed significant and progressive Lewy body-like inclusion pathology in the amygdala, motor cortex, and cingulate cortex, as well as the loss of tyrosine hydroxylase-positive (TH+) cells in the substantia nigra. The En1/SYN model also exhibited significant motor impairments at 6 months post-injection, which were however not exacerbated as we had expected. Still, this model has a comprehensive number of PD-like phenotypes and is therefore superior when compared to the α-syn PFF or En1+/- models alone.
Collapse
Affiliation(s)
- Lucas Stetzik
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| | - Gabriela Mercado
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Jennifer A Steiner
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Allison Lindquist
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Carla Gilliland
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Emily Schulz
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Lindsey Smith
- Aiforia Inc, Cambridge Innovation Center, Cambridge, MA, United States
| | - Jeremy Molina
- Rush University Medical Center, Chicago, IL, United States
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
6
|
Huang X, Wang Y, Xiang Y, Zhao Y, Pan H, Liu Z, Xu Q, Sun Q, Tan J, Yan X, Li J, Tang B, Guo J. Genetic Analysis of Neurite Outgrowth Inhibitor-Associated Genes in Parkinson's Disease: A Cross-Sectional Cohort Study. CNS Neurosci Ther 2024; 30:e70070. [PMID: 39354865 PMCID: PMC11445604 DOI: 10.1111/cns.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease caused by a combination of aging, environmental, and genetic factors. Previous research has implicated both causative and susceptibility genes in PD development. Nogo-A, a neurite outgrowth inhibitor, has been shown to impact axon growth through ligand-receptor interactions negatively, thereby involved in the deterioration of dopaminergic neurons. However, rare genetic studies have identified the relationship between neurite outgrowth inhibitor (Nogo)-associated genes and PD from a signaling pathway perspective. METHODS We enrolled 3959 PD patients and 2931 healthy controls, categorized into two cohorts based on their family history and age at onset: sporadic early Parkinson's disease & familial Parkinson's disease (sEOPD & FPD) cohort and sporadic late Parkinson's disease (sLOPD) cohort. We selected 17 Nogo-associated genes and stratified them into three groups via their function, respectively, ligand, receptors, and signaling pathway groups. Additionally, we conducted the burden analysis in rare variants, the logistic regression analysis in common variants, and the genotype-phenotype association analysis. Last, bioinformatics analysis and functional experiments were conducted to identify the role of the MTOR gene in PD. RESULTS Our findings demonstrated that the missense variants in the MTOR gene might increase PD risk, while the deleterious variants in the receptor subtype of Nogo-associated genes might mitigate PD risk. However, common variants of Nogo-associated genes showed no association with PD development in two cohorts. Furthermore, genotype-phenotype association analysis suggested that PD patients with MTOR gene variants exhibited relatively milder motor symptoms but were more susceptible developing dyskinesia. Additionally, bioinformatics analysis results showed MTOR gene was significantly decreased in PD, indicating a potential negative role of the mTOR in PD pathogenesis. Experimental data further demonstrated that MHY1485, a mTOR agonist, could rescue MPP+-induced axon inhibition, further implicating the involvement of mTOR protein in PD by regulating cell growth and axon growth. CONCLUSIONS Our preliminary investigation highlights the association of Nogo-associated genes with PD onset in the Chinese mainland population and hints at the potential role of the MTOR gene in PD. Further research is warranted to elucidate the mechanistic pathways underlying these associations and their therapeutic implications.
Collapse
Affiliation(s)
- Xiurong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
7
|
Pradeloux S, Coulombe K, Ouamba AJK, Isenbrandt A, Calon F, Roy D, Soulet D. Oral Trehalose Intake Modulates the Microbiota-Gut-Brain Axis and Is Neuroprotective in a Synucleinopathy Mouse Model. Nutrients 2024; 16:3309. [PMID: 39408276 PMCID: PMC11478413 DOI: 10.3390/nu16193309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting dopaminergic neurons in the nigrostriatal and gastrointestinal tracts, causing both motor and non-motor symptoms. This study examined the neuroprotective effects of trehalose. This sugar is confined in the gut due to the absence of transporters, so we hypothesized that trehalose might exert neuroprotective effects on PD through its action on the gut microbiota. We used a transgenic mouse model of PD (PrP-A53T G2-3) overexpressing human α-synuclein and developing GI dysfunctions. Mice were given water with trehalose, maltose, or sucrose (2% w/v) for 6.5 m. Trehalose administration prevented a reduction in tyrosine hydroxylase immunoreactivity in the substantia nigra (-25%), striatum (-38%), and gut (-18%) in PrP-A53T mice. It also modulated the gut microbiota, reducing the loss of diversity seen in PrP-A53T mice and promoting bacteria negatively correlated with PD in patients. Additionally, trehalose treatment increased the intestinal secretion of glucagon-like peptide 1 (GLP-1) by 29%. Maltose and sucrose, which break down into glucose, did not show neuroprotective effects, suggesting glucose is not involved in trehalose-mediated neuroprotection. Since trehalose is unlikely to cross the intestinal barrier at the given dose, the results suggest its effects are mediated indirectly through the gut microbiota and GLP-1.
Collapse
Affiliation(s)
- Solène Pradeloux
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Jules Kennang Ouamba
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Roy
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Hembach S, Schmidt S, Orschmann T, Burtscher I, Lickert H, Giesert F, Weisenhorn DV, Wurst W. Engrailed 1 deficiency induces changes in ciliogenesis during human neuronal differentiation. Neurobiol Dis 2024; 194:106474. [PMID: 38518837 DOI: 10.1016/j.nbd.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation. Although the EN1 ko didn't interfere with neuronal differentiation and generation of tyrosine hydroxylase positive (TH+) neurons per se, the neurons exhibited shorter neurites. Furthermore, mitochondrial respiration, as well as mitochondrial complex I abundance was significantly reduced in fully differentiated neurons. To understand the implications of an EN1 ko during differentiation, we performed a transcriptome analysis of human neuronal precursor cells (hNPCs) which unveiled alterations in cilia-associated pathways. Further analysis of ciliary morphology revealed an elongation of primary cilia in EN1-deficient hNPCs. Besides, also Wnt signaling pathways were severely affected. Upon stimulating hNPCs with Wnt which drastically increased EN1 expression in WT lines, the phenotypes concerning mitochondrial function and cilia were exacerbated in EN1 ko hNPCs. They failed to enhance the expression of the complex I subunits NDUFS1 and 3, and now displayed a reduced mitochondrial respiration. Furthermore, Wnt stimulation decreased ciliogenesis in EN1 ko hNPCs but increased ciliary length even further. This further highlights the relevance of primary cilia next to mitochondria for the functionality and correct maintenance of human DAns and provides new possibilities to establish neuroprotective therapies for PD.
Collapse
Affiliation(s)
- Sina Hembach
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Neurobiological Engineering, Munich Institute of Biomedical Engineering, TUM School of Natural Sciences, Garching, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany
| | - Tanja Orschmann
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technische Universität München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany; Technische Universität München-Weihenstephan, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
9
|
Mohd Rafiq N, Fujise K, Rosenfeld MS, Xu P, De Camilli P. Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons. Proc Natl Acad Sci U S A 2024; 121:e2318943121. [PMID: 38635628 PMCID: PMC11047088 DOI: 10.1073/pnas.2318943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.
