1
|
Alijanpourotaghsara A, Mirpour K, Choi JW, Chitta KK, Shalaby A, Boswell M, Chilukuri S, Cohen SL, Byon R, Benam M, Kariv S, Lee J, Duncan D, Pouratian N. B(RAIN) 2-BRAIN integrated Resource for Anatomy and Intracranial Neurophysiology. Sci Data 2025; 12:442. [PMID: 40089497 PMCID: PMC11910653 DOI: 10.1038/s41597-025-04784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
The Brain Integrated Resource for Human Anatomy and Intracranial Neurophysiology (B(RAIN)2) is a multi-center data resource that provides standardized imaging and intracranial neurophysiological data from patients who have undergone deep brain stimulation (DBS) implantation with intracranial electroencephalography (iEEG) recordings. The database includes patients' electrophysiological recordings from the cerebral cortex and deeper brain structures, alongside high-resolution neurological imaging scans taken at preoperative, intraoperative, and postoperative stages. The data are systematically organized using the Brain Imaging Data Structure (BIDS) format for imaging data and iEEG-BIDS for intracranial electrophysiological recordings. This standardized structure facilitates data integration, sharing, and analysis across research institutions. Additionally, the database features detailed metadata, such as diagnostic information and neurological assessment scores, providing a comprehensive profile of each patient's data.
Collapse
Affiliation(s)
| | - Koorosh Mirpour
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Krishna Kanth Chitta
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ahmed Shalaby
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Misque Boswell
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sahil Chilukuri
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Samantha L Cohen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Byon
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohsen Benam
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Saar Kariv
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Klocke P, Loeffler MA, Lewis SJG, Gharabaghi A, Weiss D. Could adaptive deep brain stimulation treat freezing of gait in Parkinson's disease? J Neurol 2025; 272:267. [PMID: 40072634 PMCID: PMC11903562 DOI: 10.1007/s00415-025-13000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Next-generation neurostimulators capable of running closed-loop adaptive deep brain stimulation (aDBS) are about to enter the clinical landscape for the treatment of Parkinson's disease. Already promising results using aDBS have been achieved for symptoms such as bradykinesia, rigidity and motor fluctuations. However, the heterogeneity of freezing of gait (FoG) with its wide range of clinical presentations and its exacerbation with cognitive and emotional load make it more difficult to predict and treat. Currently, a successful aDBS strategy to ameliorate FoG lacks a robust oscillatory biomarker. Furthermore, the technical implementation of suppressing an upcoming FoG episode in real-time represents a significant technical challenge. This review describes the neurophysiological signals underpinning FoG and explains how aDBS is currently being implemented. Furthermore, we offer a discussion addressing both theoretical and practical areas that will need to be resolved if we are going to be able to unlock the full potential of aDBS to treat FoG.
Collapse
Affiliation(s)
- Philipp Klocke
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| | - Moritz A Loeffler
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, Australia
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany
- Centre for Bionic Intelligence Tübingen Stuttgart (BITS), University Hospital and University of Tübingen, 72076, Tübingen, Germany
- German Centre for Mental Health (DZPG), University Hospital and University of Tübingen, 72076, Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Geng X, Quan Z, Zhang R, Zhu G, Nie Y, Wang S, Rolls E, Zhang J, Hu L. Subthalamic and pallidal oscillations and their couplings reflect dystonia severity and improvements by deep brain stimulation. Neurobiol Dis 2024; 199:106581. [PMID: 38936434 DOI: 10.1016/j.nbd.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.
Collapse
Affiliation(s)
- Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Edmund Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Oxford Centre for Computational Neuroscience, University of Oxford, Oxford, UK
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tian-Tan Hospital, Beijing Neurosurgical Institute, Capital Medical University, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Baker SK, Radcliffe EM, Kramer DR, Ojemann S, Case M, Zarns C, Holt-Becker A, Raike RS, Baumgartner AJ, Kern DS, Thompson JA. Comparison of beta peak detection algorithms for data-driven deep brain stimulation programming strategies in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:150. [PMID: 39122725 PMCID: PMC11315991 DOI: 10.1038/s41531-024-00762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Oscillatory activity within the beta frequency range (13-30 Hz) serves as a Parkinson's disease biomarker for tailoring deep brain stimulation (DBS) treatments. Currently, identifying clinically relevant beta signals, specifically frequencies of peak amplitudes within the beta spectral band, is a subjective process. To inform potential strategies for objective clinical decision making, we assessed algorithms for identifying beta peaks and devised a standardized approach for both research and clinical applications. Employing a novel monopolar referencing strategy, we utilized a brain sensing device to measure beta peak power across distinct contacts along each DBS electrode implanted in the subthalamic nucleus. We then evaluated the accuracy of ten beta peak detection algorithms against a benchmark established by expert consensus. The most accurate algorithms, all sharing similar underlying algebraic dynamic peak amplitude thresholding approaches, matched the expert consensus in performance and reliably predicted the clinical stimulation parameters during follow-up visits. These findings highlight the potential of algorithmic solutions to overcome the subjective bias in beta peak identification, presenting viable options for standardizing this process. Such advancements could lead to significant improvements in the efficiency and accuracy of patient-specific DBS therapy parameterization.
Collapse
Affiliation(s)
- Sunderland K Baker
- Pennsylvania State University, Department of Biobehavioral Health, University Park, PA, 16802, USA
| | - Erin M Radcliffe
- University of Colorado Anschutz Medical Campus, Department of Neurosurgery, Aurora, CO, 80045, USA
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, CO, 80045, USA
| | - Daniel R Kramer
- University of Colorado Anschutz Medical Campus, Department of Neurosurgery, Aurora, CO, 80045, USA
| | - Steven Ojemann
- University of Colorado Anschutz Medical Campus, Department of Neurosurgery, Aurora, CO, 80045, USA
- University of Colorado Anschutz Medical Campus, Department of Neurology, Aurora, CO, 80045, USA
| | - Michelle Case
- Medtronic PLC, Neuromodulation Operating Unit, Minneapolis, MN, 55432, USA
| | - Caleb Zarns
- Medtronic PLC, Neuromodulation Operating Unit, Minneapolis, MN, 55432, USA
| | - Abbey Holt-Becker
- Medtronic PLC, Neuromodulation Operating Unit, Minneapolis, MN, 55432, USA
| | - Robert S Raike
- Medtronic PLC, Neuromodulation Operating Unit, Minneapolis, MN, 55432, USA
| | - Alexander J Baumgartner
- University of Colorado Anschutz Medical Campus, Department of Neurosurgery, Aurora, CO, 80045, USA
- University of Colorado Anschutz Medical Campus, Department of Neurology, Aurora, CO, 80045, USA
| | - Drew S Kern
- University of Colorado Anschutz Medical Campus, Department of Neurosurgery, Aurora, CO, 80045, USA
- University of Colorado Anschutz Medical Campus, Department of Neurology, Aurora, CO, 80045, USA
| | - John A Thompson
- University of Colorado Anschutz Medical Campus, Department of Neurosurgery, Aurora, CO, 80045, USA.
- University of Colorado Anschutz Medical Campus, Department of Neurology, Aurora, CO, 80045, USA.
