1
|
Soto C, Mollenhauer B, Hansson O, Kang UJ, Alcalay RN, Standaert D, Trenkwalder C, Marek K, Galasko D, Poston K. Toward a biological definition of neuronal and glial synucleinopathies. Nat Med 2025; 31:396-408. [PMID: 39885358 DOI: 10.1038/s41591-024-03469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025]
Abstract
Cerebral accumulation of alpha-synuclein (αSyn) aggregates is the hallmark event in a group of neurodegenerative diseases-collectively called synucleinopathies-which include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Currently, these are diagnosed by their clinical symptoms and definitively confirmed postmortem by the presence of αSyn deposits in the brain. Here, we summarize the drawbacks of the current clinical definition of synucleinopathies and outline the rationale for moving toward an earlier, biology-anchored definition of these disorders, with or without the presence of clinical symptoms. We underscore the utility of the αSyn seed amplification assay to detect aggregated αSyn in living patients and to differentiate between neuronal or glial αSyn pathology. We anticipate that a biological definition of synucleinopathies, if well-integrated with the current clinical classifications, will enable further understanding of the disease pathogenesis and contribute to the development of effective, disease-modifying therapies.
Collapse
Affiliation(s)
- Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer's disease and related brain disorders, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| | - Brit Mollenhauer
- University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
- Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Un Jung Kang
- Departments of Neurology and Neuroscience & Physiology, Neuroscience Institute, Fresco Institute for Parkinson's Disease and Movement Disorders, Parekh Center for Interdisciplinary Neurology, Grossman School of Medicine, New York University, New York, NY, USA
| | - Roy N Alcalay
- Columbia University Irving Medical Center, New York, NY, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - David Standaert
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Claudia Trenkwalder
- University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Kenneth Marek
- Institute for Neurodegerative Disorders, New Haven, CT, USA
| | - Douglas Galasko
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center, UC San Diego, La Jolla, CA, USA
| | - Kathleen Poston
- Department of Neurology & Neurological Sciences, Stanford Movement Disorders Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Afzal M, Hameed H, Paiva-Santos AC, Saleem M, Hameed A, Ahmad SM. Bioengineered exosomes: Cellular membrane-camouflaged biomimetic nanocarriers for Parkinson's disease management. Eur J Pharmacol 2025; 987:177199. [PMID: 39662659 DOI: 10.1016/j.ejphar.2024.177199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease is a prevalent neurological condition that affects around 1% of adults over 60 worldwide. Deep brain stimulation and dopamine replacement therapy are common therapies for Parkinson's disease, yet they are unable to reverse the disease it simply because of the blood brain barrier. The use of bioengineered exosomes to treat Parkinson's disease is being studied because they have the ability to cross the blood-brain barrier. Their natural ability to cross the blood-brain barrier (BBB) and their biocompatibility make them highly suitable for delivering therapeutic agents to manage PD, specifically the role of astrocytes, microglial cells, and alpha-synuclein. It also explores the biogenesis and preparation of these bioengineered exosomes. In comparison to conventional nanocarriers, the modified exosomal-membrane-camouflaged abiotic nanocarriers show improved resilience and compatibility. Improved cellular absorption and targeted delivery of therapeutic payloads, such as medications and enzymes, are being shown in laboratory trials. A viable strategy for treating PD involves combining abiotic nanocarriers with bioengineered exosomal membranes. Despite their promising potential, successful clinical application requires overcoming hurdles related to scalable production, regulatory approval, and long-term safety evaluation. Nevertheless, the innovative use of bioengineered exosomes holds significant promise for advancing PD management and improving patient outcomes through more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Maham Afzal
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Makkia Saleem
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Syed Muhammad Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| |
Collapse
|
3
|
Salunkhe J, Ugale R. Recent updates on immunotherapy in neurodegenerative diseases. Brain Res 2024; 1845:149205. [PMID: 39197568 DOI: 10.1016/j.brainres.2024.149205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Neurodegeneration is a progressive event leading to specific neuronal loss due to the accumulation of aberrant proteins. These pathologic forms of proteins further worsen and interfere with normal physiologic mechanisms, which can lead to abnormal proliferation of immune cells and subsequent inflammatory cascades and ultimately neuronal loss. Recently, immunotherapies targeting abnormal, pathologic forms of protein have shown a promising approach to modify the progression of neurodegeneration. Recent advances in immunotherapy have led to the development of novel antibodies against the proteinopathies which can eradicate aggregations of protein as evident from preclinical and clinical studies. Nonetheless, only a few of them have successfully received clinical approval, while others have been discontinued due to a lack of clinical efficacy endpoints. The current review discusses the status of investigational antibodies under clinical trials, their targets for therapeutic action, and evidence for failure or success.
Collapse
Affiliation(s)
- Jotiram Salunkhe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
| |
Collapse
|
4
|
Massaro Cenere M, Tiberi M, Paldino E, D'Addario SL, Federici M, Giacomet C, Cutuli D, Matteocci A, Cossa F, Zarrilli B, Casadei N, Ledonne A, Petrosini L, Berretta N, Fusco FR, Chiurchiù V, Mercuri NB. Systemic inflammation accelerates neurodegeneration in a rat model of Parkinson's disease overexpressing human alpha synuclein. NPJ Parkinsons Dis 2024; 10:213. [PMID: 39500895 PMCID: PMC11538257 DOI: 10.1038/s41531-024-00824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Increasing efforts have been made to elucidate how genetic and environmental factors interact in Parkinson's disease (PD). In the present study, we assessed the development of symptoms on a genetic PD rat model that overexpresses human α-synuclein (Snca+/+) at a presymptomatic age, exposed to a pro-inflammatory insult by intraperitoneal injection of lipopolysaccharide (LPS), using immunohistology, high-dimensional flow cytometry, constant potential amperometry, and behavioral analyses. A single injection of LPS into WT and Snca+/+ rats triggered long-lasting increase in the activation of pro-inflammatory microglial markers, monocytes, and T lymphocytes. However, only LPS Snca+/+ rats showed dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc), associated with a reduction in the release of evoked dopamine in the striatum. No significant changes were observed in the behavioral domain. We propose our double-hit animal as a reliable model to investigate the mechanisms whereby α-synuclein and inflammation interact to promote neurodegeneration in PD.
Collapse
Affiliation(s)
- Mariangela Massaro Cenere
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Marta Tiberi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Resolution of Neuroinflammation, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Emanuela Paldino
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sebastian Luca D'Addario
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mauro Federici
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Cecilia Giacomet
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Debora Cutuli
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Matteocci
- Laboratory of Resolution of Neuroinflammation, Santa Lucia Foundation IRCCS, Rome, Italy
- PhD program in Immunology, Molecular Medicine and Applied biotechnologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Francesca Cossa
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Beatrice Zarrilli
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Petrosini
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Nicola Berretta
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, Santa Lucia Foundation IRCCS, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Nicola B Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Wu H, Zhang ZH, Zhou P, Sui X, Liu X, Sun Y, Zhao X, Pu XP. A Single-Cell Atlas of the Substantia Nigra Reveals Therapeutic Effects of Icaritin in a Rat Model of Parkinson's Disease. Antioxidants (Basel) 2024; 13:1183. [PMID: 39456437 PMCID: PMC11505506 DOI: 10.3390/antiox13101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain are the main pathological changes in Parkinson's disease (PD); however, the mechanism underlying the selective vulnerability of specific neuronal populations in PD remains unclear. Here, we used single-cell RNA sequencing to identify seven cell clusters, including oligodendrocytes, neurons, astrocytes, oligodendrocyte progenitor cells, microglia, synapse-rich cells (SRCs), and endothelial cells, in the substantia nigra of a rotenone-induced rat model of PD based on marker genes and functional definitions. We found that SRCs were a previously unidentified cell subtype, and the tight interactions between SRCs and other cell populations can be improved by icaritin, which is a flavonoid extracted from Epimedium sagittatum Maxim. and exerts anti-neuroinflammatory, antioxidant, and immune-improving effects in PD. We also demonstrated that icaritin bound with transcription factors of SRCs, and icaritin application modulated synaptic characterization of SRCs, neuroinflammation, oxidative stress, and survival of dopaminergic neurons, and improved abnormal energy metabolism, amino acid metabolism, and phospholipase D metabolism of astrocytes in the substantia nigra of rats with PD. Moreover, icaritin supplementation also promotes the recovery of the physiological homeostasis of the other cell clusters to delay the pathogenesis of PD. These data uncovered previously unknown cellular diversity in a rat model of Parkinson's disease and provide insights into the promising therapeutic potential of icaritin in PD.