Collapse
Affiliation(s)
- Nisha Mohd Rafiq
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Martin Shaun Rosenfeld
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
10
|
Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17:1379889. [PMID: 38660383 PMCID: PMC11042029 DOI: 10.3389/fnmol.2024.1379889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food. Moreover, endocannabinoids are shown to fine-tune dopamine-signaled processes governing motivated behavior. Specifically, it has been demonstrated that excitatory and inhibitory inputs controlled by the cannabinoid type 1 receptor (CB1) regulate dopaminergic neurons in the mesocorticolimbic pathway. In the present study, we show that mesencephalic dopaminergic (mesDA) neurons in the ventral tegmental area (VTA) express CB1, and we investigated the consequences of specific deletion of CB1 in cells expressing the transcription factor Engrailed-1 (En1). To this end, we validated a new genetic mouse line EN1-CB1-KO, which displays a CB1 knockout in mesDA neurons beginning from their differentiation, as a tool to elucidate the functional contribution of CB1 in mesDA neurons. We revealed that EN1-CB1-KO mice display a significantly increased immobility time and shortened latency to the first immobility in the forced swim test of adult mice. Moreover, the maximal effort exerted to obtain access to chocolate-flavored pellets was significantly reduced under a progressive ratio schedule. In contrast, these mice do not differ in motor skills, anhedonia- or anxiety-like behavior compared to wild-type littermates. Taken together, these findings suggest a depressive-like or despair behavior in an inevitable situation and a lack of motivation to seek palatable food in EN1-CB1-KO mice, leading us to propose that CB1 plays an important role in the physiological functions of mesDA neurons. In particular, our data suggest that CB1 directly modifies the mesocorticolimbic pathway implicated in depressive-like/despair behavior and motivation. In contrast, the nigrostriatal pathway controlling voluntary movement seems to be unaffected.
Collapse
Affiliation(s)
- Sarah Baddenhausen
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Belfiori LF, Dueñas Rey A, Ralbovszki DM, Jimenez-Ferrer I, Fredlund F, Balikai SS, Ahrén D, Brolin KA, Swanberg M. Nigral transcriptomic profiles in Engrailed-1 hemizygous mouse models of Parkinson's disease reveal upregulation of oxidative phosphorylation-related genes associated with delayed dopaminergic neurodegeneration. Front Aging Neurosci 2024; 16:1337365. [PMID: 38374883 PMCID: PMC10875038 DOI: 10.3389/fnagi.2024.1337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disorder, increasing both in terms of prevalence and incidence. To date, only symptomatic treatment is available, highlighting the need to increase knowledge on disease etiology in order to develop new therapeutic strategies. Hemizygosity for the gene Engrailed-1 (En1), encoding a conserved transcription factor essential for the programming, survival, and maintenance of midbrain dopaminergic neurons, leads to progressive nigrostriatal degeneration, motor impairment and depressive-like behavior in SwissOF1 (OF1-En1+/-). The neurodegenerative phenotype is, however, absent in C57Bl/6j (C57-En1+/-) mice. En1+/- mice are thus highly relevant tools to identify genetic factors underlying PD susceptibility. Methods Transcriptome profiles were defined by RNAseq in microdissected substantia nigra from 1-week old OF1, OF1- En1+/-, C57 and C57- En1+/- male mice. Differentially expressed genes (DEGs) were analyzed for functional enrichment. Neurodegeneration was assessed in 4- and 16-week old mice by histology. Results Nigrostriatal neurodegeneration was manifested in OF1- En1+/- mice by increased dopaminergic striatal axonal swellings from 4 to 16 weeks and decreased number of dopaminergic neurons in the SNpc at 16 weeks compared to OF1. In contrast, C57- En1+/- mice had no significant increase in axonal swellings or cell loss in SNpc at 16 weeks. Transcriptomic analyses identified 198 DEGs between OF1- En1+/- and OF1 mice but only 52 DEGs between C57- En1+/- and C57 mice. Enrichment analysis of DEGs revealed that the neuroprotective phenotype of C57- En1+/- mice was associated with a higher expression of oxidative phosphorylation-related genes compared to both C57 and OF1- En1+/- mice. Discussion Our results suggest that increased expression of genes encoding mitochondrial proteins before the onset of neurodegeneration is associated with increased resistance to PD-like nigrostriatal neurodegeneration. This highlights the importance of genetic background in PD models, how different strains can be used to model clinical and sub-clinical pathologies and provides insights to gene expression mechanisms associated with PD susceptibility and progression.
Collapse
Affiliation(s)
- Lautaro Francisco Belfiori
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alfredo Dueñas Rey
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dorottya Mária Ralbovszki
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Filip Fredlund
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sagar Shivayogi Balikai
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Dag Ahrén
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Stockholm, Sweden
| | - Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Chaudhary R, Singh R. Therapeutic Viewpoint on Rat Models of Locomotion Abnormalities and Neurobiological Indicators in Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:488-503. [PMID: 37202886 DOI: 10.2174/1871527322666230518111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Locomotion problems in Parkinson's syndrome are still a research and treatment difficulty. With the recent introduction of brain stimulation or neuromodulation equipment that is sufficient to monitor activity in the brain using electrodes placed on the scalp, new locomotion investigations in patients having the capacity to move freely have sprung up. OBJECTIVE This study aimed to find rat models and locomotion-connected neuronal indicators and use them all over a closed-loop system to enhance the future and present treatment options available for Parkinson's disease. METHODS Various publications on locomotor abnormalities, Parkinson's disease, animal models, and other topics have been searched using several search engines, such as Google Scholar, Web of Science, Research Gate, and PubMed. RESULTS Based on the literature, we can conclude that animal models are used for further investigating the locomotion connectivity deficiencies of many biological measuring devices and attempting to address unanswered concerns from clinical and non-clinical research. However, translational validity is required for rat models to contribute to the improvement of upcoming neurostimulation-based medicines. This review discusses the most successful methods for modelling Parkinson's locomotion in rats. CONCLUSION This review article has examined how scientific clinical experiments lead to localised central nervous system injuries in rats, as well as how the associated motor deficits and connection oscillations reflect this. This evolutionary process of therapeutic interventions may help to improve locomotion- based treatment and management of Parkinson's syndrome in the upcoming years.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
13
|
Rafiq NM, Fujise K, Rosenfeld MS, Xu P, Wu Y, De Camilli P. Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562142. [PMID: 37873399 PMCID: PMC10592818 DOI: 10.1101/2023.10.12.562142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4,5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting an impaired clearing of proteins from cilia which may result from an endocytic defect at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.
Collapse
Affiliation(s)
- Nisha Mohd Rafiq
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Martin Shaun Rosenfeld
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair. Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
14
|
Lebœuf M, Vargas-Abonce SE, Pezé-Hedsieck E, Dupont E, Jimenez-Alonso L, Moya KL, Prochiantz A. ENGRAILED-1 transcription factor has a paracrine neurotrophic activity on adult spinal α-motoneurons. EMBO Rep 2023; 24:e56525. [PMID: 37534581 PMCID: PMC10398658 DOI: 10.15252/embr.202256525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Several homeoprotein transcription factors transfer between cells and regulate gene expression, protein translation, and chromatin organization in recipient cells. ENGRAILED-1 is one such homeoprotein expressed in spinal V1 interneurons that synapse on α-motoneurons. Neutralizing extracellular ENGRAILED-1 by expressing a secreted single-chain antibody blocks its capture by spinal motoneurons resulting in α-motoneuron loss and limb weakness. A similar but stronger phenotype is observed in the Engrailed-1 heterozygote mouse, confirming that ENGRAILED-1 exerts a paracrine neurotrophic activity on spinal cord α-motoneurons. Intrathecal injection of ENGRAILED-1 leads to its specific internalization by spinal motoneurons and has long-lasting protective effects against neurodegeneration and weakness. Midbrain dopaminergic neurons express Engrailed-1 and, similarly to spinal cord α-motoneurons, degenerate in the heterozygote. We identify genes expressed in spinal cord motoneurons whose expression changes in mouse Engrailed-1 heterozygote midbrain neurons. Among these, p62/SQSTM1 shows increased expression during aging in spinal cord motoneurons in the Engrailed-1 heterozygote and upon extracellular ENGRAILED-1 neutralization. We conclude that ENGRAILED-1 might regulate motoneuron aging and has non-cell-autonomous neurotrophic activity.