- University of Colorado Anschutz Medical Campus, Department of Psychiatry, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Chao-Chia Lu D, Boulay C, Chan ADC, Sachs AJ. A Systematic Review of Neurophysiology-Based Localization Techniques Used in Deep Brain Stimulation Surgery of the Subthalamic Nucleus. Neuromodulation 2024; 27:409-421. [PMID: 37462595 DOI: 10.1016/j.neurom.2023.02.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This systematic review is conducted to identify, compare, and analyze neurophysiological feature selection, extraction, and classification to provide a comprehensive reference on neurophysiology-based subthalamic nucleus (STN) localization. MATERIALS AND METHODS The review was carried out using the methods and guidelines of the Kitchenham systematic review and provides an in-depth analysis on methods proposed on STN localization discussed in the literature between 2000 and 2021. Three research questions were formulated, and 115 publications were identified to answer the questions. RESULTS The three research questions formulated are answered using the literature found on the respective topics. This review discussed the technologies used in past research, and the performance of the state-of-the-art techniques is also reviewed. CONCLUSION This systematic review provides a comprehensive reference on neurophysiology-based STN localization by reviewing the research questions other new researchers may also have.
Collapse
Affiliation(s)
| | | | | | - Adam J Sachs
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Dong W, Qiu C, Chang L, Sun J, Yan J, Luo B, Lu Y, Liu W, Zhang L, Zhang W. The guiding effect of local field potential during deep brain stimulation surgery for programming in Parkinson's disease patients. CNS Neurosci Ther 2024; 30:e14501. [PMID: 37830232 PMCID: PMC11017450 DOI: 10.1111/cns.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery require subsequent programming, which is complex and cumbersome. The local field potential (LFP) in the deep brain is associated with motor symptom improvement. The current study aimed to identify LFP biomarkers correlated with improved motor symptoms in PD patients after DBS and verify their guiding role in postoperative programming. METHODS Initially, the study included 36 PD patients undergoing DBS surgery. Temporary external electrical stimulation was performed during electrode implantation, and LFP signals around the electrode contacts were collected before and after stimulation. The stimulating contact at 6 months of programming was regarded as the optimal and effective stimulating contact. The LFP signal of this contact during surgery was analyzed to identify potential LFP biomarkers. Next, we randomly assigned another 30 PD patients who had undergone DBS to physician empirical programming and LFP biomarker-guided programming groups and compared the outcomes. RESULTS In the first part of the study, LFP signals of electrode contacts changed after electrical stimulation. Electrical stimulation reduced gamma energy and the beta/alpha oscillation ratio. The different programming method groups were compared, indicating the superiority of beta/alpha oscillations ratio-guided programming over physician experience programming for patients' improvement rate (IR) of UPDRS-III. There were no significant differences in the IR of UPDRS-III, post-LED, IR-PDQ39, number of programmings, and the contact change rate between the gamma oscillations-guided programming and empirical programming groups. CONCLUSION Overall, the findings reveal that gamma oscillations and the beta/alpha oscillations ratio are potential biomarkers for programming in PD patients after DBS. Instead of relying solely on spike action potential signals from single neurons, LFP biomarkers can provide the appropriate depth for electrode placement.
Collapse
Affiliation(s)
- Wenwen Dong
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Chang Qiu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Lei Chang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jian Sun
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiuqi Yan
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Bei Luo
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yue Lu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Weiguo Liu
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Zhang
- Department of geriatric medicineThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenbin Zhang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Oliveira AM, Coelho L, Carvalho E, Ferreira-Pinto MJ, Vaz R, Aguiar P. Machine learning for adaptive deep brain stimulation in Parkinson's disease: closing the loop. J Neurol 2023; 270:5313-5326. [PMID: 37530789 PMCID: PMC10576725 DOI: 10.1007/s00415-023-11873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease bearing a severe social and economic impact. So far, there is no known disease modifying therapy and the current available treatments are symptom oriented. Deep Brain Stimulation (DBS) is established as an effective treatment for PD, however current systems lag behind today's technological potential. Adaptive DBS, where stimulation parameters depend on the patient's physiological state, emerges as an important step towards "smart" DBS, a strategy that enables adaptive stimulation and personalized therapy. This new strategy is facilitated by currently available neurotechnologies allowing the simultaneous monitoring of multiple signals, providing relevant physiological information. Advanced computational models and analytical methods are an important tool to explore the richness of the available data and identify signal properties to close the loop in DBS. To tackle this challenge, machine learning (ML) methods applied to DBS have gained popularity due to their ability to make good predictions in the presence of multiple variables and subtle patterns. ML based approaches are being explored at different fronts such as the identification of electrophysiological biomarkers and the development of personalized control systems, leading to effective symptom relief. In this review, we explore how ML can help overcome the challenges in the development of closed-loop DBS, particularly its role in the search for effective electrophysiology biomarkers. Promising results demonstrate ML potential for supporting a new generation of adaptive DBS, with better management of stimulation delivery, resulting in more efficient and patient-tailored treatments.
Collapse
Affiliation(s)
- Andreia M Oliveira
- Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal
| | - Luis Coelho
- Instituto Superior de Engenharia do Porto, Porto, Portugal
| | - Eduardo Carvalho
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Manuel J Ferreira-Pinto
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rui Vaz
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Paulo Aguiar
- Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal.
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
8
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
10
|
Neumann WJ, Horn A, Kühn AA. Insights and opportunities for deep brain stimulation as a brain circuit intervention. Trends Neurosci 2023; 46:472-487. [PMID: 37105806 DOI: 10.1016/j.tins.2023.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Deep brain stimulation (DBS) is an effective treatment and has provided unique insights into the dynamic circuit architecture of brain disorders. This Review illustrates our current understanding of the pathophysiology of movement disorders and their underlying brain circuits that are modulated with DBS. It proposes principles of pathological network synchronization patterns like beta activity (13-35 Hz) in Parkinson's disease. We describe alterations from microscale including local synaptic activity via modulation of mesoscale hypersynchronization to changes in whole-brain macroscale connectivity. Finally, an outlook on advances for clinical innovations in next-generation neurotechnology is provided: from preoperative connectomic targeting to feedback controlled closed-loop adaptive DBS as individualized network-specific brain circuit interventions.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
11
|
Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells 2023; 12:cells12081193. [PMID: 37190102 DOI: 10.3390/cells12081193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina França
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
12
|
