1
|
Bai Q, Shao E, Ma D, Jiao B, Scheetz SD, Hartnett-Scott KA, Ilin VA, Aizenman E, Kofler J, Burton EA. A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination. Nat Commun 2024; 15:8195. [PMID: 39294122 PMCID: PMC11410960 DOI: 10.1038/s41467-024-52173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is an incurable neurodegenerative disease characterized by 4-repeat (0N/4R)-Tau protein accumulation in CNS neurons. We generated transgenic zebrafish expressing human 0N/4R-Tau to investigate PSP pathophysiology. Tau zebrafish replicated multiple features of PSP, including: decreased survival; hypokinesia; impaired optokinetic responses; neurodegeneration; neuroinflammation; synapse loss; and Tau hyperphosphorylation, misfolding, mislocalization, insolubility, truncation, and oligomerization. Using automated assays, we screened 147 small molecules for activity in rescuing neurological deficits in Tau zebrafish. (+)JQ1, a bromodomain inhibitor, improved hypokinesia, survival, microgliosis, and brain synapse elimination. A heterozygous brd4+/- mutant reducing expression of the bromodomain protein Brd4 similarly rescued these phenotypes. Microglial phagocytosis of synaptic material was decreased by (+)JQ1 in both Tau zebrafish and rat primary cortical cultures. Microglia in human PSP brains expressed Brd4. Our findings implicate Brd4 as a regulator of microglial synaptic elimination in tauopathy and provide an unbiased approach for identifying mechanisms and therapeutic targets in PSP.
Collapse
Affiliation(s)
- Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Enhua Shao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Denglei Ma
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Binxuan Jiao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Seth D Scheetz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Karen A Hartnett-Scott
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Vladimir A Ilin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elias Aizenman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Edward A Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatrics Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
2
|
Kolacheva A, Pavlova E, Bannikova A, Bogdanov V, Ugrumov M. Initial Molecular Mechanisms of the Pathogenesis of Parkinson's Disease in a Mouse Neurotoxic Model of the Earliest Preclinical Stage of This Disease. Int J Mol Sci 2024; 25:1354. [PMID: 38279354 PMCID: PMC10816442 DOI: 10.3390/ijms25021354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Studying the initial molecular mechanisms of the pathogenesis of Parkinson's disease (PD), primarily in the nigrostriatal dopaminergic system, is one of the priorities in neurology. Of particular interest is elucidating these mechanisms in the preclinical stage of PD, which lasts decades before diagnosis and is therefore not available for study in patients. Therefore, our main goal was to study the initial molecular mechanisms of the pathogenesis of PD in the striatum, the key center for dopamine regulation in motor function, in a mouse model of the earliest preclinical stage of PD, from 1 to 24 h after the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was shown that the content of tyrosine hydroxylase (TH), the first enzyme in dopamine synthesis, does not change within 6 h after the administration of MPTP, but decreases after 24 h. In turn, TH activity increases after 1 h, decreases after 3 h, remains at the control level after 6 h, and decreases 24 h after the administration of MPTP. The concentration of dopamine in the striatum gradually decreases after MPTP administration, despite a decrease in its degradation. The identified initial molecular mechanisms of PD pathogenesis are considered as potential targets for the development of preventive neuroprotective treatment.
Collapse
Affiliation(s)
| | | | | | | | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (A.K.); (E.P.); (A.B.); (V.B.)