Collapse
Affiliation(s)
- Mélanie Lebœuf
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Stephanie E Vargas-Abonce
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Eugénie Pezé-Hedsieck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Kenneth L Moya
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| |
Collapse
|
15
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
16
|
Wang X, Chen X, Liu G, Cai H, Le W. The Crucial Roles of Pitx3 in Midbrain Dopaminergic Neuron Development and Parkinson's Disease-Associated Neurodegeneration. Int J Mol Sci 2023; 24:8614. [PMID: 37239960 PMCID: PMC10218497 DOI: 10.3390/ijms24108614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The degeneration of midbrain dopaminergic (mDA) neurons, particularly in the substantia nigra pars compacta (SNc), is one of the most prominent pathological hallmarks of Parkinson's disease (PD). To uncover the pathogenic mechanisms of mDA neuronal death during PD may provide therapeutic targets to prevent mDA neuronal loss and slow down the disease's progression. Paired-like homeodomain transcription factor 3 (Pitx3) is selectively expressed in the mDA neurons as early as embryonic day 11.5 and plays a critical role in mDA neuron terminal differentiation and subset specification. Moreover, Pitx3-deficient mice exhibit some canonical PD-related features, including the profound loss of SNc mDA neurons, a dramatic decrease in striatal dopamine (DA) levels, and motor abnormalities. However, the precise role of Pitx3 in progressive PD and how this gene contributes to mDA neuronal specification during early stages remains unclear. In this review, we updated the latest findings on Pitx3 by summarizing the crosstalk between Pitx3 and its associated transcription factors in mDA neuron development. We further explored the potential benefits of Pitx3 as a therapeutic target for PD in the future. To better understand the transcriptional network of Pitx3 in mDA neuron development may provide insights into Pitx3-related clinical drug-targeting research and therapeutic approaches.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.W.)
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 611731, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.W.)
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 611731, China
| | - Guangdong Liu
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.W.)
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 611731, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.W.)
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 611731, China
| |
Collapse
|
17
|
Prakash N. Developmental pathways linked to the vulnerability of adult midbrain dopaminergic neurons to neurodegeneration. Front Mol Neurosci 2022; 15:1071731. [PMID: 36618829 PMCID: PMC9815185 DOI: 10.3389/fnmol.2022.1071731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The degeneration of dopaminergic and other neurons in the aging brain is considered a process starting well beyond the infantile and juvenile period. In contrast to other dopamine-associated neuropsychiatric disorders, such as schizophrenia and drug addiction, typically diagnosed during adolescence or young adulthood and, thus, thought to be rooted in the developing brain, Parkinson's Disease (PD) is rarely viewed as such. However, evidences have accumulated suggesting that several factors might contribute to an increased vulnerability to death of the dopaminergic neurons at an already very early (developmental) phase in life. Despite the remarkable ability of the brain to compensate such dopamine deficits, the early loss or dysfunction of these neurons might predispose an individual to suffer from PD because the critical threshold of dopamine function will be reached much earlier in life, even if the time-course and strength of naturally occurring and age-dependent dopaminergic cell death is not markedly altered in this individual. Several signaling and transcriptional pathways required for the proper embryonic development of the midbrain dopaminergic neurons, which are the most affected in PD, either continue to be active in the adult mammalian midbrain or are reactivated at the transition to adulthood and under neurotoxic conditions. The persistent activity of these pathways often has neuroprotective functions in adult midbrain dopaminergic neurons, whereas the reactivation of silenced pathways under pathological conditions can promote the survival and even regeneration of these neurons in the lesioned or aging brain. This article summarizes our current knowledge about signaling and transcription factors involved in midbrain dopaminergic neuron development, whose reduced gene dosage or signaling activity are implicated in a lower survival rate of these neurons in the postnatal or aging brain. It also discusses the evidences supporting the neuroprotection of the midbrain dopaminergic system after the external supply or ectopic expression of some of these secreted and nuclear factors in the adult and aging brain. Altogether, the timely monitoring and/or correction of these signaling and transcriptional pathways might be a promising approach to a much earlier diagnosis and/or prevention of PD.
Collapse
|
18
|
Faubel RJ, Santos Canellas VS, Gaesser J, Beluk NH, Feinstein TN, Wang Y, Yankova M, Karunakaran KB, King SM, Ganapathiraju MK, Lo CW. Flow blockage disrupts cilia-driven fluid transport in the epileptic brain. Acta Neuropathol 2022; 144:691-706. [PMID: 35980457 DOI: 10.1007/s00401-022-02463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
A carpet of ependymal motile cilia lines the brain ventricular system, forming a network of flow channels and barriers that pattern cerebrospinal fluid (CSF) flow at the surface. This CSF transport system is evolutionary conserved, but its physiological function remains unknown. Here we investigated its potential role in epilepsy with studies focused on CDKL5 deficiency disorder (CDD), a neurodevelopmental disorder with early-onset epilepsy refractory to seizure medications and the most common cause of infant epilepsy. CDKL5 is a highly conserved X-linked gene suggesting its function in regulating cilia length and motion in the green alga Chlamydomonas might have implication in the etiology of CDD. Examination of the structure and function of airway motile cilia revealed both the CDD patients and the Cdkl5 knockout mice exhibit cilia lengthening and abnormal cilia motion. Similar defects were observed for brain ventricular cilia in the Cdkl5 knockout mice. Mapping ependymal cilia generated flow in the ventral third ventricle (v3V), a brain region with important physiological functions showed altered patterning of flow. Tracing of cilia-mediated inflow into v3V with fluorescent dye revealed the appearance of a flow barrier at the inlet of v3V in Cdkl5 knockout mice. Analysis of mice with a mutation in another epilepsy-associated kinase, Yes1, showed the same disturbance of cilia motion and flow patterning. The flow barrier was also observed in the Foxj1± and FOXJ1CreERT:Cdkl5y/fl mice, confirming the contribution of ventricular cilia to the flow disturbances. Importantly, mice exhibiting altered cilia-driven flow also showed increased susceptibility to anesthesia-induced seizure-like activity. The cilia-driven flow disturbance arises from altered cilia beating orientation with the disrupted polarity of the cilia anchoring rootlet meshwork. Together these findings indicate motile cilia disturbances have an essential role in CDD-associated seizures and beyond, suggesting cilia regulating kinases may be a therapeutic target for medication-resistant epilepsy.
Collapse
Affiliation(s)
- Regina J Faubel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Veronica S Santos Canellas
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Jenna Gaesser
- Division of Child Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Nancy H Beluk
- Division of Radiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tim N Feinstein
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Yong Wang
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, And Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT, 06030-3305, USA
| | - Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Stephen M King
- Department of Molecular Biology and Biophysics, And Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT, 06030-3305, USA
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA.
| |
Collapse
|
19
|
Joliot A, Prochiantz A. Unconventional Secretion, Gate to Homeoprotein Intercellular Transfer. Front Cell Dev Biol 2022; 10:926421. [PMID: 35837333 PMCID: PMC9274163 DOI: 10.3389/fcell.2022.926421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Unconventional secretion allows for the secretion of fully mature and biologically active proteins mostly present in the cytoplasm or nucleus. Besides extra vesicle-driven secretion, non-extravesicular pathways also exist that specifically rely on the ability of the secreted proteins to translocate directly across the plasma membrane. This is the case for several homeoproteins, a family of over 300 transcription factors characterized by the structure of their DNA-binding homeodomain. The latter highly conserved homeodomain is necessary and sufficient for secretion, a process that requires PI(4,5)P2 binding, as is the case for FGF2 and HIV Tat unconventional secretion. An important feature of homeoproteins is their ability to cross membranes in both directions and thus to transfer between cells. This confers to homeoproteins their paracrine activity, an essential facet of their physiological functions.