Wiest C, Morgante F, Torrecillos F, Pogosyan A, He S, Baig F, Bertaina I, Hart MG, Edwards MJ, Pereira EA, Tan H. Subthalamic Nucleus Stimulation-Induced Local Field Potential Changes in Dystonia. Mov Disord 2023; 38:423-434. [PMID: 36562479 PMCID: PMC7614354 DOI: 10.1002/mds.29302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) stimulation is an effective treatment for Parkinson's disease and induced local field potential (LFP) changes that have been linked with clinical improvement. STN stimulation has also been used in dystonia although the internal globus pallidus is the standard target where theta power has been suggested as a physiomarker for adaptive stimulation. OBJECTIVE We aimed to explore if enhanced theta power was also present in STN and if stimulation-induced spectral changes that were previously reported for Parkinson's disease would occur in dystonia. METHODS We recorded LFPs from 7 patients (12 hemispheres) with isolated craniocervical dystonia whose electrodes were placed such that inferior, middle, and superior contacts covered STN, zona incerta, and thalamus. RESULTS We did not observe prominent theta power in STN at rest. STN stimulation induced similar spectral changes in dystonia as in Parkinson's disease, such as broadband power suppression, evoked resonant neural activity (ERNA), finely-tuned gamma oscillations, and an increase in aperiodic exponents in STN-LFPs. Both power suppression and ERNA localize to STN. Based on this, single-pulse STN stimulation elicits evoked neural activities with largest amplitudes in STN, which are relayed to the zona incerta and thalamus with changing characteristics as the distance from STN increases. CONCLUSIONS Our results show that STN stimulation-induced spectral changes are a nondisease-specific response to high-frequency stimulation, which can serve as placement markers for STN. This broadens the scope of STN stimulation and makes it an option for other disorders with excessive oscillatory peaks in STN. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christoph Wiest
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Francesca Morgante
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Fahd Baig
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Ilaria Bertaina
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Michael G. Hart
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Mark J. Edwards
- Institute of Psychiatry, Psychology and NeurosciencesKing's College LondonLondonUnited Kingdom
| | - Erlick A. Pereira
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
13
|
Effects of Contralateral Deep Brain Stimulation and Levodopa on Subthalamic Nucleus Oscillatory Activity and Phase-Amplitude Coupling. Neuromodulation 2023; 26:310-319. [PMID: 36513587 DOI: 10.1016/j.neurom.2022.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The modulatory effects of medication and deep brain stimulation (DBS) on subthalamic nucleus (STN) neural activity in Parkinson's disease have been widely studied. However, effects on the contralateral side to the stimulated STN, in particular, changes in local field potential (LFP) oscillatory activity and phase-amplitude coupling (PAC), have not yet been reported. OBJECTIVE The aim of this study was to examine changes in STN LFP activity across a range of frequency bands and STN PAC for different combinations of DBS and medication on/off on the side contralateral to the applied stimulation. MATERIALS AND METHODS We examined STN LFPs that were recorded using externalized leads from eight parkinsonian patients during unilateral DBS from the side contralateral to the stimulation. LFP spectral power in alpha (5 to ∼13 Hz), low beta (13 to ∼20 Hz), high beta (20-30 Hz), and high gamma plus high-frequency oscillation (high gamma+HFO) (100-400 Hz) bands were estimated for different combinations of medication and unilateral stimulation (off/on). PAC between beta and high gamma+HFO in the STN LFPs was also investigated. The effect of the condition was examined using linear mixed models. RESULTS PAC in the STN LFP was reduced by DBS when compared to the baseline condition (no medication and stimulation). Medication had no significant effect on PAC. Alpha power decreased with DBS, both alone and when combined with medication. Beta power decreased with DBS, medication, and DBS and medication combined. High gamma+HFO power increased during the application of contralateral DBS and was unaltered by medication. CONCLUSIONS The results provide new insights into the effects of DBS and levodopa on STN LFP PAC and oscillatory activity on the side contralateral to stimulation. These may have important implications in understanding mechanisms underlying motor improvements with DBS, including changes on both contralateral and ipsilateral sides, while suggesting a possible role for contralateral sensing during unilateral DBS.
Collapse
|
14
|
Morelli N. Effect and Relationship of Gait on Subcortical Local Field Potentials in Parkinson's Disease: A Systematic Review. Neuromodulation 2023; 26:271-279. [PMID: 36244929 DOI: 10.1016/j.neurom.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Developments in deep brain stimulation (DBS) technology have enabled the ability to detect local field potentials (LFPs) in Parkinson disease (PD). Gait dysfunction is one of the most prevalent deficits seen in PD. However, no consensus has been reached on the effect of gait on LFPs and the relationship between LFPs and clinical measures of gait. The objective of this systematic review was to synthesize existing research regarding the relationship between gait dysfunction and LFPs in PD. METHODS A systematic search of the literature yielded a total of ten articles, including 132 patients with PD, which met the criteria for inclusion. RESULTS Beta frequency band measures showed low-to-strong correlation to clinical gait measures (r = -0.50 to 0.82). Two studies found decreased beta power during gait; one found increased beta frequency peaks during gait; and one found higher beta power during dual-task gait than during single-task gait. One of the three studies comparing patients with and without freezing found significantly increased beta burst duration and power during gait in freezers compared with nonfreezers. All studies showed moderate-to-high methodologic quality. CONCLUSIONS This review highlights the need to consider the effect of gait on LFP recordings, particularly when used to guide DBS programming. Although sample sizes were small, it appears LFPs are associated to and modulated by gait in patients with PD. This evidence suggests that LFPs have the potential to be used as a biomarker of gait dysfunction in PD.
Collapse
|
15
|
A systematic review of local field potential physiomarkers in Parkinson's disease: from clinical correlations to adaptive deep brain stimulation algorithms. J Neurol 2023; 270:1162-1177. [PMID: 36209243 PMCID: PMC9886603 DOI: 10.1007/s00415-022-11388-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Abstract
Deep brain stimulation (DBS) treatment has proven effective in suppressing symptoms of rigidity, bradykinesia, and tremor in Parkinson's disease. Still, patients may suffer from disabling fluctuations in motor and non-motor symptom severity during the day. Conventional DBS treatment consists of continuous stimulation but can potentially be further optimised by adapting stimulation settings to the presence or absence of symptoms through closed-loop control. This critically relies on the use of 'physiomarkers' extracted from (neuro)physiological signals. Ideal physiomarkers for adaptive DBS (aDBS) are indicative of symptom severity, detectable in every patient, and technically suitable for implementation. In the last decades, much effort has been put into the detection of local field potential (LFP) physiomarkers and in their use in clinical practice. We conducted a research synthesis of the correlations that have been reported between LFP signal features and one or more specific PD motor symptoms. Features based on the spectral beta band (~ 13 to 30 Hz) explained ~ 17% of individual variability in bradykinesia and rigidity symptom severity. Limitations of beta band oscillations as physiomarker are discussed, and strategies for further improvement of aDBS are explored.
Collapse
|
16
|
Tiruvadi V, James S, Howell B, Obatusin M, Crowell A, Riva-Posse P, Gross RE, McIntyre CC, Mayberg HS, Butera R. Mitigating Mismatch Compression in Differential Local Field Potentials. IEEE Trans Neural Syst Rehabil Eng 2023; 31:68-77. [PMID: 36288215 PMCID: PMC10784110 DOI: 10.1109/tnsre.2022.3217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) devices capable of measuring differential local field potentials ( ∂ LFP) enable neural recordings alongside clinical therapy. Efforts to identify oscillatory correlates of various brain disorders, or disease readouts, are growing but must proceed carefully to ensure readouts are not distorted by brain environment. In this report we identified, characterized, and mitigated a major source of distortion in ∂ LFP that we introduce as mismatch compression (MC). Using in vivo, in silico, and in vitro models of MC, we showed that impedance mismatches in the two recording electrodes can yield incomplete rejection of stimulation artifact and subsequent gain compression that distorts oscillatory power. We then developed and validated an opensource mitigation pipeline that mitigates the distortions arising from MC. This work enables more reliable oscillatory readouts for adaptive DBS applications.