| |
Collapse
|
3
|
Burton AH, Jiao B, Bai Q, Van Laar VS, Wheeler TB, Watkins SC, Bruchez MP, Burton EA. Full-field exposure of larval zebrafish to narrow waveband LED light sources at defined power and energy for optogenetic applications. J Neurosci Methods 2024; 401:110001. [PMID: 37914002 PMCID: PMC10843659 DOI: 10.1016/j.jneumeth.2023.110001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Optogenetic approaches in transparent zebrafish models have provided numerous insights into vertebrate neurobiology. The purpose of this study was to develop methods to activate light-sensitive transgene products simultaneously throughout an entire larval zebrafish. NEW METHOD We developed a LED illumination stand and microcontroller unit to expose zebrafish larvae reproducibly to full field illumination at defined wavelength, power, and energy. RESULTS The LED stand generated a sufficiently flat illumination field to expose multiple larval zebrafish to high power light stimuli uniformly, while avoiding sample bath warming. The controller unit allowed precise automated delivery of predetermined amounts of light energy at calibrated power. We demonstrated the utility of the approach by driving photoconversion of Kaede (398 nm), photodimerization of GAVPO (450 nm), and photoactivation of dL5**/MG2I (661 nm) in neurons throughout the CNS of larval zebrafish. Observed outcomes were influenced by both total light energy and its rate of delivery, highlighting the importance of controlling these variables to obtain reproducible results. COMPARISON WITH EXISTING METHODS Our approach employs inexpensive LED chip arrays to deliver narrow-waveband light with a sufficiently flat illumination field to span multiple larval zebrafish simultaneously. Calibration of light power and energy are built into the workflow. CONCLUSIONS The LED illuminator and controller can be constructed from widely available materials using the drawings, instructions, and software provided. This approach will be useful for multiple optogenetic applications in zebrafish and other models.
Collapse
Affiliation(s)
- Alexander H Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Undergraduate Program in Chemical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Binxuan Jiao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University Medical School, Beijing, China
| | - Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor S Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis B Wheeler
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Molecular Biosensors and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Edward A Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Otsuka T, Matsui H. Fish Models for Exploring Mitochondrial Dysfunction Affecting Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24087079. [PMID: 37108237 PMCID: PMC10138900 DOI: 10.3390/ijms24087079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of neuronal structure or function, resulting in memory loss and movement disorders. Although the detailed pathogenic mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in the process of aging. Animal models that mimic the pathology of a disease are essential for understanding human diseases. In recent years, small fish have become ideal vertebrate models for human disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as model organisms, and present examples of previous studies regarding mitochondria-related neuronal disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging research, as a model for neurodegenerative diseases. Small fish models are expected to advance our understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases, and be important tools for developing therapies to treat diseases.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
5
|
Fouché B, Turner S, Gorham R, Stephenson EJ, Gutbier S, Elson JL, García-Beltrán O, Van Der Westhuizen FH, Pienaar IS. A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson's Disease. Mol Neurobiol 2023; 60:749-767. [PMID: 36357615 DOI: 10.1007/s12035-022-03107-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson's disease (PD). Here we demonstrate the neuroprotective potential of a new polyhydroxyl coumarin, N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (CT51), against the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). MPP+'s mechanism of toxicity relates to its ability to inhibit complex I of the mitochondrial electron transport chain (METC), leading to adenosine triphosphate (ATP) depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death, hence mimicking PD-related neuropathology. Dopaminergic differentiated human neuroblastoma cells were briefly pretreated with CT51, followed by toxin exposure. CT51 significantly restored somatic cell viability and neurite processes; hence, the drug targets cell bodies and axons thereby preserving neural function and circuitry against PD-related damage. Moreover, MPP+ emulates the iron dyshomeostasis affecting dopaminergic neurons in PD-affected brains, whilst CT51 was previously revealed as an effective iron chelator that preferentially partitions to mitochondria. We extend these findings by characterising the drug's interactive effects at the METC level. CT51 did not improve mitochondrial coupling efficiency. However, voltammetric measurements and high-resolution respirometry analysis revealed that CT51 acts as an antioxidant agent. Also, the neuronal protection afforded by CT51 associated with downregulating MPP+-induced upregulated expression of hypoxia-inducible factor 1 alpha (HIF-1α), a protein which regulates iron homeostasis and protects against certain forms of oxidative stress after translocating to mitochondria. Our findings support the further development of CT51 as a dual functioning iron chelator and antioxidant antiparkinsonian agent.