Collapse
Affiliation(s)
- Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
- *Correspondence: Alain Joliot,
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL Research University, Labex MemoLife, Paris, France
| |
Collapse
|
20
|
He HJ, Xiong X, Zhou S, Zhang XR, Zhao X, Chen L, Xie CL. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson's models. Neurochem Int 2022; 155:105297. [PMID: 35122926 DOI: 10.1016/j.neuint.2022.105297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Curcumin, a polyphenolic compound extracted from curcuma longa, acts as a nontoxic matter with anti-oxidant and anti-inflammatory effects as well as antiproliferative activities. Here, our research aimed to explore the neuroprotective effects of curcumin both in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) in vivo and 6-OHDA-lesioned PC12 cells in vitro. In vitro, 6-OHDA caused a distinct decrease in cell viability of PC12 cells (150 μM). With the incubation of curcumin (1 μM), 6-OHDA-induced apoptosis was suppressed, increasing the autophagy markers (LC3-II/LC3-I, Beclin-1) and inhibiting phosphor-AKT/AKT, phosphor-mTOR/mTOR. In vivo, curcumin (50 mg/kg) reduced the accumulation of a-synuclein and led to higher parkinsonian disability scores in 6-OHDA-lesioned PD rats, contributing to induction of autophagy through inhibiting AKT/mTOR signal pathway. Moreover, treatment with autophagy inhibitors, such as 3-MA and chloroquine, abolished the neuroprotective effects of curcumin as evidence by compromised autophagy and declined motor behavior in PD rats. In conclusion, the present study demonstrated that curcumin repressed PC12 cell death in vitro and improved parkinsonian disability scores in vivo by inhibiting AKT/mTOR signaling pathway which mediated by autophagy, indicating a potential value of curcumin in the therapeutic intervention of Parkinson's disease.
Collapse
Affiliation(s)
- Hai-Jun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Xiong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuoting Zhou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xing-Ru Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuemiao Zhao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lingli Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, China; Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory, Wenzhou, Zhejiang, China.
| |
Collapse
|
21
|
Roles of Transcription Factors in the Development and Reprogramming of the Dopaminergic Neurons. Int J Mol Sci 2022; 23:ijms23020845. [PMID: 35055043 PMCID: PMC8775916 DOI: 10.3390/ijms23020845] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The meso-diencephalic dopaminergic (mdDA) neurons regulate various critical processes in the mammalian nervous system, including voluntary movement and a wide range of behaviors such as mood, reward, addiction, and stress. mdDA neuronal loss is linked with one of the most prominent human movement neurological disorders, Parkinson’s disease (PD). How these cells die and regenerate are two of the most hotly debated PD research topics. As for the latter, it has been long known that a series of transcription factors (TFs) involves the development of mdDA neurons, specifying cell types and controlling developmental patterns. In vitro and in vivo, TFs regulate the expression of tyrosine hydroxylase, a dopamine transporter, vesicular monoamine transporter 2, and L-aromatic amino acid decarboxylase, all of which are critical for dopamine synthesis and transport in dopaminergic neurons (DA neurons). In this review, we encapsulate the molecular mechanism of TFs underlying embryonic growth and maturation of mdDA neurons and update achievements on dopaminergic cell therapy dependent on knowledge of TFs in mdDA neuronal development. We believe that a deeper understanding of the extrinsic and intrinsic factors that influence DA neurons’ fate and development in the midbrain could lead to a better strategy for PD cell therapy.
Collapse
|
22
|
Tan C, Liu X, Zhang X, Peng W, Wang H, Zhou W, Jiang J, Mo L, Chen Y, Chen L. Fyn kinase regulates dopaminergic neuronal apoptosis in animal and cell models of high glucose (HG) treatment. BMC Mol Cell Biol 2021; 22:58. [PMID: 34863087 PMCID: PMC8642997 DOI: 10.1186/s12860-021-00398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background High glucose (HG) is linked to dopaminergic neuron loss and related Parkinson’s disease (PD), but the mechanism is unclear. Results Rats and differentiated SH-SY5Y cells were used to investigate the effect of HG on dopaminergic neuronal apoptotic death. We found that a 40-day HG diet elevated cleaved caspase 3 levels and activated Fyn and mTOR/S6K signaling in the substantia nigra of rats. In vitro, 6 days of HG treatment activated Fyn, enhanced binding between Fyn and mTOR, activated mTOR/S6K signaling, and induced neuronal apoptotic death. The proapoptotic effect of HG was rescued by either the Fyn inhibitor PP1 or the mTOR inhibitor rapamycin. PP1 inhibited mTOR/S6K signaling, but rapamycin was unable to modulate Fyn activation. Conclusions HG induces dopaminergic neuronal apoptotic death via the Fyn/mTOR/S6K pathway.
Collapse
Affiliation(s)
- Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | | | - Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hui Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
23
|
Trophoblast glycoprotein is a new candidate gene for Parkinson’s disease. NPJ Parkinsons Dis 2021; 7:110. [PMID: 34876581 PMCID: PMC8651753 DOI: 10.1038/s41531-021-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractParkinson’s disease (PD) is a movement disorder caused by progressive degeneration of the midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNc). Despite intense research efforts over the past decades, the etiology of PD remains largely unknown. Here, we discovered the involvement of trophoblast glycoprotein (Tpbg) in the development of PD-like phenotypes in mice. Tpbg expression was detected in the ventral midbrain during embryonic development and in mDA neurons in adulthood. Genetic ablation of Tpbg resulted in mild degeneration of mDA neurons in aged mice (12–14 months) with behavioral deficits reminiscent of PD symptoms. Through in silico analysis, we predicted potential TPBG-interacting partners whose functions were relevant to PD pathogenesis; this result was substantiated by transcriptomic analysis of the SNc of aged Tpbg knockout mice. These findings suggest that Tpbg is a new candidate gene associated with PD and provide a new insight into PD pathogenesis.
Collapse
|
24
|
Vincent C, Gilabert-Juan J, Gibel-Russo R, Alvarez-Fischer D, Krebs MO, Le Pen G, Prochiantz A, Di Nardo AA. Non-cell-autonomous OTX2 transcription factor regulates anxiety-related behavior in the mouse. Mol Psychiatry 2021; 26:6469-6480. [PMID: 33963285 PMCID: PMC8760049 DOI: 10.1038/s41380-021-01132-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The OTX2 homeoprotein transcription factor is expressed in the dopaminergic neurons of the ventral tegmental area, which projects to limbic structures controlling complex behaviors. OTX2 is also produced in choroid plexus epithelium, from which it is secreted into cerebrospinal fluid and transferred to limbic structure parvalbumin interneurons. Previously, adult male mice subjected to early-life stress were found susceptible to anxiety-like behaviors, with accompanying OTX2 expression changes in ventral tegmental area or choroid plexus. Here, we investigated the consequences of reduced OTX2 levels in Otx2 heterozygote mice, as well as in Otx2+/AA and scFvOtx2tg/0 mouse models for decreasing OTX2 transfer from choroid plexus to parvalbumin interneurons. Both male and female adult mice show anxiolysis-like phenotypes in all three models. In Otx2 heterozygote mice, we observed no changes in dopaminergic neuron numbers and morphology in ventral tegmental area, nor in their metabolic output and projections to target structures. However, we found reduced expression of parvalbumin in medial prefrontal cortex, which could be rescued in part by adult overexpression of Otx2 specifically in choroid plexus, resulting in increased anxiety-like behavior. Taken together, OTX2 synthesis by the choroid plexus followed by its secretion into the cerebrospinal fluid is an important regulator of anxiety-related phenotypes in the mouse.