Collapse
|
17
|
Wang K, Wang J, Zhu Y, Li H, Liu C, Fietkiewicz C, Loparo KA. Adaptive closed-loop control strategy inhibiting pathological basal ganglia oscillations. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Olson JW, Nakhmani A, Irwin ZT, Edwards LJ, Gonzalez CL, Wade MH, Black SD, Awad MZ, Kuhman DJ, Hurt CP, Guthrie BL, Walker HC. Cortical and Subthalamic Nucleus Spectral Changes During Limb Movements in Parkinson's Disease Patients with and Without Dystonia. Mov Disord 2022; 37:1683-1692. [PMID: 35702056 PMCID: PMC9541849 DOI: 10.1002/mds.29057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dystonia is an understudied motor feature of Parkinson's disease (PD). Although considerable efforts have focused on brain oscillations related to the cardinal symptoms of PD, whether dystonia is associated with specific electrophysiological features is unclear. OBJECTIVE The objective of this study was to investigate subcortical and cortical field potentials at rest and during contralateral hand and foot movements in patients with PD with and without dystonia. METHODS We examined the prevalence and distribution of dystonia in patients with PD undergoing deep brain stimulation surgery. During surgery, we recorded intracranial electrophysiology from the motor cortex and directional electrodes in the subthalamic nucleus (STN) both at rest and during self-paced repetitive contralateral hand and foot movements. Wavelet transforms and mixed models characterized changes in spectral content in patients with and without dystonia. RESULTS Dystonia was highly prevalent at enrollment (61%) and occurred most commonly in the foot. Regardless of dystonia status, cortical recordings display beta (13-30 Hz) desynchronization during movements versus rest, while STN signals show increased power in low frequencies (6.0 ± 3.3 and 4.2 ± 2.9 Hz peak frequencies for hand and foot movements, respectively). Patients with PD with dystonia during deep brain stimulation surgery displayed greater M1 beta power at rest and STN low-frequency power during movements versus those without dystonia. CONCLUSIONS Spectral power in motor cortex and STN field potentials differs markedly during repetitive limb movements, with cortical beta desynchronization and subcortical low-frequency synchronization, especially in patients with PD with dystonia. Greater knowledge on field potential dynamics in human motor circuits can inform dystonia pathophysiology in PD and guide novel approaches to therapy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joseph W Olson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arie Nakhmani
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachary T Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lloyd J Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Melissa H Wade
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah D Black
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammad Z Awad
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniel J Kuhman
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher P Hurt
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bart L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Adam EM, Brown EN, Kopell N, McCarthy MM. Deep brain stimulation in the subthalamic nucleus for Parkinson's disease can restore dynamics of striatal networks. Proc Natl Acad Sci U S A 2022; 119:e2120808119. [PMID: 35500112 PMCID: PMC9171607 DOI: 10.1073/pnas.2120808119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson’s disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations. These rhythms are essential to selection and execution of motor programs, and their loss or exaggeration due to dopamine (DA) depletion in PD is a major source of behavioral deficits. Restoring the natural rhythms may then be instrumental in the therapeutic action of DBS. We develop a biophysical networked model of a BG pathway to study how abnormal beta oscillations can emerge throughout the BG in PD and how DBS can restore normal beta, gamma, and theta striatal rhythms. Our model incorporates STN projections to the striatum, long known but understudied, found to preferentially target fast-spiking interneurons (FSI). We find that DBS in STN can normalize striatal medium spiny neuron activity by recruiting FSI dynamics and restoring the inhibitory potency of FSIs observed in normal conditions. We also find that DBS allows the reexpression of gamma and theta rhythms, thought to be dependent on high DA levels and thus lost in PD, through cortical noise control. Our study highlights that DBS effects can go beyond regularizing BG output dynamics to restoring normal internal BG dynamics and the ability to regulate them. It also suggests how gamma and theta oscillations can be leveraged to supplement DBS treatment and enhance its effectiveness.
Collapse
Affiliation(s)
- Elie M. Adam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | | |
Collapse
|
20
|
Ahn J, Cha S, Choi KE, Kim SW, Yoo Y, Goo YS. Correlated Activity in the Degenerate Retina Inhibits Focal Response to Electrical Stimulation. Front Cell Neurosci 2022; 16:889663. [PMID: 35602554 PMCID: PMC9114441 DOI: 10.3389/fncel.2022.889663] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Retinal prostheses have shown some clinical success in patients with retinitis pigmentosa and age-related macular degeneration. However, even after the implantation of a retinal prosthesis, the patient’s visual acuity is at best less than 20/420. Reduced visual acuity may be explained by a decrease in the signal-to-noise ratio due to the spontaneous hyperactivity of retinal ganglion cells (RGCs) found in degenerate retinas. Unfortunately, abnormal retinal rewiring, commonly observed in degenerate retinas, has rarely been considered for the development of retinal prostheses. The purpose of this study was to investigate the aberrant retinal network response to electrical stimulation in terms of the spatial distribution of the electrically evoked RGC population. An 8 × 8 multielectrode array was used to measure the spiking activity of the RGC population. RGC spikes were recorded in wild-type [C57BL/6J; P56 (postnatal day 56)], rd1 (P56), rd10 (P14 and P56) mice, and macaque [wild-type and drug-induced retinal degeneration (RD) model] retinas. First, we performed a spike correlation analysis between RGCs to determine RGC connectivity. No correlation was observed between RGCs in the control group, including wild-type mice, rd10 P14 mice, and wild-type macaque retinas. In contrast, for the RD group, including rd1, rd10 P56, and RD macaque retinas, RGCs, up to approximately 400–600 μm apart, were significantly correlated. Moreover, to investigate the RGC population response to electrical stimulation, the number of electrically evoked RGC spikes was measured as a function of the distance between the stimulation and recording electrodes. With an increase in the interelectrode distance, the number of electrically evoked RGC spikes decreased exponentially in the control group. In contrast, electrically evoked RGC spikes were observed throughout the retina in the RD group, regardless of the inter-electrode distance. Taken together, in the degenerate retina, a more strongly coupled retinal network resulted in the widespread distribution of electrically evoked RGC spikes. This finding could explain the low-resolution vision in prosthesis-implanted patients.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Seong-Woo Kim,
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
21
|
Jin L, Shi W, Zhang C, Yeh CH. Frequency Nesting Interactions in the Subthalamic Nucleus Correlate With the Step Phases for Parkinson's Disease. Front Physiol 2022; 13:890753. [PMID: 35574448 PMCID: PMC9100409 DOI: 10.3389/fphys.2022.890753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Gait disturbance in Parkinson's disease (PD) can be ameliorated by sound stimulation. Given that excessive β synchronization in basal ganglia is linked to motor impairment in PD, whether the frequency nesting interactions are associated with the gait problem is far from clear. To this end, the masking phase-amplitude coupling (PAC) method was proposed to overcome the trade-off between intrinsic nonlinearity/non-stationarity and demand for predetermined frequencies, normally extracted by the filter. In this study, we analyzed LFPs recorded from 13 patients (one female) with PD during stepping with bilateral deep brain electrodes implanted in the subthalamic nucleus (STN). We found that not only high-frequency oscillation (100-300 Hz) was modulated by β (13-30 Hz) but also β and γ amplitude were modulated by their low-frequency components in δ/θ/α and δ/θ/α/β bands. These PAC values were suppressed by sound stimulation, along with an improvement in gait. We also showed that gait-related high-β (Hβ) modulation in the STN was sensitive to auditory cues, and Hβ gait-phase modulation increased with a metronome. Meanwhile, phase-locking values (PLVs) across all frequencies were significantly suppressed around contralateral heel strikes, manifesting the contralateral step as a critical gait phase in gait initiation for PD. Only the PLVs around contralateral steps were sensitive to auditory cues. Our results support masking PAC as an effective method in exploring frequency nesting interactions in LFPs and reveal the linkages between sound stimulation and couplings related to gait phases in the STN. These findings raise the possibility that nesting interactions in the STN work as feasible biomarkers in alleviating gait disorders.