Collapse
Affiliation(s)
- Hao Wu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhen-Hua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Ping Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Xin Sui
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Xi Liu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- China State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Wang P, Chen C, Shan M. Vincamine alleviates brain injury by attenuating neuroinflammation and oxidative damage in a mouse model of Parkinson's disease through the NF-κB and Nrf2/HO-1 signaling pathways. J Biochem Mol Toxicol 2024; 38:e23714. [PMID: 38629493 DOI: 10.1002/jbt.23714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease featured by progressive loss of nigrostriatal dopaminergic neurons, the etiology of which is associated with the existence of neuroinflammatory response and oxidative stress. Vincamine is an indole alkaloid that was reported to exhibit potent anti-inflammatory and antioxidant properties in many central and/or peripheral diseases. Nevertheless, the specific role of vincamine in PD development remains unknown. In our study, dopaminergic neuron loss was determined through immunohistochemistry staining and western blot analysis of tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of PD mice. Reactive oxygen species (ROS) production and malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) levels were detected through DHE staining and commercially available kits to assess oxidative stress. Pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) levels in the SN were measured via RT-qPCR and western blot analysis. Microglial and astrocyte activation was examined through immunofluorescence staining of Iba-1 (microglia marker) and GFAP (astrocyte marker) in the SN. The regulation of vincamine on the NF-κB and Nrf2/HO-1 pathway was estimated through western blot analysis. Our results showed that vincamine treatment decreased TNF-α, IL-1β, and IL-6 mRNA and protein levels, reduced GFAP and Iba-1 expression, decreased ROS production and MDA level, and increased SOD activity and GSH level in the SN of PD mice. Mechanically, vincamine repressed the phosphorylation levels of p65, IKKβ, and IκBα but enhanced the protein levels of Nrf2 and HO-1 in PD mice. Collectively, vincamine plays a neuroprotective role in PD mouse models by alleviating neuroinflammation and oxidative damage via suppressing the NF-κB pathway and activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Pengjun Wang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen Chen
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Shan
- Department of Neurology, Luohe Central Hospital, Luohe, Henan, China
| |
Collapse
|
7
|
Saponjic J, Mejías R, Nikolovski N, Dragic M, Canak A, Papoutsopoulou S, Gürsoy-Özdemir Y, Fladmark KE, Ntavaroukas P, Bayar Muluk N, Zeljkovic Jovanovic M, Fontán-Lozano Á, Comi C, Marino F. Experimental Models to Study Immune Dysfunction in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:4330. [PMID: 38673915 PMCID: PMC11050170 DOI: 10.3390/ijms25084330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.
Collapse
Affiliation(s)
- Jasna Saponjic
- Department of Neurobiology, Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Rebeca Mejías
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences–National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Asuman Canak
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | | | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, 5020 Bergen, Norway;
| | - Panagiotis Ntavaroukas
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology, Faculty of Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
| | - Ángela Fontán-Lozano
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Franca Marino
- Center for Research in Medical Pharmacology, School of Medicine, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
8
|
Kulesskaya N, Bhattacharjee A, Holmström KM, Vuorio P, Henriques A, Callizot N, Huttunen HJ. HER-096 is a CDNF-derived brain-penetrating peptidomimetic that protects dopaminergic neurons in a mouse synucleinopathy model of Parkinson's disease. Cell Chem Biol 2024; 31:593-606.e9. [PMID: 38039968 DOI: 10.1016/j.chembiol.2023.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotropic factor that modulates unfolded protein response (UPR) pathway signaling and alleviates endoplasmic reticulum (ER) stress providing cytoprotective effects in different models of neurodegenerative disorders. Here, we developed a brain-penetrating peptidomimetic compound based on human CDNF. This compound called HER-096 shows similar potency and mechanism of action as CDNF, and promotes dopamine neuron survival, reduces α-synuclein aggregation and modulates UPR signaling in in vitro models. HER-096 is metabolically stable and able to penetrate to cerebrospinal (CSF) and brain interstitial fluids (ISF) after subcutaneous administration, with an extended CSF and brain ISF half-life compared to plasma. Subcutaneously administered HER-096 modulated UPR pathway activity, protected dopamine neurons, and reduced α-synuclein aggregates and neuroinflammation in substantia nigra of aged mice with synucleinopathy. Peptidomimetic HER-096 is a candidate for development of a disease-modifying therapy for Parkinson's disease with a patient-friendly route of administration.
Collapse
|
9
|
Wang Q, Bu C, Wang H, Zhang B, Chen Q, Shi D, Chi L. Distinct mechanisms underlying the therapeutic effects of low-molecular-weight heparin and chondroitin sulfate on Parkinson's disease. Int J Biol Macromol 2024; 262:129846. [PMID: 38296150 DOI: 10.1016/j.ijbiomac.2024.129846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder influenced by various factors, including age, genetics, and the environment. Current treatments provide symptomatic relief without impeding disease progression. Previous studies have demonstrated the therapeutic potential of exogenous heparin and chondroitin sulfate in PD. However, their therapeutic mechanisms and structure-activity relationships remain poorly understood. In this study, low-molecular-weight heparin (L-HP) and chondroitin sulfate (L-CS) exhibited favorable therapeutic effects in a mouse model of PD. Proteomics revealed that L-HP attenuated mitochondrial dysfunction through its antioxidant properties, whereas L-CS suppressed neuroinflammation by inhibiting platelet activation. Two glycosaminoglycan (GAG)-binding proteins, manganese superoxide dismutase (MnSOD2) and fibrinogen beta chain (FGB), were identified as potential targets of L-HP and L-CS, and we investigated their structure-activity relationships. The IdoA2S-GlcNS6S/GlcNAc6S unit in HP bound to SOD2, whereas the GlcA-GalNAc4S and GlcA-GalNAc4S6S units in CS preferred FGB. Furthermore, N-S and 2-O-S in L-HP, and 4-O-S, 6-O-S, and -COOH in L-CS contributed significantly to the binding process. These findings provide new insights and evidence for the development and use of glycosaminoglycan-based therapeutics for PD.
Collapse
Affiliation(s)
- Qingchi Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Changkai Bu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Haoran Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Bin Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Qingqing Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Deling Shi
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Lianli Chi
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China.
| |
Collapse
|
10
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
11
|
Keskin E, Gezen-Ak D, Dursun E. Amyloid β,α-Synuclein and Amyloid β-α-Synuclein Combination Exert Significant but Different Alterations in Inflammatory Response Profile in Differentiated Human SH-SY5Y Cells. ACS OMEGA 2023; 8:45519-45534. [PMID: 38075821 PMCID: PMC10701882 DOI: 10.1021/acsomega.3c05585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2025]
Abstract
Neurodegeneration is a condition in which the neuronal structure and functions are altered with reduced neuronal survival and increased neuronal death in the central nervous system (CNS). Amyloid-β (Aβ) is the pathological hallmark of a common neurodegenerative disorder, Alzheimer disease. Parkinson disease and dementia with Lewy bodies are among α-synucleinopathies characterized by abnormal accumulation of insoluble α-synuclein protein. Neuroinflammation is seen in those neurodegenerative disorders regulated by cytokines and chemokines released from neurons, microglia, and astrocytes. Our study aimed to (1) define steady-state levels of cytokines and immune response modulators in SH-SY5Y cells that were differentiated into neuron-like cells and (2) compare the levels of target cytokines in cellular models of neurodegenerative disorders, namely, AD, PD, and DLB-like pathologies. AD, PD, and DLB-like pathologies were established by 6 μM Aβ1-42 administration, SNCA (α-synuclein) overexpression, and SNCA overexpression was followed by Aβ1-42 treatment, respectively. Alterations in the levels of 40 released inflammatory proteins (IPs) were analyzed by chemiluminescence-based Western/dot blot. Overexpression of human α-synuclein and administration of Aβ1-42 significantly changed the profile of IPs secretion, with particularly significant changes in CSF2, CCL5, CXCL8, CXCL10, ICAM1, IL1B, and IL16. Bioinformatics analysis revealed possible interactions between α-synuclein and IL1B. While TGF1, CCL2, TNF, IL10, IL4, and IL1B IPs were associated with Aβ 1-42, Aβ 1-42 treatment together with α-synuclein, overexpression is associated only with the IL6 protein. Consequently, AD, PD, and DLB-like pathologies might exert significant but different alterations in the inflammatory response.
Collapse
Affiliation(s)
- Ebru Keskin
- Department
of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Duygu Gezen-Ak
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Erdinç Dursun
- Brain
and Neurodegenerative Disorders Research Laboratories, Department
of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| |
Collapse
|
12
|
Villar-Conde S, Astillero-Lopez V, Gonzalez-Rodriguez M, Saiz-Sanchez D, Martinez-Marcos A, Ubeda-Banon I, Flores-Cuadrado A. Synaptic Involvement of the Human Amygdala in Parkinson's Disease. Mol Cell Proteomics 2023; 22:100673. [PMID: 37947401 PMCID: PMC10700869 DOI: 10.1016/j.mcpro.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
α-Synuclein, a protein mostly present in presynaptic terminals, accumulates neuropathologically in Parkinson's disease in a 6-stage sequence and propagates in the nervous system in a prion-like manner through neurons and glia. In stage 3, the substantia nigra are affected, provoking motor symptoms and the amygdaloid complex, leading to different nonmotor symptoms; from here, synucleinopathy spreads to the temporal cortex and beyond. The expected increase in Parkinson's disease incidence accelerates the need for detection biomarkers; however, the heterogeneity of this disease, including pathological aggregates and pathophysiological pathways, poses a challenge in the search for new therapeutic targets and biomarkers. Proteomic analyses are lacking, and the literature regarding synucleinopathy, neural and glial involvement, and volume of the human amygdaloid complex is controversial. Therefore, the present study combines both proteomic and stereological probes. Data-independent acquisition-parallel accumulation of serial fragmentation proteomic analysis revealed a remarkable proteomic impact, especially at the synaptic level in the human amygdaloid complex in Parkinson's disease. Among the 199 differentially expressed proteins, guanine nucleotide-binding protein G(i) subunit alpha-1 (GNAI1), elongation factor 1-alpha 1 (EEF1A1), myelin proteolipid protein (PLP1), neuroplastin (NPTN), 14-3-3 protein eta (YWHAH), gene associated with retinoic and interferon-induced mortality 19 protein (GRIM19), and orosomucoid-2 (ORM2) stand out as potential biomarkers in Parkinson's disease. Stereological analysis, however, did not reveal alterations regarding synucleinopathy, neural or glial populations, or volume changes. To our knowledge, this is the first proteomic study of the human amygdaloid complex in Parkinson's disease, and it identified possible biomarkers of the disease. Lewy pathology could not be sufficient to cause neurodegeneration or alteration of microglial and astroglial populations in the human amygdaloid complex in Parkinson's disease. Nevertheless, damage at the proteomic level is manifest, showing up significant synaptic involvement.