Collapse
Affiliation(s)
- Clémentine Vincent
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Javier Gilabert-Juan
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rachel Gibel-Russo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
| | | | - Marie-Odile Krebs
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
- Faculté de Médecine, Université de Paris, Pôle Hospitalo-Universitaire Evaluation Prévention et Innovation Thérapeutique, GHU Paris Psychiatrie et Neurosciences site Sainte-Anne, Paris, France
| | - Gwenaëlle Le Pen
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| |
Collapse
|
25
|
Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett 2021; 595:2733-2755. [PMID: 34626428 DOI: 10.1002/1873-3468.14205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases (NDs), including the most prevalent Alzheimer's disease and Parkinson disease, share common pathological features. Despite decades of gene-centric approaches, the molecular mechanisms underlying these diseases remain widely elusive. In recent years, transposable elements (TEs), long considered 'junk' DNA, have gained growing interest as pathogenic players in NDs. Age is the major risk factor for most NDs, and several repressive mechanisms of TEs, such as heterochromatinization, fail with age. Indeed, heterochromatin relaxation leading to TE derepression has been reported in various models of neurodegeneration and NDs. There is also evidence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43) may control the expression of TEs. The deleterious consequences of TE activation are not well known but they could include DNA damage and genomic instability, altered host gene expression, and/or neuroinflammation, which are common hallmarks of neurodegeneration and aging. TEs might thus represent an overlooked pathogenic culprit for both brain aging and neurodegeneration. Certain pathological effects of TEs might be prevented by inhibiting their activity, pointing to TEs as novel targets for neuroprotection.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rania Znaidi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tom Bonnifet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
27
|
Deng I, Corrigan F, Garg S, Zhou XF, Bobrovskaya L. Further Characterization of Intrastriatal Lipopolysaccharide Model of Parkinson's Disease in C57BL/6 Mice. Int J Mol Sci 2021; 22:7380. [PMID: 34299000 PMCID: PMC8304722 DOI: 10.3390/ijms22147380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms such as olfactory dysfunction, gastrointestinal dysfunction, impaired regulation of the sleep-wake cycle, anxiety, depression, and cognitive impairment. Inflammation and concomitant oxidative stress are crucial in the pathogenesis of PD. Thus, this study aimed to model PD via intrastriatal injection of the inflammagen lipopolysaccharide (LPS)to investigate if the lesion causes olfactory and motor impairments, inflammation, oxidative stress, and alteration in synaptic proteins in the olfactory bulb, striatum, and colon. Ten µg of LPS was injected unilaterally into the striatum of 27 male C57BL/6 mice, and behavioural assessment was conducted at 4 and 8 weeks post-treatment, followed by tissue collection. Intrastriatal LPS induced motor impairment in C57BL/6 mice at 8 weeks post-treatment evidenced by reduced latency time in the rotarod test. LPS also induced inflammation in the striatum characterized by increased expression of microglial marker Iba-1 and astrocytic marker GFAP, with degeneration of dopaminergic neuronal fibres (reduced tyrosine hydroxylase immunoreactivity), and reduction of synaptic proteins and DJ-1 protein. Additionally, intrastriatal LPS induced inflammation, oxidative stress and alterations in synaptic proteins within the olfactory bulb, although this did not induce a significant impairment in olfactory function. Intrastriatal LPS induced mild inflammatory changes in the distal colon, accompanied by increased protein expression of 3-nitrotyrosine-modified proteins. This model recapitulated the major features of PD such as motor impairment and degeneration of dopaminergic neuronal fibres in the striatum, as well as some pathological changes in the olfactory bulb and colon; thus, this model could be suitable for understanding clinical PD and testing neuroprotective strategies.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Frances Corrigan
- Medical Sciences, University of Adelaide, Adelaide 5000, Australia;
| | - Sanjay Garg
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| |
Collapse
|
28
|
Makav M, Eroğlu HA. Recuperative effect of estrogen on rotenone-induced experimental model of Parkinson's disease in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21266-21275. [PMID: 33410082 DOI: 10.1007/s11356-020-11985-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is described as the loss of dopaminergic neurons located in the substantia nigra (SN) region of the brain and a progressive motor failure. Increased frequency of PD in women, especially after menopause, suggests the effect of estrogen. This view has been supported with empirical studies. Therefore, the effect of estrogen in an experimental model of Parkinson's disease induced by rotenone was investigated. A total of 32 female Wistar Albino rats were randomly assigned to four groups (control group, ovariectomy group, Parkinson's group, Parkinson's + estrogen group). The Parkinson's group received rotenone subcutanously at the dose of 2.5 mg/kg bw, on the 1st, 2nd, 3rd 4th, 6th, 9th, 12th, 15th, 18th, and 21st days animals in the Parkinson's + estrogen group received retonon as in the Parkinson's group and was additionally subcutaneously given estrogen (implant containing 0.5 mg 17 β-estradiol lasting for 21 days). The rats were subjected to rotarod, pole, and swimming tests at the end of the experiment for comparison of their motor activities, and then, histopathological and biochemical analyses were performed on the tissues that were extracted. The rotarod results revealed that Parkinson's group had the shortest time (32.33 ± 3.98 sn) than the groups of control (92.50 ± 12.60 s) ovariectomy (71.42 ± 10.58 s), and Parkinson's + estrogen (71.37 ± 9.26 s). The results of pole disclosed that return and landing time prolonged for Parkinson's group when compared with other groups (return time for control 2.98 ± 0.38 s, ovariectomy 3.02 ± 0.75 s, Parkinson 5.91 ± 0.33 s, Parkinson's + estrogen 3.48 ± 0.42 s and landing time for control 5.30 ± 0.59 s, ovariectomy 5.45 ± 0.73 s, Parkinson 9.80 ± 0.90 s, Parkinson's + estrogen 5.37 ± 1.02 s). Parkinson's group had longest (90.71 ± 12.56 s) swimming time to reach the target when compared with control (33.16 ± 8.68 s), ovariectomy (47.37 ± 12.19 s), and Parkinson's + estrogen (49.82 ± 5.78 s). Histopathological examination indicated a significant difference in tyrosine hydroxylase-stained cells (dopaminergic neurons and dopamine) between the Parkinson's + estrogen group and the Parkinson's group. The biochemical analyses of Caspas-3 activation in SN and striatum (STR) was significantly different between the Parkinson's + estrogen group and the Parkinson's group, but this difference was not observed in STR while evaluating Bcl-2. The results of this study suggested that estrogen may have a recuperative effect on PD.
Collapse
Affiliation(s)
- Mustafa Makav
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Paşaçayırı Campus, TR-36100, Kars, Turkey.
| | - Hüseyin Avni Eroğlu
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
29
|
谷 沛, 沈 建, 诸 颖, 李 江, 王 丽. [Development in Tissue Clearing Technology and Its Application in Neurodegenerative Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:350-356. [PMID: 34018350 PMCID: PMC10409203 DOI: 10.12182/20210560302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Modern tissue clearing techniques have made it possible to have high-resolution imaging of cell populations and three-dimensional reconstruction of tissue structures, and we are able to obtain more complete three-dimensional brain structures and spatial connections between the various components of brain tissues through tissue clearing techniques. Over the past decade, scientists have developed and improved a number of tissue clearing techniques that are now widely used in neuroscience research, allowing us to extract important information from complex neural networks. Moreover, tissue clearing technology also provides research tools for the stem cell therapy and neurogeneration of neurodegenerative diseases. In this paper, we reviewed the major types of existing tissue clearing techniques and their respective strengths and weaknesses. We summarized the application of these techniques in neurodegenerative disease research and their unique merits. In addition, we explored the development requirements of tissue clearing technology, improvements in the supporting equipment, and its potential to be used as research tools for stem cell therapy and regenerative medicine in the future.