Collapse
Affiliation(s)
- Belinda Fouché
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Stephanie Turner
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Rebecca Gorham
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | - Simon Gutbier
- Unit for In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doeren Kamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Joanna L Elson
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.,The Welcome Trust Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olimpo García-Beltrán
- Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.,Facultad de Ciencias Naturales Y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | | | - Ilse S Pienaar
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa. .,Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B12 2TT, UK.
| |
Collapse
|
6
|
In vivo imaging of axonal transport in peripheral nerves of rodent forelimbs. Neuronal Signal 2023; 7:NS20220098. [PMID: 36743438 PMCID: PMC9867938 DOI: 10.1042/ns20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Axonal transport is the essential process by which neurons actively traffic a variety of cargoes between the cell soma and axon terminals. Accordingly, dysfunctional axonal transport is linked to many nervous system conditions. Therefore, being able to image and quantify this dynamic process in live neurons of animal disease models is beneficial for understanding neuropathology and testing new therapies at the preclinical level. As such, intravital approaches have been developed to assess cargo movement in the hindlimb sciatic nerves of live, anaesthetised mice. Here, we describe an adapted method for in vivo imaging of axonal transport in intact median and ulnar nerves of the rodent forelimb. Injection of a fluorescently labelled and non-toxic fragment of tetanus neurotoxin (HCT) into the mouse forepaw permits the identification of signalling endosomes in intact axons of median and ulnar nerves. Through immunofluorescent analysis of forelimb lumbrical muscles and median/ulnar nerves, we confirmed that HCT is taken up at motor nerve terminals and predominantly locates to motor axons. We then showed that the baseline trafficking of signalling endosomes is similar between the median/ulnar nerves and the sciatic nerve in adult wild-type mice. Importantly, this adapted method can be readily tailored for assessment of additional cargoes, such as mitochondria. By measuring transport in forelimb and hindlimb nerves, comparative anatomical and functional analyses can be performed in rodent disease models to aid our understanding of peripheral nerve disease pathogenesis and response to injury.
Collapse
|
7
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|
8
|
Grimaud B, Frétaud M, Terras F, Bénassy A, Duroure K, Bercier V, Trippé-Allard G, Mohammedi R, Gacoin T, Del Bene F, Marquier F, Langevin C, Treussart F. In Vivo Fast Nonlinear Microscopy Reveals Impairment of Fast Axonal Transport Induced by Molecular Motor Imbalances in the Brain of Zebrafish Larvae. ACS NANO 2022; 16:20470-20487. [PMID: 36459488 DOI: 10.1021/acsnano.2c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cargo transport by molecular motors along microtubules is essential for the function of eukaryotic cells, in particular neurons in which axonal transport defects constitute the early pathological features of neurodegenerative diseases. Mainly studied in motor and sensory neurons, axonal transport is still difficult to characterize in neurons of the brain in absence of appropriate in vivo tools. Here, we measured fast axonal transport by tracing the second harmonic generation (SHG) signal of potassium titanyl phosphate (KTP) nanocrystals (nanoKTP) endocytosed by brain neurons of zebrafish (Zf) larvae. Thanks to the optical translucency of Zf larvae and to the perfect photostability of nanoKTP SHG, we achieved a high scanning speed of 20 frames (of ≈90 μm × 60 μm size) per second in Zf brain. We focused our study on endolysosomal vesicle transport in axons of known polarization, separately analyzing kinesin and dynein motor-driven displacements. To validate our assay, we used either loss-of-function mutations of dynein or kinesin 1 or the dynein inhibitor dynapyrazole and quantified several transport parameters. We successfully demonstrated that dynapyrazole reduces the nanoKTP mobile fraction and retrograde run length consistently, while the retrograde run length increased in kinesin 1 mutants. Taking advantage of nanoKTP SHG directional emission, we also quantified fluctuations of vesicle orientation. Thus, by combining endocytosis of nanocrystals having a nonlinear response, fast two-photon microscopy, and high-throughput analysis, we are able to finely monitor fast axonal transport in vivo in the brain of a vertebrate and reveal subtle axonal transport alterations. The high spatiotemporal resolution achieved in our model may be relevant to precisely investigate axonal transport impairment associated with disease models.