Collapse
Affiliation(s)
- Luyao Jin
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chien-Hung Yeh
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Lofredi R, Kühn AA. Brain oscillatory dysfunctions in dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:249-257. [PMID: 35034739 DOI: 10.1016/b978-0-12-819410-2.00026-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dystonia is a hyperkinetic movement disorder associated with loss of inhibition, abnormal plasticity, dysfunctional sensorimotor integration, and brain oscillatory dysfunctions at cortical and subcortical levels of the central nervous system. Hence, dystonia is considered a network disorder that can, in many cases, be efficiently treated by pallidal deep brain stimulation (DBS). Abnormal oscillatory activity has been identified across the motor circuit of patients with dystonia. Increased low frequency (LF) synchronization in the internal pallidum is the most prominent abnormality. LF oscillations have been associated with the severity of dystonic motor symptoms; they are suppressed by DBS and localized to the clinically most effective stimulation site. Although the origin of these pathologic changes in brain activity needs further clarifications, their characterization will help in adjusting DBS parameters for successful clinical outcome.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Foffani G, Alegre M. Brain oscillations and Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:259-271. [PMID: 35034740 DOI: 10.1016/b978-0-12-819410-2.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Brain oscillations have been associated with Parkinson's disease (PD) for a long time mainly due to the fundamental oscillatory nature of parkinsonian rest tremor. Over the years, this association has been extended to frequencies well above that of tremor, largely owing to the opportunities offered by deep brain stimulation (DBS) to record electrical activity directly from the patients' basal ganglia. This chapter reviews the results of research on brain oscillations in PD focusing on theta (4-7Hz), beta (13-35Hz), gamma (70-80Hz) and high-frequency oscillations (200-400Hz). For each of these oscillations, we describe localization and interaction with brain structures and between frequencies, changes due to dopamine intake, task-related modulation, and clinical relevance. The study of brain oscillations will also help to dissect the mechanisms of action of DBS. Overall, the chapter tentatively depicts PD in terms of "oscillopathy."
Collapse
Affiliation(s)
- Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Neural Bioengineering, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| | - Manuel Alegre
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain; Systems Neuroscience Lab, Program of Neuroscience, CIMA, Universidad de Navarra, Pamplona, Spain; IdisNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
24
|
Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur J Paediatr Neurol 2022; 36:69-77. [PMID: 34922163 DOI: 10.1016/j.ejpn.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
We review the findings for motor cortical excitability, plasticity and evoked potentials in dystonia. Plasticity can be induced and assessed in cortical areas by non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and the invasive technique of deep brain stimulation (DBS), which allows access to deep brain structures. Single-pulse TMS measures have been widely studied in dystonia and consistently showed reduced silent period duration. Paired pulse TMS measures showed reduced short and long interval intracortical inhibition, interhemispheric inhibition, long-latency afferent inhibition and increased intracortical facilitation in dystonia. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex improved handwriting with prolongation of the silent period in focal hand dystonia patients. Continuous theta-burst stimulation (cTBS) of the cerebellum or cTBS of the dorsal premotor cortex improved dystonia in some studies. Plasticity induction protocols in dystonia demonstrated excessive motor cortical plasticity with the reduction in cortico-motor topographic specificity. Bilateral DBS of the globus pallidus internus (GPi) improves dystonia, associated pain and functional disability. Local field potentials recordings in dystonia patients suggested that there is increased power in the low-frequency band (4-12 Hz) in the GPi. Cortical evoked potentials at peak latencies of 10 and 25 ms can be recorded with GPi stimulation in dystonia. Plasticity induction protocols based on the principles of spike timing dependent plasticity that involved repeated pairing of GPi-DBS and motor cortical TMS at latencies of cortical evoked potentials induced motor cortical plasticity. These studies expanded our knowledge of the pathophysiology of dystonia and how cortical excitability and plasticity are altered with different treatments such as DBS.
Collapse
|
25
|
Effects of Acute Ethanol Intoxication on Local Field Potentials in the Rat Lateral Septum. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Wei J, Zou Z, Li J, Zhang Y. Gamma Oscillations and Coherence Are Weaker in the Dorsomedial Subregion of STN in Parkinson's Disease. Front Neurol 2021; 12:710206. [PMID: 34557146 PMCID: PMC8453062 DOI: 10.3389/fneur.2021.710206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Deep-brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor symptoms of advanced Parkinson's disease (PD). Due to a lack of detailed somatotopic organization in STN, the clinically most effective part of the STN for stimulation has already become one of the hot research focuses. At present, there are some reports about topographic distribution for different depths within the STN, but few about a mediolateral topography in this area. Objective: The objective was to investigate the local field potential (LFP) distribution patterns in dorsomedial and dorsolateral subparts of STN. Methods: In total, 18 PD patients eventually enrolled in this study. The DBS electrodes were initially located on the lateral portion of dorsolateral STN. Because of internal capsule side effects presented at low threshold (below 1.5 mA), the electrode was reimplanted more medially to the dorsomedial STN. In this process, intraoperative LFPs from dorsomedial and dorsolateral STN were recorded from the inserted electrode. Both beta power and gamma power of the LFPs were calculated using the power spectral density (PSD) for each DBS contact pair. Furthermore, coherence between any two pairs of contacts was computed in the dorsomedial and dorsolateral parts of STN, respectively. Meanwhile, the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) was monitored prior to surgery and at the 6-month follow-up. Results: Compared to the dorsolateral part of STN, gamma oscillations (p < 0.01) and coherence (p < 0.05) were all weaker in the dorsomedial part. However, no obvious differences in beta oscillations and coherence were observed between the two groups (p > 0.05). Moreover, it should be noted that DBS of the dorsomedial STN resulted in significant improvement in the UPDRS-III in PD patients. There was a 61.50 ± 21.30% improvement in UPDRS-III scores in Med-off/Stim-on state relative to the Med-off state at baseline (from 15.44 ± 6.84 to 43.94 ± 15.79, p < 0.01). Conclusions: The specific features of gamma activity may be used to differentiate STN subregions. Moreover, the dorsomedial part of STN might be a potential target for DBS in PD.
Collapse
Affiliation(s)
- Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhifan Zou
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Sirica D, Hewitt AL, Tarolli CG, Weber MT, Zimmerman C, Santiago A, Wensel A, Mink JW, Lizárraga KJ. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021; 11:315-328. [PMID: 34261338 PMCID: PMC8977945 DOI: 10.2217/nmt-2021-0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
Intraoperative neurophysiological information could increase accuracy of surgical deep brain stimulation (DBS) lead placement. Subsequently, DBS therapy could be optimized by specifically targeting pathological activity. In Parkinson's disease, local field potentials (LFPs) excessively synchronized in the beta band (13-35 Hz) correlate with akinetic-rigid symptoms and their response to DBS therapy, particularly low beta band suppression (13-20 Hz) and high frequency gamma facilitation (35-250 Hz). In dystonia, LFPs abnormally synchronize in the theta/alpha (4-13 Hz), beta and gamma (60-90 Hz) bands. Phasic dystonic symptoms and their response to DBS correlate with changes in theta/alpha synchronization. In essential tremor, LFPs excessively synchronize in the theta/alpha and beta bands. Adaptive DBS systems will individualize pathological characteristics of neurophysiological signals to automatically deliver therapeutic DBS pulses of specific spatial and temporal parameters.