Collapse
Affiliation(s)
- 沛霖 谷
- 中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 (上海 201800)CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- 中国科学院大学 (北京 100049)University of Chinese Academy of Sciences, Beijing 100049, China
| | - 建磊 沈
- 中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 (上海 201800)CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - 颖 诸
- 中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 (上海 201800)CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - 江 李
- 中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 (上海 201800)CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - 丽华 王
- 中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 (上海 201800)CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
30
|
Striatal Afferent BDNF Is Disrupted by Synucleinopathy and Partially Restored by STN DBS. J Neurosci 2021; 41:2039-2052. [PMID: 33472823 PMCID: PMC7939095 DOI: 10.1523/jneurosci.1952-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies show a link between subthalamic nucleus (STN) deep brain stimulation (DBS) and neuroprotection of nigrostriatal dopamine (DA) neurons, potentially through brain-derived neurotrophic factor (BDNF) signaling. However, the question of whether DBS of the STN can be disease-modifying in Parkinson's disease (PD) remains unanswered. In particular, the impact of STN DBS on α-synuclein (α-syn) aggregation, inclusion-associated neuroinflammation, and BDNF levels has yet to be examined in the context of synucleinopathy. To address this, we examined the effects of STN DBS on BDNF using the α-syn preformed fibril (PFF) model in male rats. While PFF injection resulted in accumulation of phosphorylated α-syn (pSyn) inclusions in the substantia nigra pars compacta (SNpc) and cortical areas, STN DBS did not impact PFF-induced accumulation of pSyn inclusions in the SNpc. In addition, nigral pSyn inclusions were associated with increased microgliosis and astrogliosis; however, the magnitude of these processes was not altered by STN DBS. Total BDNF protein was not impacted by pSyn inclusions, but the normally positive association of nigrostriatal and corticostriatal BDNF was reversed in rats with PFF-induced nigrostriatal and corticostriatal inclusions. Despite this, rats receiving both STN DBS and PFF injection showed increased BDNF protein in the striatum, which partially restored the normal corticostriatal relationship. Our results suggest that pathologic α-syn inclusions disrupt anterograde BDNF transport within nigrostriatal and corticostriatal circuitry. Further, STN DBS has the potential to exert protective effects by modifying the long-term neurodegenerative consequences of synucleinopathy. SIGNIFICANCE STATEMENT An increase in brain-derived neurotrophic factor (BDNF) has been linked to the neuroprotection elicited by subthalamic nucleus (STN) deep brain stimulation (DBS) in neurotoxicant models of Parkinson's disease (PD). However, whether STN DBS can similarly increase BDNF in nigrostriatal and corticostriatal circuitry in the presence of α-synuclein (α-syn) inclusions has not been examined. We examined the impact of STN DBS on rats in which accumulation of α-syn inclusions is induced by injection of α-syn preformed fibrils (PFFs). STN DBS significantly increased striatal BDNF protein in rats seeded with α-syn inclusions and partially restored the normal corticostriatal BDNF relationship. These findings suggest that STN DBS can drive BDNF in the parkinsonian brain and retains the potential for neuroprotection in PD.
Collapse
|
31
|
Parra-Damas A, Saura CA. Tissue Clearing and Expansion Methods for Imaging Brain Pathology in Neurodegeneration: From Circuits to Synapses and Beyond. Front Neurosci 2020; 14:914. [PMID: 33122983 PMCID: PMC7571329 DOI: 10.3389/fnins.2020.00914] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Studying the structural alterations occurring during diseases of the nervous system requires imaging heterogeneous cell populations at the circuit, cellular and subcellular levels. Recent advancements in brain tissue clearing and expansion methods allow unprecedented detailed imaging of the nervous system through its entire scale, from circuits to synapses, including neurovascular and brain lymphatics elements. Here, we review the state-of-the-art of brain tissue clearing and expansion methods, mentioning their main advantages and limitations, and suggest their parallel implementation for circuits-to-synapses brain imaging using conventional (diffraction-limited) light microscopy -such as confocal, two-photon and light-sheet microscopy- to interrogate the cellular and molecular basis of neurodegenerative diseases. We discuss recent studies in which clearing and expansion methods have been successfully applied to study neuropathological processes in mouse models and postmortem human brain tissue. Volumetric imaging of cleared intact mouse brains and large human brain samples has allowed unbiased assessment of neuropathological hallmarks. In contrast, nanoscale imaging of expanded cells and brain tissue has been used to study the effect of protein aggregates on specific subcellular structures. Therefore, these approaches can be readily applied to study a wide range of brain processes and pathological mechanisms with cellular and subcellular resolution in a time- and cost-efficient manner. We consider that a broader implementation of these technologies is necessary to reveal the full landscape of cellular and molecular mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos A Saura
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models. ACTA ACUST UNITED AC 2020; 91:e88. [PMID: 32049438 DOI: 10.1002/cpns.88] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins. The majority of PD cases are, however, idiopathic, i.e., having no clear etiology. PD is characterized by progressive accumulation of insoluble inclusions, known as Lewy bodies, mostly composed of α-synuclein and membrane components. The cause of PD is currently attributed to cellular proteostasis deregulation and mitochondrial dysfunction, which are likely interdependent. In addition, neuroinflammation is present in brains of PD patients, but whether it is the cause or consequence of neurodegeneration remains to be studied. Rodents do not develop PD or PD-like motor symptoms spontaneously; however, neurotoxins, genetic mutations, viral vector-mediated transgene expression and, recently, injections of misfolded α-synuclein have been successfully utilized to model certain aspects of the disease. Here, we critically review the advantages and drawbacks of rodent PD models and discuss approaches to advance pre-clinical PD research towards successful disease-modifying therapy. © 2020 The Authors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Cota-Coronado J, Sandoval-Ávila S, Gaytan-Dávila Y, Diaz N, Vega-Ruiz B, Padilla-Camberos E, Díaz-Martínez N. New transgenic models of Parkinson's disease using genome editing technology. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Cerri S, Blandini F. In vivo modeling of prodromal stage of Parkinson’s disease. J Neurosci Methods 2020; 342:108801. [DOI: 10.1016/j.jneumeth.2020.108801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
|
35
|