Collapse
Affiliation(s)
- Sandra Villar-Conde
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Veronica Astillero-Lopez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Melania Gonzalez-Rodriguez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Daniel Saiz-Sanchez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Alino Martinez-Marcos
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - Isabel Ubeda-Banon
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - Alicia Flores-Cuadrado
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| |
Collapse
|
13
|
Leitão ADG, Ahammad RU, Spencer B, Wu C, Masliah E, Rissman RA. Novel systemic delivery of a peptide-conjugated antisense oligonucleotide to reduce α-synuclein in a mouse model of Alzheimer's disease. Neurobiol Dis 2023; 186:106285. [PMID: 37690676 PMCID: PMC10584037 DOI: 10.1016/j.nbd.2023.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aβ). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease, and Dementia with Lewy Bodies, but less so in Alzheimer's Disease (AD), despite the fact that accumulation of α-syn has been confirmed in over 50% of postmortem brains neuropathologically diagnosed with AD. To date, no therapeutic strategy has effectively or consistently downregulated α-syn in AD. Here we tested the hypothesis that by using a systemically-delivered peptide (ApoB11) bound to a modified antisense oligonucleotide against α-syn (ASO-α-syn), we can downregulate α-syn expression in an AD mouse model and improve behavioral and neuropathologic phenotypes. Our results demonstrate that monthly systemic treatment with of ApoB11:ASO α-syn beginning at 6 months of age reduces expression of α-synuclein in the brains of 9-month-old AD mice. Downregulation of α-syn led to reduction in Aβ plaque burden, prevented neuronal loss and astrogliosis. Furthermore, we found that AD mice treated with ApoB11:ASO α-syn had greatly improved hippocampal and spatial memory function in comparison to their control counterparts. Collectively, our data supports the reduction of α-syn through use of systemically-delivered ApoB11:ASO α-syn as a promising future disease-modifying therapeutic for AD.
Collapse
Affiliation(s)
- André D G Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Rijwan U Ahammad
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, United States of America
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD 20892, United States of America
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA 92121, United States of America; VA San Diego Healthcare System, San Diego, CA 92161, United States of America.
| |
Collapse
|
14
|
Viegas MPC, Santos LEC, Aarão MC, Cecilio SG, Medrado JM, Pires AC, Rodrigues AM, Scorza CA, Moret MA, Finsterer J, Scorza FA, Almeida ACG. The nonsynaptic plasticity in Parkinson's disease: Insights from an animal model. Clinics (Sao Paulo) 2023; 78:100242. [PMID: 37480642 PMCID: PMC10387572 DOI: 10.1016/j.clinsp.2023.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The 6-OHDA nigro-striatal lesion model has already been related to disorders in the excitability and synchronicity of neural networks and variation in the expression of transmembrane proteins that control intra and extracellular ionic concentrations, such as cation-chloride cotransporters (NKCC1 and KCC2) and Na+/K+-ATPase and, also, to the glial proliferation after injury. All these non-synaptic mechanisms have already been related to neuronal injury and hyper-synchronism processes. OBJECTIVE The main objective of this study is to verify whether mechanisms not directly related to synaptic neurotransmission could be involved in the modulation of nigrostriatal pathways. METHODS Male Wistar rats, 3 months old, were submitted to a unilateral injection of 24 µg of 6-OHDA, in the striatum (n = 8). The animals in the Control group (n = 8) were submitted to the same protocol, with the replacement of 6-OHDA by 0.9% saline. The analysis by optical densitometry was performed to quantify the immunoreactivity intensity of GFAP, NKCC1, KCC2, Na+/K+-ATPase, TH and Cx36. RESULTS The 6-OHDA induced lesions in the striatum, were not followed by changes in the expression cation-chloride cotransporters and Na+/K+-ATPase, but with astrocytic reactivity in the lesioned and adjacent regions of the nigrostriatal. Moreover, the dopaminergic degeneration caused by 6-OHDA is followed by changes in the expression of connexin-36. CONCLUSIONS The use of the GJ blockers directly along the nigrostriatal pathways to control PD motor symptoms is conjectured. Electrophysiology of the striatum and the substantia nigra, to verify changes in neuronal synchronism, comparing brain slices of control animals and experimental models of PD, is needed.
Collapse
Affiliation(s)
- Mônica P C Viegas
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Luiz E C Santos
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Mayra C Aarão
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Samyra G Cecilio
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Joana M Medrado
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Arthur C Pires
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Antônio M Rodrigues
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Carla A Scorza
- Neuroscience Discipline, Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Marcelo A Moret
- SENAI ‒ Departamento Regional da Bahia, Centro Integrado de Manufatura e Tecnologia, Bahia, BA, Brazil
| | | | - Fulvio A Scorza
- Neuroscience Discipline, Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil.
| | - Antônio-Carlos G Almeida
- Laboratory of Experimental and Computational Neuroscience, Department of Biosystems Engineering, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil; Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
15
|
Rademacher DJ. Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines 2023; 11:biomedicines11041187. [PMID: 37189807 DOI: 10.3390/biomedicines11041187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Pathogenic forms of α-synuclein (α-syn) are transferred to and from neurons, astrocytes, and microglia, which spread α-syn pathology in the olfactory bulb and the gut and then throughout the Parkinson's disease (PD) brain and exacerbate neurodegenerative processes. Here, we review attempts to minimize or ameliorate the pathogenic effects of α-syn or deliver therapeutic cargo into the brain. Exosomes (EXs) have several important advantages as carriers of therapeutic agents including an ability to readily cross the blood-brain barrier, the potential for targeted delivery of therapeutic agents, and immune resistance. Diverse cargo can be loaded via various methods, which are reviewed herein, into EXs and delivered into the brain. Genetic modification of EX-producing cells or EXs and chemical modification of EX have emerged as powerful approaches for the targeted delivery of therapeutic agents to treat PD. Thus, EXs hold great promise for the development of next-generation therapeutics for the treatment of PD.
Collapse
Affiliation(s)
- David J Rademacher
- Department of Microbiology and Immunology and Core Imaging Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
16
|
Russo C, Valle MS, Casabona A, Malaguarnera L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24076301. [PMID: 37047273 PMCID: PMC10094409 DOI: 10.3390/ijms24076301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders. Although having important biological roles in inflammation, to date, the molecular mechanisms of Chitinase involvement in the pathogenesis of neurodegenerative disorders is not well-elucidated. Several studies showed that some Chitinases could be assumed as markers for diagnosis, prognosis, activity, and severity of a disease and therefore can be helpful in the choice of treatment. However, some studies showed controversial results. This review will discuss the potential of Chitinases in the pathogenesis of some neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, to understand their role as distinctive biomarkers of neuronal cell activity during neuroinflammatory processes. Knowledge of the role of Chitinases in neuronal cell activation could allow for the development of new methodologies for downregulating neuroinflammation and consequently for diminishing negative neurological disease outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
17
|
Guha A, Husain MA, Si Y, Nabors LB, Filippova N, Promer G, Smith R, King PH. RNA regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia 2023; 71:485-508. [PMID: 36380708 DOI: 10.1002/glia.24288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1β, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.
Collapse
Affiliation(s)
- Abhishek Guha
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammed Amir Husain
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Si
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Burt Nabors
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Filippova
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grace Promer
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reed Smith
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Department of Veterans Health Care System, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
18
|
Dai M, Yan L, Yu H, Chen C, Xie Y. TNFRSF10B is involved in motor dysfunction in Parkinson's disease by regulating exosomal α-synuclein secretion from microglia. J Chem Neuroanat 2023; 129:102249. [PMID: 36791922 DOI: 10.1016/j.jchemneu.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
A-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson's disease (PD), a neurodegenerative disease with no effective treatment. Therefore, there has been a strong drive to clarify the pathology of PD associated with α-syn. Several mechanisms have been proposed to unravel the pathological cascade of this disease, and most of them share a particular similarity: cell-to-cell communication through exosomes (EXO). Here, we show that tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) promotes the secretion of α-syn-containing EXO by microglia, resulting in motor dysfunction in PD. Upregulation of TNFRSF10B predicted severer condition in PD patients. In response to α-syn preformed fibrils (PFF), the expression of TNFRSF10B was increased in microglia. PFF-treated microglia exhibited a pro-inflammatory phenotype and caused neuronal damage by secreting α-syn-containing EXO. TNFRSF10B downregulation in microglia inhibited the secretion of α-syn-containing EXO and the release of pro-inflammatory factors, and ameliorated neuronal injury. PFF induced motor dysfunction in mice, which was ameliorated by inhibiting TNFRSF10B to suppress microglia-mediated α-syn communication or by directly depleting microglia. Taken together, these results indicate that TNFRSF10B promotes neuronal injury and motor dysfunction by delivery of α-syn-containing EXO and highlight the TNFRSF10B knockdown as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Mingming Dai
- Department of Neurology III, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, PR China
| | - Limin Yan
- Department of Neurology III, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, PR China
| | - Hang Yu
- Department of Critical Medicine, Cardiovascular Hospital of the Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, PR China
| | - Changneng Chen
- Second District of Critical Medicine Department, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, PR China.