Collapse
Affiliation(s)
- Daniel Sirica
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Angela L Hewitt
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Christopher G Tarolli
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| | - Miriam T Weber
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Carol Zimmerman
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Aida Santiago
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Andrew Wensel
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Department of Neurosurgery, University of Rochester, Rochester, NY 14618, USA
| | - Jonathan W Mink
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Karlo J Lizárraga
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
28
|
Johnson V, Wilt R, Gilron R, Anso J, Perrone R, Beudel M, Piña-Fuentes D, Saal J, Ostrem JL, Bledsoe I, Starr P, Little S. Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations. Exp Neurol 2021; 345:113825. [PMID: 34331900 DOI: 10.1016/j.expneurol.2021.113825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Dystonia is a disabling movement disorder characterized by excessive muscle contraction for which the underlying pathophysiology is incompletely understood and treatment interventions limited in efficacy. Here we utilize a novel, sensing-enabled, deep brain stimulator device, implanted in a patient with cervical dystonia, to record local field potentials from chronically implanted electrodes in the sensorimotor cortex and subthalamic nuclei bilaterally. This rechargeable device was able to record large volumes of neural data at home, in the naturalistic environment, during unconstrained activity. We confirmed the presence of theta (3-7 Hz) oscillatory activity, which was coherent throughout the cortico-subthalamic circuit and specifically suppressed by high-frequency stimulation. Stimulation also reduced the duration, rate and height of theta bursts. These findings motivated a proof-of-principle trial of a new form of adaptive deep brain stimulation - triggered by theta-burst activity recorded from the motor cortex. This facilitated increased peak stimulation amplitudes without induction of dyskinesias and demonstrated improved blinded clinical ratings compared to continuous DBS, despite reduced total electrical energy delivered. These results further strengthen the pathophysiological role of low frequency (theta) oscillations in dystonia and demonstrate the potential for novel adaptive stimulation strategies linked to cortico-basal theta bursts.
Collapse
Affiliation(s)
- Vinith Johnson
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Robert Wilt
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Roee Gilron
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Juan Anso
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Randy Perrone
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Beudel
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jeremy Saal
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Ian Bledsoe
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Philip Starr
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Sand D, Rappel P, Marmor O, Bick AS, Arkadir D, Lu BL, Bergman H, Israel Z, Eitan R. Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients. J Neural Eng 2021; 18. [PMID: 33906182 DOI: 10.1088/1741-2552/abfc1d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/27/2021] [Indexed: 01/20/2023]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) based on subthalamic nucleus (STN) electrophysiology has recently been proposed to improve clinical outcomes of DBS for Parkinson's disease (PD) patients. Many current models for aDBS are based on one or two electrophysiological features of STN activity, such as beta or gamma activity. Although these models have shown interesting results, we hypothesized that an aDBS model that includes many STN activity parameters will yield better clinical results. The objective of this study was to investigate the most appropriate STN neurophysiological biomarkers, detectable over long periods of time, that can predict OFF and ON levodopa states in PD patients.Approach.Long-term local field potentials (LFPs) were recorded from eight STNs (four PD patients) during 92 recording sessions (44 OFF and 48 ON levodopa states), over a period of 3-12 months. Electrophysiological analysis included the power of frequency bands, band power ratio and burst features. A total of 140 engineered features was extracted for 20 040 epochs (each epoch lasting 5 s). Based on these engineered features, machine learning (ML) models classified LFPs as OFF vs ON levodopa states.Main results.Beta and gamma band activity alone poorly predicts OFF vs ON levodopa states, with an accuracy of 0.66 and 0.64, respectively. Group ML analysis slightly improved prediction rates, but personalized ML analysis, based on individualized engineered electrophysiological features, were markedly better, predicting OFF vs ON levodopa states with an accuracy of 0.8 for support vector machine learning models.Significance.We showed that individual patients have unique sets of STN neurophysiological biomarkers that can be detected over long periods of time. ML models revealed that personally classified engineered features most accurately predict OFF vs ON levodopa states. Future development of aDBS for PD patients might include personalized ML algorithms.
Collapse
Affiliation(s)
- Daniel Sand
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Pnina Rappel
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Odeya Marmor
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Atira S Bick
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David Arkadir
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bao-Liang Lu
- Center for Brain-like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Israel
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Jerusalem Mental Health Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
30
|
Oscillatory activity in the BNST/ALIC and the frontal cortex in OCD: acute effects of DBS. J Neural Transm (Vienna) 2021; 128:215-224. [PMID: 33533974 DOI: 10.1007/s00702-020-02297-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022]
Abstract
Deep brain stimulation (DBS) of the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC) is successfully used for treatment of patients with obsessive-compulsive disorder (OCD). Clinical and experimental studies have suggested that enhanced network synchronization in the theta band is correlated with severity of symptoms. The mechanisms of action of DBS remain unclear in OCD. We here investigate the effect of acute stimulation of the BNCT/ALIC on oscillatory neuronal activity in patients with OCD implanted with DBS electrodes. We recorded the oscillatory activity of local field potentials (LFPs) from DBS electrodes (contact + 0/- 3; bipolar configuration; both hemispheres) from the BNST/ALIC parallel with frontal cortical electroencephalogram (EEG) one day after DBS surgery in four patients with OCD. BNST/ALIC and frontal EEG oscillatory activities were analysed before stimulation as baseline, and after three periods of stimulation with different voltage amplitudes (1 V, 2 V and 3.5 V) at 130 Hz. Overall, acute high frequency DBS reduced oscillatory theta band (4-8 Hz; p < 0.01) but increased other frequency bands in BNST/ALIC and the frontal cortex (p < 0.01). We show that stimulation of the BNST/ALIC in OCD modulates oscillatory activity in brain regions that are involved in the pathomechanisms of OCD. Our findings confirm and extend the findings that enhanced theta oscillatory activity in neuronal networks may be a biomarker for OCD.
Collapse
|
31
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Wozny TA, Wang DD, Starr PA. Simultaneous cortical and subcortical recordings in humans with movement disorders: Acute and chronic paradigms. Neuroimage 2020; 217:116904. [PMID: 32387742 DOI: 10.1016/j.neuroimage.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Invasive basal ganglia recordings in humans have significantly advanced our understanding of the neurophysiology of movement disorders. A recent technical advance has been the addition of electrocorticography to basal ganglia recording, for evaluating distributed motor networks. Here we review the rationale, results, and ethics of this multisite recording technique in movement disorders, as well as its application in chronic recording paradigms utilizing implantable neural interfaces that include a sensing function.