Chatterjee D, Sanchez DS, Quansah E, Rey NL, George S, Becker K, Madaj Z, Steiner JA, Ma J, Escobar Galvis ML, Kordower JH, Brundin P. Loss of One Engrailed1 Allele Enhances Induced α-Synucleinopathy. JOURNAL OF PARKINSONS DISEASE 2020; 9:315-326. [PMID: 30932894 PMCID: PMC6597991 DOI: 10.3233/jpd-191590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Parkinson’s disease (PD) is a synucleinopathy that has multiple neuropathological characteristics, with nigrostriatal dopamine system degeneration being a core feature. Current models of PD pathology typically fail to recapitulate several attributes of the pathogenic process and neuropathology. We aimed to define the effects of combining a mouse model exhibiting multiple PD-like changes with intrastriatal injections of α-synuclein (α-syn) pre-formed fibril (PFFs) aggregates. We employed the heterozygous Engrailed 1 (En1+/–) mouse that features several pathophysiological hallmarks of clinical PD. Objective: To test the hypothesis that the neuropathological changes in the En1+/– mice will promote formation of α-syn aggregates following intrastriatal injections of pathogenic human α-syn PFFs. Methods: We unilaterally injected PFFs into the striata of 1-month-old En1+/– and control wild-type mice and euthanized animals at 3 months for post-mortem analysis. Results: Using immunohistochemistry and unbiased stereology, we established that PFF-injected En1+/– mice exhibited a near-threefold increase in pS129-α-syn-positive neurons in the substantia nigra compared to PFF-injected wild-type mice. The PFF-injected En1+/– mice also displayed significant increases in pS129-α-syn-positive neurons in the amygdala and ventral tegmental area; regions of known PD pathology with projections to the striatum. Additionally, we observed amplified pS129-α-syn-positive aggregation in En1+/– mice in multiple cortical regions. Conclusions: Following intrastriatal injection of PFFs, absence of an En1 allele leads to additional aggregation of pathological α-syn, potentially due to En1-loss mediated nigrostriatal impairment. We propose that further development of this double-hit model could result in a PD mouse model that predicts which experimental therapies will be effective in PD.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Daniel Saiz Sanchez
- Medical School, Ciudad Real, Castilla-La Mancha, Spain.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Sonia George
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Research Center for Brain Repair, Rush University Medical Center, Chicago, IL, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
36
|
Cenci MA, Björklund A. Animal models for preclinical Parkinson's research: An update and critical appraisal. PROGRESS IN BRAIN RESEARCH 2020; 252:27-59. [PMID: 32247366 DOI: 10.1016/bs.pbr.2020.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models of Parkinson's disease (PD) are essential to investigate pathogenic pathways at the whole-organism level. Moreover, they are necessary for a preclinical investigation of potential new therapies. Different pathological features of PD can be induced in a variety of invertebrate and vertebrate species using toxins, drugs, or genetic perturbations. Each model has a particular utility and range of applicability. Invertebrate PD models are particularly useful for high throughput-screening applications, whereas mammalian models are needed to explore complex motor and non-motor features of the human disease. Here, we provide a comprehensive review and critical appraisal of the most commonly used mammalian models of PD, which are produced in rats and mice. A substantial loss of nigrostriatal dopamine neurons is necessary for the animal to exhibit a hypokinetic motor phenotype responsive to dopaminergic agents, thus resembling clinical PD. This level of dopaminergic neurodegeneration can be induced using specific neurotoxins, environmental toxicants, or proteasome inhibitors. Alternatively, nigrostriatal dopamine degeneration can be induced via overexpression of α-synuclein using viral vectors or transgenic techniques. In addition, protein aggregation pathology can be triggered by inoculating preformed fibrils of α-synuclein in the substantia nigra or the striatum. Thanks to the conceptual and technical progress made in the past few years a vast repertoire of well-characterized animal models are currently available to address different aspects of PD in the laboratory.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.
| | - Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Pang Q, Sun G, Xin T, Zhang R, Liu C. Fucoxanthin attenuates behavior deficits and neuroinflammatory response in 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine-induced parkinson's disease in mice. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_318_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
FTO: An Emerging Molecular Player in Neuropsychiatric Diseases. Neuroscience 2019; 418:15-24. [DOI: 10.1016/j.neuroscience.2019.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023]
|
39
|
Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019; 9:238. [PMID: 31540439 PMCID: PMC6770198 DOI: 10.3390/brainsci9090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial pyruvate carriers mediate pyruvate import into the mitochondria, which is key to the sustenance of the tricarboxylic cycle and oxidative phosphorylation. However, inhibition of mitochondria pyruvate carrier-mediated pyruvate transport was recently shown to be beneficial in experimental models of neurotoxicity pertaining to the context of Parkinson's disease, and is also protective against excitotoxic neuronal death. These findings attested to the metabolic adaptability of neurons resulting from MPC inhibition, a phenomenon that has also been shown in other tissue types. In this short review, I discuss the mechanism and potential feasibility of mitochondrial pyruvate carrier inhibition as a neuroprotective strategy in neuronal injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
40
|
Carmo M, Gonçalves FQ, Canas PM, Oses JP, Fernandes FD, Duarte FV, Palmeira CM, Tomé AR, Agostinho P, Andrade GM, Cunha RA. Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A 2A receptor over-activation in a rat model of Parkinson's disease. Br J Pharmacol 2019; 176:3666-3680. [PMID: 31220343 DOI: 10.1111/bph.14771] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 05/01/2019] [Accepted: 06/01/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) involves an initial loss of striatal dopamine terminals evolving into degeneration of dopamine neurons in substantia nigra (SN), which can be modelled by 6-hydroxydopamine (6-OHDA) administration. Adenosine A2A receptor blockade attenuates PD features in animal models, but the source of the adenosine causing A2A receptor over-activation is unknown. As ATP is a stress signal, we have tested if extracellular catabolism of adenine nucleotides into adenosine (through ecto-5'-nucleotidase or CD73) leads to A2A receptor over-activation in PD. EXPERIMENTAL APPROACH Effects of blocking CD73 with α,β-methylene ADP (AOPCP) were assayed in 6-OHDA-treated rats and dopamine-differentiated neuroblastoma SH-SY5Y cells. KEY RESULTS 6-OHDA increased ATP release and extracellular conversion into adenosine through CD73 up-regulation in SH-SY5Y cells. Removing extracellular adenosine with adenosine deaminase, blocking CD73 with AOPCP, or blocking A2A receptors with SCH58261 were equi-effective in preventing 6-OHDA-induced damage in SH-SY5Y cells. In vivo striatal exposure to 6-OHDA increased ATP release and extracellular formation of adenosine from adenosine nucleotides and up-regulated CD73 and A2A receptors in striatal synaptosomes. Intracerebroventricular administration of AOPCP phenocopied effects of SCH58261, attenuating 6-OHDA-induced (a) increase of contralateral rotations after apomorphine, (b) reduction of dopamine content in striatum and SN, (c) loss of TH staining in striatum and SN, (d) motor dysfunction in the cylinder test, and (e) short-term memory impairment in the object recognition test. CONCLUSION AND IMPLICATIONS Our data indicate that increased ATP-derived adenosine formation is responsible for A2A receptor over-activation in PD, suggesting CD73 as a new target to manage PD.