| | - Yuxiang Xie
- First District of Critical Medicine Department, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, PR China.
| |
Collapse
|
19
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
20
|
Leitão AD, Spencer B, Sarsoza F, Ngolab J, Amalraj J, Masliah E, Wu C, Rissman RA. Hippocampal Reduction of α-Synuclein via RNA Interference Improves Neuropathology in Alzheimer's Disease Mice. J Alzheimers Dis 2023; 95:349-361. [PMID: 37522208 PMCID: PMC10578232 DOI: 10.3233/jad-230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) cases are often characterized by the pathological accumulation of α-synuclein (α-syn) in addition to amyloid-β (Aβ) and tau hallmarks. The role of α-syn has been extensively studied in synucleinopathy disorders, but less so in AD. Recent studies have shown that α-syn may also play a role in AD and its downregulation may be protective against the toxic effects of Aβ accumulation. OBJECTIVE We hypothesized that selectively knocking down α-syn via RNA interference improves the neuropathological and biochemical findings in AD mice. METHODS Here we used amyloid precursor protein transgenic (APP-Tg) mice to model AD and explore pathologic and behavioral phenotypes with knockdown of α-syn using RNA interference. We selectively reduced α-syn levels by stereotaxic bilateral injection of either LV-shRNA α-syn or LV-shRNA-luc (control) into the hippocampus of AD mice. RESULTS We found that downregulation of α-syn results in significant reduction in the number of Aβ plaques. In addition, mice treated with LV-shRNA α-syn had amelioration of abnormal microglial activation (Iba1) and astrocytosis (GFAP) phenotypes in AD mice. CONCLUSION Our data suggests a novel link between Aβ and α-syn pathology as well as a new therapeutic angle for targeting AD.
Collapse
Affiliation(s)
- André D.G. Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Floyd Sarsoza
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Ngolab
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jessica Amalraj
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Physiology and Neuroscience, Alzheimer’s Therapeutic Research Institute of the Keck School of Medicine of the University of Southern California, San Diego, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
21
|
Cuevas-Diaz Duran R, González-Orozco JC, Velasco I, Wu JQ. Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Front Cell Dev Biol 2022; 10:884748. [PMID: 36353512 PMCID: PMC9637968 DOI: 10.3389/fcell.2022.884748] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/06/2022] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and there are currently no cures. Two types of common neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease (PD). Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq) have become powerful tools to elucidate the inherent complexity and dynamics of the central nervous system at cellular resolution. This technology has allowed the identification of cell types and states, providing new insights into cellular susceptibilities and molecular mechanisms underlying neurodegenerative conditions. Exciting research using high throughput scRNA-seq and snRNA-seq technologies to study AD and PD is emerging. Herein we review the recent progress in understanding these neurodegenerative diseases using these state-of-the-art technologies. We discuss the fundamental principles and implications of single-cell sequencing of the human brain. Moreover, we review some examples of the computational and analytical tools required to interpret the extensive amount of data generated from these assays. We conclude by highlighting challenges and limitations in the application of these technologies in the study of AD and PD.
Collapse
Affiliation(s)
| | | | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
22
|
Heavener KS, Bradshaw EM. The aging immune system in Alzheimer's and Parkinson's diseases. Semin Immunopathol 2022; 44:649-657. [PMID: 35505128 PMCID: PMC9519729 DOI: 10.1007/s00281-022-00944-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) both have a myriad of risk factors including genetics, environmental exposures, and lifestyle. However, aging is the strongest risk factor for both diseases. Aging also profoundly influences the immune system, with immunosenescence perhaps the most prominent outcome. Through genetics, mouse models, and pathology, there is a growing appreciation of the role the immune system plays in neurodegenerative diseases. In this review, we explore the intersection of aging and the immune system in AD and PD.
Collapse
Affiliation(s)
- Kelsey S Heavener
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Alpha-Synuclein: The Spark That Flames Dopaminergic Neurons, In Vitro and In Vivo Evidence. Int J Mol Sci 2022; 23:ijms23179864. [PMID: 36077253 PMCID: PMC9456396 DOI: 10.3390/ijms23179864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria, α-syn fibrils and the endo-lysosomal system are key players in the pathophysiology of Parkinson’s disease. The toxicity of α-syn is amplified by cell-to-cell transmission and aggregation of endogenous species in newly invaded neurons. Toxicity of α-syn PFF was investigated using primary cultures of dopaminergic neurons or on aged mice after infusion in the SNpc and combined with mild inhibition of GBA. In primary dopaminergic neurons, application of α-syn PFF induced a progressive cytotoxicity associated with mitochondrial dysfunction, oxidative stress, and accumulation of lysosomes suggesting that exogenous α-syn reached the lysosome (from the endosome). Counteracting the α-syn endocytosis with a clathrin inhibitor, dopaminergic neuron degeneration was prevented. In vivo, α-syn PFF induced progressive neurodegeneration of dopaminergic neurons associated with motor deficits. Histology revealed progressive aggregation of α-syn and microglial activation and accounted for the seeding role of α-syn, injection of which acted as a spark suggesting a triggering of cell-to-cell toxicity. We showed for the first time that a localized SNpc α-syn administration combined with a slight lysosomal deficiency and aging triggered a progressive lesion. The cellular and animal models described could help in the understanding of the human disease and might contribute to the development of new therapies.
Collapse
|
24
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
25
|
Rahman MM, Islam MR, Yamin M, Islam MM, Sarker MT, Meem AFK, Akter A, Emran TB, Cavalu S, Sharma R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| |
Collapse
|
26
|
Ruf WP, Meirelles J, Danzer KM. Spreading of alpha-synuclein between different cell types. Behav Brain Res 2022; 436:114059. [PMID: 35995264 DOI: 10.1016/j.bbr.2022.114059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Aggregation of alpha-synuclein (α-syn) is central in Parkinson's disease as well as in other synucleinopathies. Recent evidence suggests that not only intracellular aggregation of α-syn plays an important role for disease pathogenesis but also cell-to-cell propagation of α-syn seems to significantly contribute to pathological changes in synucleinopathies. In this mini-review we summarize current aspects of spreading of α-syn between brain cell types and its role in pathology.
Collapse
Affiliation(s)
- Wolfgang P Ruf
- Department of Neurology, University Clinic, University of Ulm, Ulm, Germany
| | - Joao Meirelles
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, University Clinic, University of Ulm, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
27
|
Bowles KR, Pugh DA, Liu Y, Patel T, Renton AE, Bandres-Ciga S, Gan-Or Z, Heutink P, Siitonen A, Bertelsen S, Cherry JD, Karch CM, Frucht SJ, Kopell BH, Peter I, Park YJ, Charney A, Raj T, Crary JF, Goate AM. 17q21.31 sub-haplotypes underlying H1-associated risk for Parkinson's disease are associated with LRRC37A/2 expression in astrocytes. Mol Neurodegener 2022; 17:48. [PMID: 35841044 PMCID: PMC9284779 DOI: 10.1186/s13024-022-00551-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/21/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is genetically associated with the H1 haplotype of the MAPT 17q.21.31 locus, although the causal gene and variants underlying this association have not been identified. METHODS To better understand the genetic contribution of this region to PD and to identify novel mechanisms conferring risk for the disease, we fine-mapped the 17q21.31 locus by constructing discrete haplotype blocks from genetic data. We used digital PCR to assess copy number variation associated with PD-associated blocks, and used human brain postmortem RNA-seq data to identify candidate genes that were then further investigated using in vitro models and human brain tissue. RESULTS We identified three novel H1 sub-haplotype blocks across the 17q21.31 locus associated with PD risk. Protective sub-haplotypes were associated with increased LRRC37A/2 copy number and expression in human brain tissue. We found that LRRC37A/2 is a membrane-associated protein that plays a role in cellular migration, chemotaxis and astroglial inflammation. In human substantia nigra, LRRC37A/2 was primarily expressed in astrocytes, interacted directly with soluble α-synuclein, and co-localized with Lewy bodies in PD brain tissue. CONCLUSION These data indicate that a novel candidate gene, LRRC37A/2, contributes to the association between the 17q21.31 locus and PD via its interaction with α-synuclein and its effects on astrocytic function and inflammatory response. These data are the first to associate the genetic association at the 17q21.31 locus with PD pathology, and highlight the importance of variation at the 17q21.31 locus in the regulation of multiple genes other than MAPT and KANSL1, as well as its relevance to non-neuronal cell types.