Collapse
Affiliation(s)
- Thomas A Wozny
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Doris D Wang
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
33
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
34
|
Ozturk M, Kaku H, Jimenez-Shahed J, Viswanathan A, Sheth SA, Kumar S, Ince NF. Subthalamic Single Cell and Oscillatory Neural Dynamics of a Dyskinetic Medicated Patient With Parkinson's Disease. Front Neurosci 2020; 14:391. [PMID: 32390796 PMCID: PMC7193777 DOI: 10.3389/fnins.2020.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 02/01/2023] Open
Abstract
Single cell neuronal activity (SUA) and local field potentials (LFP) in the subthalamic nucleus (STN) of unmedicated Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery have been well-characterized during microelectrode recordings (MER). However, there is limited knowledge about the changes in the firing patterns and oscillations above and within the territories of STN after the intake of dopaminergic medication. Here, for the first time, we report the STN single cell and oscillatory neural dynamics in a medicated patient with idiopathic PD using intraoperative MER. We recorded LFP and SUA with microelectrodes at various depths during bilateral STN-DBS electrode implantation. We isolated 26 neurons in total and observed that tonic and irregular firing patterns of individual neurons predominated throughout the territories of STN. While burst-type firings have been well-characterized in the dorsal territories of STN in unmedicated patients, interestingly, this activity was not observed in our medicated subject. LFP recordings lacked the excessive beta (8-30 Hz) activity, characteristic of the unmedicated state and signal energy was mainly dominated by slow oscillations below 8 Hz. We observed sharp gamma oscillations between 70 and 90 Hz within and above the STN. Despite the presence of a broadband high frequency activity in 200-400 Hz range, no cross-frequency interaction in the form of phase-amplitude coupling was noted between low and high frequency oscillations of LFPs. While our results are in agreement with the previously reported LFP recordings from the DBS lead in medicated PD patients, the sharp gamma peak present throughout the depth recordings and the lack of bursting firings after levodopa intake have not been reported before. The lack of bursting in SUA, the lack of excessive beta activity and cross frequency coupling between HFOs and lower rhythms further validate the link between bursting firing regime of neurons and pathological oscillatory neural activity in PD-STN. Overall, these observations not only validate the existing literature on the PD electrophysiology in healthy/medicated animal models but also provide insights regarding the underlying electro-pathophysiology of levodopa-induced dyskinesias in PD patients through demonstration of multiscale relationships between single cell firings and field potentials.
Collapse
Affiliation(s)
- Musa Ozturk
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Heet Kaku
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Joohi Jimenez-Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Suneel Kumar
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Nuri F. Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
35
|
Zhu GY, Zhang RL, Chen YC, Liu YY, Liu DF, Wang SY, Jiang Y, Zhang JG. Characteristics of globus pallidus internus local field potentials in generalized dystonia patients with TWNK mutation. Clin Neurophysiol 2020; 131:1453-1461. [PMID: 32387964 DOI: 10.1016/j.clinph.2020.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We focused on a rare gene mutation causing dystonia in two siblings who received globus pallidus internus deep brain stimulation (GPi-DBS). The aim was to characterize the relationship between neuronal activity patterns and clinical syndromes. METHODS Whole exome sequencing was applied to identify the TWNK (previous symbol C10orf2) mutation; Two siblings with TWNK mutation presented as generalized dystonia with rigidity and bradykinesia; four other sporadic generalized dystonia patients underwent GPi-DBS and local field potentials (LFPs) were recorded. Oscillatory activities were illustrated with power spectra and temporal dynamics measured by the Lempel-Ziv complexity (LZC). RESULTS Normalized power spectra of GPi LFPs differed between patients with TWNK mutation and dystonia over the low beta bands. Patients with TWNK mutation had higher low beta power (15-27 Hz, unpaired t-test, corrected P < 0.0022) and lower LZC (15-27 Hz, unpaired t-test, P < 0.01) than other patients with generalized dystonia. On the other hand, the TWNK mutation patients showed decreased low frequency and beta oscillation in the GPi after DBS, as well as improved movement performance. CONCLUSION The LFPs were different in TWNK mutation dystonia siblings than other patients with generalized dystonia, which indicate the abnormal LFPs were related to symptoms rather than specific disease. In addition, the inhibited effect on oscillations also provided a potential evidence for DBS treatment on rare movement disorders. SIGNIFICANCE This study could potentially aid in the future development of adaptive DBS via rare disease LFPs comparison.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Li Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
36
|
Little S, Brown P. Debugging Adaptive Deep Brain Stimulation for Parkinson's Disease. Mov Disord 2020; 35:555-561. [PMID: 32039501 PMCID: PMC7166127 DOI: 10.1002/mds.27996] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) is a successful treatment for patients with Parkinson's disease. In adaptive DBS, stimulation is titrated according to feedback about clinical state and underlying pathophysiology. This contrasts with conventional stimulation, which is fixed and continuous. In acute trials, adaptive stimulation matches the efficacy of conventional stimulation while delivering about half the electrical energy. The latter means potentially fewer side-effects. The next step is to determine the long-term efficacy, efficiency, and side-effect profile of adaptive stimulation, and chronic trials are currently being considered by the medical devices industry. However, there are several different approaches to adaptive DBS, and several possible limitations have been highlighted. Here we review the findings to date to ascertain how and who to stimulate in chronic trials designed to establish the long-term utility of adaptive DBS. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Simon Little
- Department of Movement Disorders and Neuromodulation, University of California San Francisco, San Francisco, California, USA
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
|
38
|
Local Field Potentials and ECoG. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
|
40
|
Piña-Fuentes D, Beudel M, Little S, van Zijl J, Elting JW, Oterdoom DLM, van Egmond ME, van Dijk JMC, Tijssen MAJ. Toward adaptive deep brain stimulation for dystonia. Neurosurg Focus 2019; 45:E3. [PMID: 30064317 DOI: 10.3171/2018.5.focus18155] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of abnormal neural oscillations within the cortico-basal ganglia-thalamo-cortical (CBGTC) network has emerged as one of the current principal theories to explain the pathophysiology of movement disorders. In theory, these oscillations can be used as biomarkers and thereby serve as a feedback signal to control the delivery of deep brain stimulation (DBS). This new form of DBS, dependent on different characteristics of pathological oscillations, is called adaptive DBS (aDBS), and it has already been applied in patients with Parkinson's disease. In this review, the authors summarize the scientific research to date on pathological oscillations in dystonia and address potential biomarkers that might be used as a feedback signal for controlling aDBS in patients with dystonia.
Collapse
Affiliation(s)
- Dan Piña-Fuentes
- Departments of1Neurosurgery and.,2Neurology, University Medical Center Groningen, University of Groningen
| | - Martijn Beudel
- 2Neurology, University Medical Center Groningen, University of Groningen.,3Department of Neurology, Isala Klinieken, Zwolle, The Netherlands; and
| | - Simon Little
- 4Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jonathan van Zijl
- 2Neurology, University Medical Center Groningen, University of Groningen
| | - Jan Willem Elting
- 2Neurology, University Medical Center Groningen, University of Groningen
| | | | | | | | - Marina A J Tijssen
- 2Neurology, University Medical Center Groningen, University of Groningen
| |
Collapse
|
41
|
Scheller U, Lofredi R, Wijk BC, Saryyeva A, Krauss JK, Schneider G, Kroneberg D, Krause P, Neumann W, Kühn AA. Pallidal low‐frequency activity in dystonia after cessation of long‐term deep brain stimulation. Mov Disord 2019; 34:1734-1739. [DOI: 10.1002/mds.27838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ute Scheller
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Roxanne Lofredi
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Bernadette C.M. Wijk
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- Integrative Model‐Based Cognitive Neuroscience Research Unit, Department of Psychology University of Amsterdam Amsterdam the Netherlands
- Wellcome Centre for Human Neuroimaging University College London Institute of Neurology London UK
| | - Assel Saryyeva
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Joachim K. Krauss
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Gerd‐Helge Schneider
- Charité, Universitätsmedizin Berlin Campus Mitte, Department of Neurosurgery Berlin Germany
| | - Daniel Kroneberg
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Patricia Krause
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Wolf‐Julian Neumann
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Andrea A. Kühn
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- NeuroCure Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
42
|
The Functional Role of Thalamocortical Coupling in the Human Motor Network. J Neurosci 2019; 39:8124-8134. [PMID: 31471470 DOI: 10.1523/jneurosci.1153-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
The amplitude of high broadband activity in human cortical field potentials indicates local processing and has repeatedly been shown to reflect motor control in the primary motor cortex. In a group of male and female subjects affected by essential tremor and undergoing deep brain stimulation surgery, ventral intermediate nucleus low-frequency oscillations (<30 Hz) entrain the corticomotor high broadband activity (>40 Hz) during rest, relinquishing that role during movement execution. This finding suggests that there is significant cross-rhythm communication between thalamocortical regions, and motor behavior corresponds to changes in thalamocortical phase-amplitude coupling profiles. Herein, we demonstrate that thalamocortical coupling is a crucial mechanism for gating motor behavior.SIGNIFICANCE STATEMENT We demonstrate, for the first time, how thalamocortical coupling is mediating movement execution in humans. We show how the low-frequency oscillation from the ventral intermediate nucleus, known as the motor nucleus of the thalamus, entrains the excitability of the primary motor cortex, as reflected by the phase-amplitude coupling between the two regions. We show that thalamocortical phase-amplitude coupling is a manifestation of a gating mechanism for movement execution mediated by the thalamus. These findings highlight the importance of incorporating cross-frequency relationship in models of motor behavior; and given the spatial specificity of this mechanism, this work could be used to improve functional targeting during surgical implantations in subcortical regions.