Collapse
Affiliation(s)
- Marta Carmo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jean-Pierre Oses
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco D Fernandes
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Geanne M Andrade
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Thomasson N, Pioli E, Friedel C, Monseur A, Lavaur J, Moya KL, Bezard E, Bousseau A, Prochiantz A. Engrailed-1 induces long-lasting behavior benefit in an experimental Parkinson primate model. Mov Disord 2019; 34:1082-1084. [PMID: 31077447 DOI: 10.1002/mds.27714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 01/23/2023] Open
Affiliation(s)
| | | | | | | | | | - Kenneth L Moya
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique Unité Mixte de Recherche Paris-Sciences-Lettres 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Erwan Bezard
- Motac Neuroscience, Manchester, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | | | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique Unité Mixte de Recherche Paris-Sciences-Lettres 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
42
|
Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys 2019; 47:355-376. [PMID: 29792820 PMCID: PMC6359929 DOI: 10.1146/annurev-biophys-070317-032905] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Collapse
Affiliation(s)
- Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jennifer Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Kristin Overton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.,H oward Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
43
|
Tamtaji OR, Naderi Taheri M, Notghi F, Alipoor R, Bouzari R, Asemi Z. The effects of acupuncture and electroacupuncture on Parkinson's disease: Current status and future perspectives for molecular mechanisms. J Cell Biochem 2019; 120:12156-12166. [PMID: 30938859 DOI: 10.1002/jcb.28654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Among the progressive neurodegenerative disorders, Parkinson's disease (PD) is the second most common. Different factors have critical role in pathophysiology of PD such as apoptosis pathways, inflammatory cytokines, oxidative stress, and neurotransmitters and its receptors abnormalities. Acupuncture and electroacupuncture were considered as nondrug therapies for PD. Although numerous studies has been conducted for assessing the mechanism underlying electroacupuncture and acupuncture, various principal aspects of these treatment procedures remain not well-known. There have also been few investigations on the molecular mechanism of acupuncture and electroacupuncture therapy effects in PD. This review evaluates the effects of electroacupuncture and acupuncture on the molecular mechanism in PD.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mojtaba Naderi Taheri
- Nursing and Midwifery Care Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Deptartment of Community Health and Geriatric Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fahimeh Notghi
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reihanesadat Bouzari
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
44
|
Cognitive and anxiety-like impairments accompanied by serotonergic ultrastructural and immunohistochemical alterations in early stages of parkinsonism. Brain Res Bull 2019; 146:213-223. [DOI: 10.1016/j.brainresbull.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
|
45
|
Di Nardo AA, Fuchs J, Joshi RL, Moya KL, Prochiantz A. The Physiology of Homeoprotein Transduction. Physiol Rev 2019; 98:1943-1982. [PMID: 30067157 DOI: 10.1152/physrev.00018.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The homeoprotein family comprises ~300 transcription factors and was long seen as primarily involved in developmental programs through cell autonomous regulation. However, recent evidence reveals that many of these factors are also expressed in the adult where they exert physiological functions not yet fully deciphered. Furthermore, the DNA-binding domain of most homeoproteins contains two signal sequences allowing their secretion and internalization, thus intercellular transfer. This review focuses on this new-found signaling in cell migration, axon guidance, and cerebral cortex physiological homeostasis and speculates on how it may play important roles in early arealization of the neuroepithelium. It also describes the use of homeoproteins as therapeutic proteins in mouse models of diseases affecting the central nervous system, in particular Parkinson disease and glaucoma.
Collapse
Affiliation(s)
- Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Julia Fuchs
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Rajiv L Joshi
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Kenneth L Moya
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University , Paris , France
| |
Collapse
|
46
|
Kreiner G. What have we learned recently from transgenic mouse models about neurodegeneration? The most promising discoveries of this millennium. Pharmacol Rep 2018; 70:1105-1115. [DOI: 10.1016/j.pharep.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
|
47
|
Severi KE, Böhm UL, Wyart C. Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing. Sci Rep 2018; 8:13615. [PMID: 30206288 PMCID: PMC6134141 DOI: 10.1038/s41598-018-31968-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 11/14/2022] Open
Abstract
Locomotion in vertebrates relies on motor circuits in the spinal cord receiving inputs from the hindbrain to execute motor commands while dynamically integrating proprioceptive sensory feedback. The spatial organization of the neuronal networks driving locomotion in the hindbrain and role of inhibition has not been extensively investigated. Here, we mapped neuronal activity with single-cell resolution in the hindbrain of restrained transgenic Tg(HuC:GCaMP5G) zebrafish larvae swimming in response to whole-field visual motion. We combined large-scale population calcium imaging in the hindbrain with simultaneous high-speed recording of the moving tail in animals where specific markers label glycinergic inhibitory neurons. We identified cells whose activity preferentially correlates with the visual stimulus or motor activity and used brain registration to compare data across individual larvae. We then morphed calcium imaging data onto the zebrafish brain atlas to compare with known transgenic markers. We report cells localized in the cerebellum whose activity is shut off by the onset of the visual stimulus, suggesting these cells may be constitutively active and silenced during sensorimotor processing. Finally, we discover that the activity of a medial stripe of glycinergic neurons in the domain of expression of the transcription factor engrailed1b is highly correlated with the onset of locomotion. Our efforts provide a high-resolution, open-access dataset for the community by comparing our functional map of the hindbrain to existing open-access atlases and enabling further investigation of this population's role in locomotion.
Collapse
Affiliation(s)
- Kristen E Severi
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Urs L Böhm
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France.
| |
Collapse
|
48
|
Paul R, Dutta A, Phukan BC, Mazumder MK, Justin-Thenmozhi A, Manivasagam T, Bhattacharya P, Borah A. Accumulation of Cholesterol and Homocysteine in the Nigrostriatal Pathway of Brain Contributes to the Dopaminergic Neurodegeneration in Mice. Neuroscience 2018; 388:347-356. [DOI: 10.1016/j.neuroscience.2018.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/15/2018] [Accepted: 07/23/2018] [Indexed: 11/26/2022]
|
49
|
Blaudin de Thé FX, Rekaik H, Peze-Heidsieck E, Massiani-Beaudoin O, Joshi RL, Fuchs J, Prochiantz A. Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE-1 repression. EMBO J 2018; 37:embj.201797374. [PMID: 29941661 DOI: 10.15252/embj.201797374] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
LINE-1 mobile genetic elements have shaped the mammalian genome during evolution. A minority of them have escaped fossilization which, when activated, can threaten genome integrity. We report that LINE-1 are expressed in substantia nigra ventral midbrain dopaminergic neurons, a class of neurons that degenerate in Parkinson's disease. In Engrailed-1 heterozygotes, these neurons show a progressive degeneration that starts at 6 weeks of age, coinciding with an increase in LINE-1 expression. Similarly, DNA damage and cell death, induced by an acute oxidative stress applied to embryonic midbrain neurons in culture or to adult midbrain dopaminergic neurons in vivo, are accompanied by enhanced LINE-1 expression. Reduction of LINE-1 activity through (i) direct transcriptional repression by Engrailed, (ii) a siRNA directed against LINE-1, (iii) the nucleoside analogue reverse transcriptase inhibitor stavudine, and (iv) viral Piwil1 expression, protects against oxidative stress in vitro and in vivo We thus propose that LINE-1 overexpression triggers oxidative stress-induced DNA strand breaks and that an Engrailed adult function is to protect mesencephalic dopaminergic neurons through the repression of LINE-1 expression.
Collapse
Affiliation(s)
- François-Xavier Blaudin de Thé
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Hocine Rekaik
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Eugenie Peze-Heidsieck
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Olivia Massiani-Beaudoin
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Rajiv L Joshi
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Julia Fuchs
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| |
Collapse
|
50
|
Cho C, Michailidis V, Martin LJ. Revealing brain mechanisms of mTOR-mediated translational regulation: Implications for chronic pain. NEUROBIOLOGY OF PAIN 2018; 4:27-34. [PMID: 31194026 PMCID: PMC6550104 DOI: 10.1016/j.ynpai.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
mTOR is a major regulator of protein translation. mTOR serves an important role in neural plasticity. mTOR signalling in the brain as a pathology for neurological disorder is known. mTOR signalling in the brain as a chronic pain mechanism is understudied.
In the spinal cord, altered protein transcription and translation have received a lot of recent attention for their role in neural plasticity, a major mechanism leading to the development of chronic pain. However, changes in brain plasticity are also associated with the maintenance of pain symptoms, but these cellular mechanisms remain less clear. The mechanistic/mammalian target of rapamycin (mTOR) is a master regulator of protein synthesis, and controls several neuronal functions, including neural plasticity. While aberrant changes in mTOR signaling are associated with sensitization of the pain pathway (sensory neurons and spinal cord), there are various nervous system diseases that have pain as a comorbidity and altered mTOR activity in the brain. Here, we provide a brief review of mTOR changes in the brain that are associated with some neurological disorders and focus on how these changes may be relevant to the pain of the underlying condition and chronic pain itself.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Vassilia Michailidis
- Deptartment of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Loren J. Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Deptartment of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Corresponding author at: Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|