Collapse
Affiliation(s)
- Kathryn R. Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Derian A. Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Tulsi Patel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alan E. Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Québec Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec Canada
| | - Peter Heutink
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Sarah Bertelsen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jonathan D. Cherry
- Alzheimer’s Disease and CTE Center, Boston University, Boston University School of Medicine, Boston, MA USA
- Department of Neurology, Boston University School of Medicine, Boston, MA USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St. Louis, MO USA
| | - Steven J. Frucht
- Department of Neurology, Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone, New York, NY USA
| | - Brian H. Kopell
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Center for Neuromodulation, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Inga Peter
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Y. J. Park
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John F. Crary
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - A. M. Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
28
|
Noronha O, Mesarosovo L, Anink JJ, Iyer A, Aronica E, Mills JD. Differentially Expressed miRNAs in Age-Related Neurodegenerative Diseases: A Meta-Analysis. Genes (Basel) 2022; 13:genes13061034. [PMID: 35741796 PMCID: PMC9222420 DOI: 10.3390/genes13061034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023] Open
Abstract
To date, no neurodegenerative diseases (NDDs) have cures, and the underlying mechanism of their pathogenesis is undetermined. As miRNAs extensively regulate all biological processes and are crucial regulators of healthy brain function, miRNAs differentially expressed in NDDs may provide insight into the factors that contribute to the emergence of protein inclusions and the propagation of deleterious cellular environments. A meta-analysis of miRNAs dysregulated in Alzheimer’s disease, Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and frontotemporal lobar degeneration (TDP43 variant) was performed to determine if diseases within a proteinopathy have distinct or shared mechanisms of action leading to neuronal death, and if proteinopathies can be classified on the basis of their miRNA profiles. Our results identified both miRNAs distinct to the anatomy, disease type and pathology, and miRNAs consistently dysregulated within single proteinopathies and across neurodegeneration in general. Our results also highlight the necessity to minimize the variability between studies. These findings showcase the need for more transcriptomic research on infrequently occurring NDDs, and the need for the standardization of research techniques and platforms utilized across labs and diseases.
Collapse
Affiliation(s)
- Ocana Noronha
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0106, Japan
| | - Lucia Mesarosovo
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - Anand Iyer
- Department of Internal Medicine, Erasmus Medicine Center, 3015 GD Rotterdam, The Netherlands;
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
| | - James D. Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands; (O.N.); (L.M.); (J.J.A.); (E.A.)
- Department of Clinical and Experimental Epilepsy, University College London, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, Gerrards Cross SL9 0RJ, UK
- Correspondence:
| |
Collapse
|
29
|
Hallacli E, Kayatekin C, Nazeen S, Wang XH, Sheinkopf Z, Sathyakumar S, Sarkar S, Jiang X, Dong X, Di Maio R, Wang W, Keeney MT, Felsky D, Sandoe J, Vahdatshoar A, Udeshi ND, Mani DR, Carr SA, Lindquist S, De Jager PL, Bartel DP, Myers CL, Greenamyre JT, Feany MB, Sunyaev SR, Chung CY, Khurana V. The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell 2022; 185:2035-2056.e33. [PMID: 35688132 DOI: 10.1016/j.cell.2022.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
Abstract
Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.
Collapse
Affiliation(s)
- Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Can Kayatekin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sumaiya Nazeen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Xiou H Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Sheinkopf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shubhangi Sathyakumar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xin Jiang
- Yumanity Therapeutics, Boston, MA 02135, USA
| | - Xianjun Dong
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Genomics and Bioinformatics Hub, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics and Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON M5T 3M7, Canada
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | | | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
MCC950 ameliorates the dementia symptom at the early age of line M83 mouse and reduces hippocampal α-synuclein accumulation. Biochem Biophys Res Commun 2022; 611:23-30. [DOI: 10.1016/j.bbrc.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
|
31
|
Chavarría C, Ivagnes R, Souza JM. Extracellular Alpha-Synuclein: Mechanisms for Glial Cell Internalization and Activation. Biomolecules 2022; 12:655. [PMID: 35625583 PMCID: PMC9138387 DOI: 10.3390/biom12050655] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein composed of 140 amino acids and belongs to the group of intrinsically disordered proteins. It is a soluble protein that is highly expressed in neurons and expressed at low levels in glial cells. The monomeric protein aggregation process induces the formation of oligomeric intermediates and proceeds towards fibrillar species. These α-syn conformational species have been detected in the extracellular space and mediate consequences on surrounding neurons and glial cells. In particular, higher-ordered α-syn aggregates are involved in microglial and oligodendrocyte activation, as well as in the induction of astrogliosis. These phenomena lead to mitochondrial dysfunction, reactive oxygen and nitrogen species formation, and the induction of an inflammatory response, associated with neuronal cell death. Several receptors participate in cell activation and/or in the uptake of α-syn, which can vary depending on the α-syn aggregated state and cell types. The receptors involved in this process are of outstanding relevance because they may constitute potential therapeutic targets for the treatment of PD and related synucleinopathies. This review article focuses on the mechanism associated with extracellular α-syn uptake in glial cells and the consequent glial cell activation that contributes to the neuronal death associated with synucleinopathies.
Collapse
Affiliation(s)
| | | | - José M. Souza
- Departamento de Bioquímica, Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11400 Montevideo, Uruguay; (C.C.); (R.I.)
| |
Collapse
|
32
|
Zang X, Chen S, Zhu J, Ma J, Zhai Y. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:872134. [PMID: 35547626 PMCID: PMC9082639 DOI: 10.3389/fnagi.2022.872134] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
For decades, it has been widely believed that the blood-brain barrier (BBB) provides an immune privileged environment in the central nervous system (CNS) by blocking peripheral immune cells and humoral immune factors. This view has been revised in recent years, with increasing evidence revealing that the peripheral immune system plays a critical role in regulating CNS homeostasis and disease. Neurodegenerative diseases are characterized by progressive dysfunction and the loss of neurons in the CNS. An increasing number of studies have focused on the role of the connection between the peripheral immune system and the CNS in neurodegenerative diseases. On the one hand, peripherally released cytokines can cross the BBB, cause direct neurotoxicity and contribute to the activation of microglia and astrocytes. On the other hand, peripheral immune cells can also infiltrate the brain and participate in the progression of neuroinflammatory and neurodegenerative diseases. Neurodegenerative diseases have a high morbidity and disability rate, yet there are no effective therapies to stop or reverse their progression. In recent years, neuroinflammation has received much attention as a therapeutic target for many neurodegenerative diseases. In this review, we highlight the emerging role of the peripheral and central immune systems in neurodegenerative diseases, as well as their interactions. A better understanding of the emerging role of the immune systems may improve therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Chen
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - JunYao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junwen Ma
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, Li JY, Li W. Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegener 2022; 11:14. [PMID: 35255986 PMCID: PMC8900445 DOI: 10.1186/s40035-022-00288-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Growing evidence suggests an association between Parkinson’s disease (PD) and diabetes mellitus (DM). At the cellular level, long-term elevated levels of glucose have been shown to lead to nigrostriatal degeneration in PD models. However, the underlying mechanism is still unclear. Previously, we have elucidated the potential of type 2 diabetes mellitus (T2DM) in facilitating PD progression, involving aggregation of both alpha-synuclein (α-syn) and islet amyloid polypeptide in the pancreatic and brain tissues. However, due to the complicated effect of insulin resistance on PD onset, the actual mechanism of hyperglycemia-induced dopaminergic degeneration remains unknown.
Methods
We employed the type 1 diabetes mellitus (T1DM) model induced by streptozotocin (STZ) injection in a transgenic mouse line (BAC-α-syn-GFP) overexpressing human α-syn, to investigate the direct effect of elevated blood glucose on nigrostriatal degeneration.
Results
STZ treatment induced more severe pathological alterations in the pancreatic islets and T1DM symptoms in α-syn-overexpressing mice than in wild-type mice, at one month and three months after STZ injections. Behavioral tests evaluating motor performance confirmed the nigrostriatal degeneration. Furthermore, there was a marked decrease in dopaminergic profiles and an increase of α-syn accumulation and Serine 129 (S129) phosphorylation in STZ-treated α-syn mice compared with the vehicle-treated mice. In addition, more severe neuroinflammation was observed in the brains of the STZ-treated α-syn mice.
Conclusion
Our results solidify the potential link between DM and PD, providing insights into how hyperglycemia induces nigrostriatal degeneration and contributes to pathogenic mechanisms in PD.
Collapse
|
34
|
Zhang J, Gao Y, Zhang L, Zhang C, Zhao Y, Zhang Y, Li S, Chang C, Zhang X, Yang G. Alpha-Lipoic Acid Attenuates MPTP/MPP +-Induced Neurotoxicity: Roles of SIRT1-Dependent PGC-1α Signaling Pathways. Neurotox Res 2022; 40:410-419. [PMID: 35146598 DOI: 10.1007/s12640-022-00479-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Accumulated oxidative damage plays key roles in the pathogenesis of Parkinson's disease (PD). Silent mating type information regulation 2 homolog 1 (SIRT1), a class III histone deacetylase, can directly activate peroxisome proliferator-activated receptor-c coactivator-1α (PGC-1α) and attenuate oxidative stress. Alpha-lipoic acid (ALA) is a natural antioxidant that has been demonstrated to protect PC12 cells against 1-methyl-4-phenylpyridinium (MPP+). However, the underlying mechanisms related to changes in cell signaling cascades are not fully understood. In the present study, the neuroprotective effect of ALA and the potential role of ALA in the SIRT1 pathway was investigated in vitro and in a mouse model of PD. A Cell Counting Kit-8 (CCK-8) assay was performed to detect the SY5Y-SH cell viability. Immunohistochemistry, quantitative real-time polymerase chain reaction and western blot assays were used to evaluate the expression of tyrosine hydroxylase (TH), SIRT1, and PGC-1α in vivo and in vitro. Intracellular reactive oxygen species (ROS) production and tissue SOD and MDA were detected by the corresponding assay kits. The results showed that ALA notably prevented oxidative stress and neurotoxicity in vivo and in vitro against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)/MPP+. Furthermore, ALA significantly increased the expression of SIRT1 and PGC-1α in vivo and in vitro in MPTP/MPP+-induced models, which was reversed by the SIRT1 inhibitor EX527. These results suggested that ALA prevented oxidative stress and that neurotoxicity was involved in the upregulation of SIRT1 and PGC-1α in PD mice.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Lan Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Yidan Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Shuyue Li
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Cui Chang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China. .,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China.