Collapse
|
43
|
Halje P, Brys I, Mariman JJ, da Cunha C, Fuentes R, Petersson P. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J Neurophysiol 2019; 122:203-231. [DOI: 10.1152/jn.00590.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to play a crucial role in the selection and control of motor behaviors and have also been implicated in the processing of motivational content and in higher cognitive functions. During the last two decades, electrophysiological recordings in basal ganglia circuits have shown that several disease conditions are associated with specific changes in the temporal patterns of neuronal activity. In particular, synchronized oscillations have been a frequent finding suggesting that excessive synchronization of neuronal activity may be a pathophysiological mechanism involved in a wide range of neurologic and psychiatric conditions. We here review the experimental support for this hypothesis primarily in relation to Parkinson’s disease but also in relation to dystonia, essential tremor, epilepsy, and psychosis/schizophrenia.
Collapse
Affiliation(s)
- Pär Halje
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ivani Brys
- Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Juan J. Mariman
- Research and Development Direction, Universidad Tecnológica de Chile, Inacap, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Programas de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Romulo Fuentes
- Department of Neurocience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Per Petersson
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
44
|
Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov Disord 2019; 34:1130-1143. [PMID: 31216379 DOI: 10.1002/mds.27741] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Studies of the pathophysiology of parkinsonism (specifically akinesia and bradykinesia) have a long history and primarily model the consequences of dopamine loss in the basal ganglia on the function of the basal ganglia/thalamocortical circuit(s). Changes of firing rates of individual nodes within these circuits were originally considered central to parkinsonism. However, this view has now given way to the belief that changes in firing patterns within the basal ganglia and related nuclei are more important, including the emergence of burst discharges, greater synchrony of firing between neighboring neurons, oscillatory activity patterns, and the excessive coupling of oscillatory activities at different frequencies. Primarily focusing on studies obtained in nonhuman primates and human patients with Parkinson's disease, this review summarizes the current state of this field and highlights several emerging areas of research, including studies of the impact of the heterogeneity of external pallidal neurons on parkinsonism, the importance of extrastriatal dopamine loss, parkinsonism-associated synaptic and morphologic plasticity, and the potential role(s) of the cerebellum and brainstem in the motor dysfunction of Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology/School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Direct comparison of oscillatory activity in the motor system of Parkinson’s disease and dystonia: A review of the literature and meta-analysis. Clin Neurophysiol 2019; 130:917-924. [DOI: 10.1016/j.clinph.2019.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/29/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
|
46
|
Cao C, Huang P, Wang T, Zhan S, Liu W, Pan Y, Wu Y, Li H, Sun B, Li D, Litvak V. Cortico-subthalamic Coherence in a Patient With Dystonia Induced by Chorea-Acanthocytosis: A Case Report. Front Hum Neurosci 2019; 13:163. [PMID: 31191273 PMCID: PMC6548057 DOI: 10.3389/fnhum.2019.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/03/2019] [Indexed: 02/01/2023] Open
Abstract
The subthalamic nucleus (STN) is a common target for deep brain stimulation (DBS) treatment in Parkinson's disease (PD) but much less frequently targeted for other disorders. Here we report the results of simultaneous local field potential (LFP) recordings and magnetoencephalography (MEG) in a single patient who was implanted bilaterally in the STN for the treatment of dystonia induced by chorea-acanthocytosis. Consistent with the previous results in PD, the dystonia patient showed significant subthalamo-cortical coherence in the high beta band (28-35 Hz) on both sides localized to the mesial sensorimotor areas. In addition, on the right side, significant coherence was found in the theta-alpha band (4-12 Hz) that localized to the medial prefrontal cortex with the peak in the anterior cingulate gyrus. Comparison of STN power spectra with a previously reported PD cohort showed increased power in the theta and alpha bands and decreased power in the low beta band in dystonia which is consistent with most of the previous studies. The present report extends the range of disorders for which cortico-subthalamic oscillatory connectivity has been characterized. Our results strengthen the evidence that at least some of the subthalamo-cortical oscillatory coherent networks are a feature of the healthy brain, although we do not rule out that coherence magnitude could be affected by disease.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Peng Huang
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Tao Wang
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Shikun Zhan
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wei Liu
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yixin Pan
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Bomin Sun
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Affiliated Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
47
|
Huebl J, Poshtiban A, Brücke C, Siegert S, Bock A, Koziara H, Kmiec T, Rola R, Mandat T, Kühn AA. Subthalamic and pallidal oscillatory activity in patients with Neurodegeneration with Brain Iron Accumulation type I (NBIA-I). Clin Neurophysiol 2019; 130:469-473. [DOI: 10.1016/j.clinph.2018.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 01/24/2023]
|
48
|
Mugge L, Krafcik B, Pontasch G, Alnemari A, Neimat J, Gaudin D. A Review of Biomarkers Use in Parkinson with Deep Brain Stimulation: A Successful Past Promising a Bright Future. World Neurosurg 2019; 123:197-207. [DOI: 10.1016/j.wneu.2018.11.247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
49
|
Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics 2019; 16:105-118. [PMID: 30607748 PMCID: PMC6361070 DOI: 10.1007/s13311-018-00705-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987, Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in Parkinson's disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders, such as Parkinson's disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication. Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia-thalamic circuit and stimulation pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS (aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the therapeutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform traditional drug treatment.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany.
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Tom Mitchell
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neurocure, Centre of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Pascarelli MT, Catania V, Nobili F, Arnaldi D, Famà F, Orzi F, Buttinelli C, Giubilei F, Bonanni L, Franciotti R, Onofrj M, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Fraioli L, Parnetti L, Farotti L, Pievani M, D'Antonio F, De Lena C, Güntekin B, Hanoğlu L, Yener G, Emek-Savaş DD, Triggiani AI, Taylor JP, McKeith I, Stocchi F, Vacca L, Frisoni GB, De Pandis MF. Levodopa may affect cortical excitability in Parkinson's disease patients with cognitive deficits as revealed by reduced activity of cortical sources of resting state electroencephalographic rhythms. Neurobiol Aging 2019; 73:9-20. [DOI: 10.1016/j.neurobiolaging.2018.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
|