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 05000, People's Republic of China.
| |
Collapse
|
35
|
Spathopoulou A, Edenhofer F, Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Front Neurol 2022; 12:786835. [PMID: 35145469 PMCID: PMC8821105 DOI: 10.3389/fneur.2021.786835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterized by motor and non-motor symptoms. To date, no specific treatment to halt disease progression is available, only medication to alleviate symptoms can be prescribed. The main pathological hallmark of PD is the development of neuronal inclusions, positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites. However, the cause of the inclusion formation and the loss of neurons remain largely elusive. Various genetic determinants were reported to be involved in PD etiology, including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into pathophysiology of PD critically depend on appropriate models. However, conventional model organisms fall short to faithfully recapitulate some features of this complex disease and as a matter-of-fact access to physiological tissue is limiting. The development of disease models replicating PD that are close to human physiology and dynamic enough to analyze the underlying molecular mechanisms of disease initiation and progression, as well as the generation of new treatment options, is an important and overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived neural models, particularly from genetic PD-variants, developed into a promising strategy to investigate the molecular mechanisms regarding formation of inclusions and neurodegeneration. As these iPSC-derived neurons can be generated from accessible biopsied samples of PD patients, they carry pathological alterations and enable the possibility to analyze the differences compared to healthy neurons. This review focuses on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how iPSC models can be instrumental in identifying cellular targets, potentially leading to the development of new therapeutic treatments. We will outline the enormous potential, but also discuss the limitations of iPSC-based α-syn models.
Collapse
|
36
|
Kelly R, Bemelmans AP, Joséphine C, Brouillet E, McKernan DP, Dowd E. Time-Course of Alterations in the Endocannabinoid System after Viral-Mediated Overexpression of α-Synuclein in the Rat Brain. Molecules 2022; 27:507. [PMID: 35056822 PMCID: PMC8778740 DOI: 10.3390/molecules27020507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Since the discovery of α-synuclein as the major component in Lewy bodies, research into this protein in the context of Parkinson's disease pathology has been exponential. Cannabinoids are being investigated as potential therapies for Parkinson's disease from numerous aspects, but still little is known about the links between the cannabinoid system and the pathogenic α-synuclein protein; understanding these links will be necessary if cannabinoid therapies are to reach the clinic in the future. Therefore, the aim of this study was to investigate the time-course of alterations in components of the endocannabinoid system after viral-mediated α-synuclein overexpression in the rat brain. Rats were given unilateral intranigral injections of AAV-GFP or AAV-α-synuclein and sacrificed 4, 8 and 12 weeks later for qRT-PCR and liquid chromatography-mass spectrometry analyses of the endocannabinoid system, in addition to histological visualization of α-synuclein expression along the nigrostriatal pathway. As anticipated, intranigral delivery of AAV-α-synuclein induced widespread overexpression of human α-synuclein in the nigrostriatal pathway, both at the mRNA level and the protein level. However, despite this profound α-synuclein overexpression, we detected no differences in CB1 or CB2 receptor expression in the nigrostriatal pathway; however, interestingly, there was a reduction in the expression of neuroinflammatory markers. Furthermore, there was a reduction in the levels of the endocannabinoid 2-AG and the related lipid immune mediator OEA at week 12 post-surgery, indicating that α-synuclein overexpression triggers dysregulation of the endocannabinoid system. Although this research does show that the endocannabinoid system is impacted by α-synuclein, further research is necessary to more comprehensively understand the link between the cannabinoid system and the α-synuclein aspect of Parkinson's disease pathology in order for cannabinoid-based therapies to be feasible for the treatment of this disease in the coming years.
Collapse
Affiliation(s)
- Rachel Kelly
- Department of Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Alexis-Pierre Bemelmans
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Paris-Saclay University, CEA, CNRS, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (C.J.); (E.B.)
| | - Charlène Joséphine
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Paris-Saclay University, CEA, CNRS, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (C.J.); (E.B.)
| | - Emmanuel Brouillet
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Paris-Saclay University, CEA, CNRS, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (C.J.); (E.B.)
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Eilís Dowd
- Department of Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| |
Collapse
|
37
|
Deistung A, Jäschke D, Draganova R, Pfaffenrot V, Hulst T, Steiner KM, Thieme A, Giordano IA, Klockgether T, Tunc S, Münchau A, Minnerop M, Göricke SL, Reichenbach JR, Timmann D. Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Commun 2022; 4:fcab306. [PMID: 35291442 PMCID: PMC8914888 DOI: 10.1093/braincomms/fcab306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 10/28/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellar nuclei are a brain region with high iron content. Surprisingly,
little is known about iron content in the cerebellar nuclei and its possible
contribution to pathology in cerebellar ataxias, with the only exception of
Friedreich’s ataxia. In the present exploratory cross-sectional study,
quantitative susceptibility mapping was used to investigate volume, iron
concentration and total iron content of the dentate nuclei in common types of
hereditary and non-hereditary degenerative ataxias. Seventy-nine patients with
spinocerebellar ataxias of types 1, 2, 3 and 6; 15 patients with
Friedreich’s ataxia; 18 patients with multiple system atrophy, cerebellar
type and 111 healthy controls were also included. All underwent 3 T MRI
and clinical assessments. For each specific ataxia subtype, voxel-based and
volumes-of-interest-based group analyses were performed in comparison with a
corresponding age- and sex-matched control group, both for volume, magnetic
susceptiblity (indicating iron concentration) and susceptibility mass
(indicating total iron content) of the dentate nuclei. Spinocerebellar ataxia of
type 1 and multiple system atrophy, cerebellar type patients showed higher
susceptibilities in large parts of the dentate nucleus but unaltered
susceptibility masses compared with controls. Friedreich’s ataxia
patients and, only on a trend level, spinocerebellar ataxia of type 2 patients
showed higher susceptibilities in more circumscribed parts of the dentate. In
contrast, spinocerebellar ataxia of type 6 patients revealed lower
susceptibilities and susceptibility masses compared with controls throughout the
dentate nucleus. Spinocerebellar ataxia of type 3 patients showed no significant
changes in susceptibility and susceptibility mass. Lower volume of the dentate
nuclei was found to varying degrees in all ataxia types. It was most pronounced
in spinocerebellar ataxia of type 6 patients and least prominent in
spinocerebellar ataxia of type 3 patients. The findings show that alterations in
susceptibility revealed by quantitative susceptibility mapping are common in the
dentate nuclei in different types of cerebellar ataxias. The most striking
changes in susceptibility were found in spinocerebellar ataxia of type 1,
multiple system atrophy, cerebellar type and spinocerebellar ataxia of type 6.
Because iron content is known to be high in glial cells but not in neurons of
the cerebellar nuclei, the higher susceptibility in spinocerebellar ataxia of
type 1 and multiple system atrophy, cerebellar type may be explained by a
reduction of neurons (increase in iron concentration) and/or an increase in
iron-rich glial cells, e.g. microgliosis. Hypomyelination also leads to higher
susceptibility and could also contribute. The lower susceptibility in SCA6
suggests a loss of iron-rich glial cells. Quantitative susceptibility maps
warrant future studies of iron content and iron-rich cells in ataxias to gain a
more comprehensive understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Dominik Jäschke
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Rossitza Draganova
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Thomas Hulst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
- Erasmus University College, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Katharina M. Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Ilaria A. Giordano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sinem Tunc
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Sophia L. Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, Essen, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| |
Collapse
|
38
|
Ouerdane Y, Hassaballah MY, Nagah A, Ibrahim TM, Mohamed HAH, El-Baz A, Attia MS. Exosomes in Parkinson: Revisiting Their Pathologic Role and Potential Applications. Pharmaceuticals (Basel) 2022; 15:76. [PMID: 35056133 PMCID: PMC8778520 DOI: 10.3390/ph15010076] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by bradykinesia, rigidity, and tremor. Considerable progress has been made to understand the exact mechanism leading to this disease. Most of what is known comes from the evidence of PD brains' autopsies showing a deposition of Lewy bodies-containing a protein called α-synuclein (α-syn)-as the pathological determinant of PD. α-syn predisposes neurons to neurotoxicity and cell death, while the other associated mechanisms are mitochondrial dysfunction and oxidative stress, which are underlying precursors to the death of dopaminergic neurons at the substantia nigra pars compacta leading to disease progression. Several mechanisms have been proposed to unravel the pathological cascade of these diseases; most of them share a particular similarity: cell-to-cell communication through exosomes (EXOs). EXOs are intracellular membrane-based vesicles with diverse compositions involved in biological and pathological processes, which their secretion is driven by the NLR family pyrin domain-containing three proteins (NLRP3) inflammasome. Toxic biological fibrils are transferred to recipient cells, and the disposal of damaged organelles through generating mitochondrial-derived vesicles are suggested mechanisms for developing PD. EXOs carry various biomarkers; thus, they are promising to diagnose different neurological disorders, including neurodegenerative diseases (NDDs). As nanovesicles, the applications of EXOs are not only restricted as diagnostics but also expanded to treat NDDs as therapeutic carriers and nano-scavengers. Herein, the aim is to highlight the potential incrimination of EXOs in the pathological cascade and progression of PD and their role as biomarkers and therapeutic carriers for diagnosing and treating this neuro-debilitating disorder.
Collapse
Affiliation(s)
| | - Mohamed Y. Hassaballah
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Abdalrazeq Nagah
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Hosny A. H. Mohamed
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Areej El-Baz
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (M.Y.H.); (A.N.); (H.A.H.M.); (A.E.-B.)
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
39
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Tran AA, De Smet M, Grant GD, Khoo TK, Pountney DL. Investigating the Convergent Mechanisms between Major Depressive Disorder and Parkinson's Disease. Complex Psychiatry 2021; 6:47-61. [PMID: 34883500 DOI: 10.1159/000512657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) affects more than cognition, having a temporal relationship with neuroinflammatory pathways of Parkinson's disease (PD). Although this association is supported by epidemiological and clinical studies, the underlying mechanisms are unclear. Microglia and astrocytes play crucial roles in the pathophysiology of both MDD and PD. In PD, these cells can be activated by misfolded forms of the protein α-synuclein to release cytokines that can interact with multiple different physiological processes to produce depressive symptoms, including monoamine transport and availability, the hypothalamus-pituitary axis, and neurogenesis. In MDD, glial cell activation can be induced by peripheral inflammatory agents that cross the blood-brain barrier and/or c-Fos signalling from neurons. The resulting neuroinflammation can cause neurodegeneration due to oxidative stress and glutamate excitotoxicity, contributing to PD pathology. Astrocytes are another major link due to their recognized role in the glymphatic clearance mechanism. Research suggesting that MDD causes astrocytic destruction or structural atrophy highlights the possibility that accumulation of α-synuclein in the brain is facilitated as the brain cannot adequately clear the protein aggregates. This review examines research into the overlapping pathophysiology of MDD and PD with particular focus on the roles of glial cells and neuroinflammation.
Collapse
Affiliation(s)
- Angela A Tran
- School of Medical Science, Griffith University, Southport, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Myra De Smet
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Gary D Grant
- School of Pharmacy and Pharmacology, Griffith University, Southport, Queensland, Australia
| | - Tien K Khoo
- School of Medicine, Griffith University, Southport, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dean L Pountney
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
41
|
Bantle CM, Rocha SM, French CT, Phillips AT, Tran K, Olson KE, Bass TA, Aboellail T, Smeyne RJ, Tjalkens RB. Astrocyte inflammatory signaling mediates α-synuclein aggregation and dopaminergic neuronal loss following viral encephalitis. Exp Neurol 2021; 346:113845. [PMID: 34454938 PMCID: PMC9535678 DOI: 10.1016/j.expneurol.2021.113845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Viral infection of the central nervous system (CNS) can cause lasting neurological decline in surviving patients and can present with symptoms resembling Parkinson's disease (PD). The mechanisms underlying postencephalitic parkinsonism remain unclear but are thought to involve increased innate inflammatory signaling in glial cells, resulting in persistent neuroinflammation. We therefore studied the role of glial cells in regulating neuropathology in postencephalitic parkinsonism by studying the involvement of astrocytes in loss of dopaminergic neurons and aggregation of α-synuclein protein following infection with western equine encephalitis virus (WEEV). Infections were conducted in both wildtype mice and in transgenic mice lacking NFκB inflammatory signaling in astrocytes. For 2 months following WEEV infection, we analyzed glial activation, neuronal loss and protein aggregation across multiple brain regions, including the substantia nigra pars compacta (SNpc). These data revealed that WEEV induces loss of SNpc dopaminergic neurons, persistent activation of microglia and astrocytes that precipitates widespread aggregation of α-synuclein in the brain of C57BL/6 mice. Microgliosis and macrophage infiltration occurred prior to activation of astrocytes and was followed by opsonization of ⍺-synuclein protein aggregates in the cortex, hippocampus and midbrain by the complement protein, C3. Astrocyte-specific NFκB knockout mice had reduced gliosis, α-synuclein aggregate formation and neuronal loss. These data suggest that astrocytes play a critical role in initiating PD-like pathology following encephalitic infection with WEEV through innate immune inflammatory pathways that damage dopaminergic neurons, possibly by hindering clearance of ⍺-synuclein aggregates. Inhibiting glial inflammatory responses could therefore represent a potential therapy strategy for viral parkinsonism.
Collapse
Affiliation(s)
- Collin M Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Savannah M Rocha
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - C Tenley French
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Aaron T Phillips
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kevin Tran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kenneth E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Todd A Bass
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Richard J Smeyne
- Jefferson Comprehensive Parkinson's Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America.
| |
Collapse
|
42
|
Menon S, Kofoed RH, Nabbouh F, Xhima K, Al-Fahoum Y, Langman T, Mount HTJ, Shihabuddin LS, Sardi SP, Fraser PE, Watts JC, Aubert I, Tandon A. Viral alpha-synuclein knockdown prevents spreading synucleinopathy. Brain Commun 2021; 3:fcab247. [PMID: 34761222 PMCID: PMC8576194 DOI: 10.1093/braincomms/fcab247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
The accumulation of aggregated alpha-synuclein (α-syn) in Parkinson's disease, dementia with Lewy bodies and multiple system atrophy is thought to involve a common prion-like mechanism, whereby misfolded α-syn provides a conformational template for further accumulation of pathological α-syn. We tested whether silencing α-syn gene expression could reduce native non-aggregated α-syn substrate and thereby disrupt the propagation of pathological α-syn initiated by seeding with synucleinopathy-affected mouse brain homogenates. Unilateral intracerebral injections of adeno-associated virus serotype-1 encoding microRNA targeting the α-syn gene reduced the extent and severity of both the α-syn pathology and motor deficits. Importantly, a moderate 50% reduction in α-syn was sufficient to prevent the spread of α-syn pathology to distal brain regions. Our study combines behavioural, immunohistochemical and biochemical data that strongly support α-syn knockdown gene therapy for synucleinopathies.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Rikke H Kofoed
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Fadl Nabbouh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Kristiana Xhima
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yasmeen Al-Fahoum
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Tammy Langman
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Howard T J Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Lamya S Shihabuddin
- Sanofi, Framingham, MA 01701, USA
- Present address: 5AM Ventures, Boston, MA, USA
| | | | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabelle Aubert
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence to: Anurag Tandon, PhD Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada E-mail:
| |
Collapse
|
43
|
Fellner L, Gabassi E, Haybaeck J, Edenhofer F. Autophagy in α-Synucleinopathies-An Overstrained System. Cells 2021; 10:3143. [PMID: 34831366 PMCID: PMC8618716 DOI: 10.3390/cells10113143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein in the cell body of neurons, giving rise to the so-called Lewy bodies (LBs), is the major characteristic for PD and DLB, whereas the accumulation of α-synuclein in oligodendroglial cells, so-called glial cytoplasmic inclusions (GCIs), is the hallmark for MSA. The mechanisms involved in the intracytoplasmic inclusion formation in neuronal and oligodendroglial cells are not fully understood to date. A possible mechanism could be an impaired autophagic machinery that cannot cope with the high intracellular amount of α-synuclein. In fact, different studies showed that reduced autophagy is involved in α-synuclein aggregation. Furthermore, altered levels of different autophagy markers were reported in PD, DLB, and MSA brains. To date, the trigger point in disease initiation is not entirely clear; that is, whether autophagy dysfunction alone suffices to increase α-synuclein or whether α-synuclein is the pathogenic driver. In the current review, we discuss the involvement of defective autophagy machinery in the formation of α-synuclein aggregates, propagation of α-synuclein, and the resulting neurodegenerative processes in α-synucleinopathies.
Collapse
Affiliation(s)
- Lisa Fellner
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Elisa Gabassi
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
44
|
Ahmadi A, Gispert JD, Navarro A, Vilor-Tejedor N, Sadeghi I. Single-cell Transcriptional Changes in Neurodegenerative Diseases. Neuroscience 2021; 479:192-205. [PMID: 34748859 DOI: 10.1016/j.neuroscience.2021.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/25/2023]
Abstract
In recent decades, our understanding of the molecular changes involved in neurodegenerative diseases has been transformed. Single-cell RNA sequencing and single-nucleus RNA sequencing technologies have been applied to provide cellular and molecular details of the brain at the single-cell level. This has expanded our knowledge of the central nervous system and provided insights into the molecular vulnerability of brain cell types and underlying mechanisms in neurodegenerative diseases. In this review, we highlight the recent advances and findings related to neurodegenerative diseases using these cutting-edge technologies.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Department of Biology, Faculty of Nano and BioScience and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Juan D Gispert
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Arcadi Navarro
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Erasmus MC University Medical Center. Department of Clinical Genetics, Rotterdam, the Netherlands.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
45
|
Morales I, Puertas-Avendaño R, Sanchez A, Perez-Barreto A, Rodriguez-Sabate C, Rodriguez M. Astrocytes and retrograde degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease: removing axonal debris. Transl Neurodegener 2021; 10:43. [PMID: 34727977 PMCID: PMC8562009 DOI: 10.1186/s40035-021-00262-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/05/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The dopaminergic nigrostriatal neurons (DA cells) in healthy people present a slow degeneration with aging, which produces cellular debris throughout life. About 2%–5% of people present rapid cell degeneration of more than 50% of DA cells, which produces Parkinson’s disease (PD). Neuroinflammation accelerates the cell degeneration and may be critical for the transition between the slow physiological and the rapid pathological degeneration of DA cells, particularly when it activates microglial cells of the medial forebrain bundle near dopaminergic axons. As synaptic debris produced by DA cell degeneration may trigger the parkinsonian neuroinflammation, this study investigated the removal of axonal debris produced by retrograde degeneration of DA cells, paying particular attention to the relative roles of astrocytes and microglia. Methods Rats and mice were injected in the lateral ventricles with 6-hydroxydopamine, inducing a degeneration of dopaminergic synapses in the striatum which was not accompanied by non-selective tissue damage, microgliosis or neuroinflammation. The possible retrograde degeneration of dopaminergic axons, and the production and metabolization of DA-cell debris were studied with immunohistochemical methods and analyzed in confocal and electron microscopy images. Results The selective degeneration of dopaminergic synapses in the striatum was followed by a retrograde degeneration of dopaminergic axons whose debris was found within spheroids of the medial forebrain bundle. These spheroids retained mitochondria and most (e.g., tyrosine hydroxylase, the dopamine transporter protein, and amyloid precursor protein) but not all (e.g., α-synuclein) proteins of the degenerating dopaminergic axons. Spheroids showed initial (autophagosomes) but not late (lysosomes) components of autophagy (incomplete autophagy). These spheroids were penetrated by astrocytic processes of the medial forebrain bundle, which provided the lysosomes needed to continue the degradation of dopaminergic debris. Finally, dopaminergic proteins were observed in the cell somata of astrocytes. No microgliosis or microglial phagocytosis of debris was observed in the medial forebrain bundle during the retrograde degeneration of dopaminergic axons. Conclusions The present data suggest a physiological role of astrocytic phagocytosis of axonal debris for the medial forebrain bundle astrocytes, which may prevent the activation of microglia and the spread of retrograde axonal degeneration in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00262-1.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
| | - Adrian Perez-Barreto
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain
| | - Clara Rodriguez-Sabate
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain. .,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.
| |
Collapse
|
46
|
Integration of functional genomics data to uncover cell type-specific pathways affected in Parkinson's disease. Biochem Soc Trans 2021; 49:2091-2100. [PMID: 34581766 PMCID: PMC8589426 DOI: 10.1042/bst20210128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder worldwide after Alzheimer's disease for which available drugs only deliver temporary symptomatic relief. Loss of dopaminergic neurons (DaNs) in the substantia nigra and intracellular alpha-synuclein inclusions are the main hallmarks of the disease but the events that cause this degeneration remain uncertain. Despite cell types other than DaNs such as astrocytes, microglia and oligodendrocytes have been recently associated with the pathogenesis of PD, we still lack an in-depth characterisation of PD-affected brain regions at cell-type resolution that could help our understanding of the disease mechanisms. Nevertheless, publicly available large-scale brain-specific genomic, transcriptomic and epigenomic datasets can be further exploited to extract different layers of cell type-specific biological information for the reconstruction of cell type-specific transcriptional regulatory networks. By intersecting disease risk variants within the networks, it may be possible to study the functional role of these risk variants and their combined effects at cell type- and pathway levels, that, in turn, can facilitate the identification of key regulators involved in disease progression, which are often potential therapeutic targets.
Collapse
|
47
|
Bido S, Muggeo S, Massimino L, Marzi MJ, Giannelli SG, Melacini E, Nannoni M, Gambarè D, Bellini E, Ordazzo G, Rossi G, Maffezzini C, Iannelli A, Luoni M, Bacigaluppi M, Gregori S, Nicassio F, Broccoli V. Microglia-specific overexpression of α-synuclein leads to severe dopaminergic neurodegeneration by phagocytic exhaustion and oxidative toxicity. Nat Commun 2021; 12:6237. [PMID: 34716339 PMCID: PMC8556263 DOI: 10.1038/s41467-021-26519-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Recent findings in human samples and animal models support the involvement of inflammation in the development of Parkinson's disease. Nevertheless, it is currently unknown whether microglial activation constitutes a primary event in neurodegeneration. We generated a new mouse model by lentiviral-mediated selective α-synuclein (αSYN) accumulation in microglial cells. Surprisingly, these mice developed progressive degeneration of dopaminergic (DA) neurons without endogenous αSYN aggregation. Transcriptomics and functional assessment revealed that αSYN-accumulating microglial cells developed a strong reactive state with phagocytic exhaustion and excessive production of oxidative and proinflammatory molecules. This inflammatory state created a molecular feed-forward vicious cycle between microglia and IFNγ-secreting immune cells infiltrating the brain parenchyma. Pharmacological inhibition of oxidative and nitrosative molecule production was sufficient to attenuate neurodegeneration. These results suggest that αSYN accumulation in microglia induces selective DA neuronal degeneration by promoting phagocytic exhaustion, an excessively toxic environment and the selective recruitment of peripheral immune cells.
Collapse
Affiliation(s)
- Simone Bido
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Sharon Muggeo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Matteo Jacopo Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Serena Gea Giannelli
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Elena Melacini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129, Milan, Italy
| | - Melania Nannoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Diana Gambarè
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Edoardo Bellini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Gabriele Ordazzo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Greta Rossi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Camilla Maffezzini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Angelo Iannelli
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129, Milan, Italy
| | - Mirko Luoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marco Bacigaluppi
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Vania Broccoli
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- National Research Council (CNR), Institute of Neuroscience, 20129, Milan, Italy.
| |
Collapse
|
48
|
Friesen M, Ziegler-Waldkirch S, Egenolf M, d'Errico P, Helm C, Mezö C, Dokalis N, Erny D, Katzmarski N, Coelho R, Loreth D, Prinz M, Meyer-Luehmann M. Distinct Aβ pathology in the olfactory bulb and olfactory deficits in a mouse model of Aβ and α-syn co-pathology. Brain Pathol 2021; 32:e13032. [PMID: 34713522 PMCID: PMC9048518 DOI: 10.1111/bpa.13032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Several degenerative brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the simultaneous appearance of amyloid‐β (Aβ) and α‐synuclein (α‐syn) pathologies and symptoms that are similar, making it difficult to differentiate between these diseases. Until now, an accurate diagnosis can only be made by postmortem analysis. Furthermore, the role of α‐syn in Aβ aggregation and the arising characteristic olfactory impairments observed during the progression of these diseases is still not well understood. Therefore, we assessed Aβ load in olfactory bulbs of APP‐transgenic mice expressing APP695KM670/671NL and PSEN1L166P under the control of the neuron‐specific Thy‐1 promoter (referred to here as APPPS1) and APPPS1 mice co‐expressing SNCAA30P (referred to here as APPPS1 × [A30P]aSYN). Furthermore, the olfactory capacity of these mice was evaluated in the buried food and olfactory avoidance test. Our results demonstrate an age‐dependent increase in Aβ load in the olfactory bulb of APP‐transgenic mice that go along with exacerbated olfactory performance. Our study provides clear evidence that the presence of α‐syn significantly diminished the endogenous and seed‐induced Aβ deposits and significantly ameliorated olfactory dysfunction in APPPS1 × [A30P]aSYN mice.
Collapse
Affiliation(s)
- Marina Friesen
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Milena Egenolf
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paolo d'Errico
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Helm
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Mezö
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Nikolaos Dokalis
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Katzmarski
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Romina Coelho
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Desirée Loreth
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marco Prinz
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Sanchez A, Morales I, Rodriguez-Sabate C, Sole-Sabater M, Rodriguez M. Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines 2021; 9:biomedicines9101341. [PMID: 34680458 PMCID: PMC8533570 DOI: 10.3390/biomedicines9101341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease (PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the ability of astrocytes to control these causes, and the procedures that can be used to promote the neuroprotective action of astrocytes will be commented upon, here.
Collapse
Affiliation(s)
- Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Department of Psychiatry, Getafe University Hospital, 28905 Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, 38010 Tenerife, Spain;
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-922-319361; Fax: +34-922-319397
| |
Collapse
|
50
|
Feleke R, Reynolds RH, Smith AM, Tilley B, Taliun SAG, Hardy J, Matthews PM, Gentleman S, Owen DR, Johnson MR, Srivastava PK, Ryten M. Cross-platform transcriptional profiling identifies common and distinct molecular pathologies in Lewy body diseases. Acta Neuropathol 2021; 142:449-474. [PMID: 34309761 PMCID: PMC8357687 DOI: 10.1007/s00401-021-02343-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular "window" of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.
Collapse
Affiliation(s)
- Rahel Feleke
- Department of Brain Sciences, Imperial College London, London, UK
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Amy M Smith
- Dementia Research Institute at Imperial College London, London, UK
| | - Bension Tilley
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sarah A Gagliano Taliun
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - John Hardy
- Department of Neurodegenerative Disease, University College London, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- Dementia Research Institute at Imperial College London, London, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
- Dementia Research Institute at Imperial College London, London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Prashant K Srivastava
- Dementia Research Institute at Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.
| |
Collapse
|