Collapse
Affiliation(s)
- Baptiste Grimaud
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Maxence Frétaud
- INRAE, IERP, Université Paris-Saclay, 78350Jouy-ens-Josas, France
- INRAE, VIM, Université Paris-Saclay, 78350Jouy-en-Josas, France
| | - Feriel Terras
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Antoine Bénassy
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Karine Duroure
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012Paris, France
| | - Valérie Bercier
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, 3000Leuven, Belgium
| | - Gaëlle Trippé-Allard
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Rabei Mohammedi
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
| | - Thierry Gacoin
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
| | - Filippo Del Bene
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012Paris, France
| | - François Marquier
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | | | - François Treussart
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| |
Collapse
|
9
|
Doyle JM, Croll RP. A Critical Review of Zebrafish Models of Parkinson's Disease. Front Pharmacol 2022; 13:835827. [PMID: 35370740 PMCID: PMC8965100 DOI: 10.3389/fphar.2022.835827] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
A wide variety of human diseases have been modelled in zebrafish, including various types of cancer, cardiovascular diseases and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Recent reviews have summarized the currently available zebrafish models of Parkinson’s Disease, which include gene-based, chemically induced and chemogenetic ablation models. The present review updates the literature, critically evaluates each of the available models of Parkinson’s Disease in zebrafish and compares them with similar models in invertebrates and mammals to determine their advantages and disadvantages. We examine gene-based models, including ones linked to Early-Onset Parkinson’s Disease: PARKIN, PINK1, DJ-1, and SNCA; but we also examine LRRK2, which is linked to Late-Onset Parkinson’s Disease. We evaluate chemically induced models like MPTP, 6-OHDA, rotenone and paraquat, as well as chemogenetic ablation models like metronidazole-nitroreductase. The article also reviews the unique advantages of zebrafish, including the abundance of behavioural assays available to researchers and the efficiency of high-throughput screens. This offers a rare opportunity for assessing the potential therapeutic efficacy of pharmacological interventions. Zebrafish also are very amenable to genetic manipulation using a wide variety of techniques, which can be combined with an array of advanced microscopic imaging methods to enable in vivo visualization of cells and tissue. Taken together, these factors place zebrafish on the forefront of research as a versatile model for investigating disease states. The end goal of this review is to determine the benefits of using zebrafish in comparison to utilising other animals and to consider the limitations of zebrafish for investigating human disease.
Collapse
Affiliation(s)
- Jillian M Doyle
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. Int J Mol Sci 2022; 23:ijms23073935. [PMID: 35409291 PMCID: PMC8999615 DOI: 10.3390/ijms23073935] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been related to several neurodegenerative conditions. Studies on axonal transport in glaucoma include analysis in different animal models and in humans, and indicate that its failure happens mainly in the ONH and early in disease progression, preceding axonal and somal degeneration. Thus, a better understanding of the role of axonal transport in glaucoma is not only pivotal to decipher disease mechanisms but could also enable early therapies that might prevent irreversible neuronal damage at an early time point. In this review we present the current evidence of axonal transport impairment in glaucomatous neurodegeneration and summarize the methods employed to evaluate transport in this disease.
Collapse
Affiliation(s)
- Mariana Santana Dias
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Xiaoyue Luo
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Vinicius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
- Correspondence:
| |
Collapse
|
11
|
Faria-Pereira A, Morais VA. Synapses: The Brain's Energy-Demanding Sites. Int J Mol Sci 2022; 23:3627. [PMID: 35408993 PMCID: PMC8998888 DOI: 10.3390/ijms23073627] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.
Collapse
Affiliation(s)
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
12
|
Kim GHJ, Mo H, Liu H, Wu Z, Chen S, Zheng J, Zhao X, Nucum D, Shortland J, Peng L, Elepano M, Tang B, Olson S, Paras N, Li H, Renslo AR, Arkin MR, Huang B, Lu B, Sirota M, Guo S. A zebrafish screen reveals Renin-angiotensin system inhibitors as neuroprotective via mitochondrial restoration in dopamine neurons. eLife 2021; 10:69795. [PMID: 34550070 PMCID: PMC8457844 DOI: 10.7554/elife.69795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder without effective disease-modifying therapeutics. Here, we establish a chemogenetic dopamine (DA) neuron ablation model in larval zebrafish with mitochondrial dysfunction and robustness suitable for high-content screening. We use this system to conduct an in vivo DA neuron imaging-based chemical screen and identify the Renin-Angiotensin-Aldosterone System (RAAS) inhibitors as significantly neuroprotective. Knockdown of the angiotensin receptor 1 (agtr1) in DA neurons reveals a cell-autonomous mechanism of neuroprotection. DA neuron-specific RNA-seq identifies mitochondrial pathway gene expression that is significantly restored by RAAS inhibitor treatment. The neuroprotective effect of RAAS inhibitors is further observed in a zebrafish Gaucher disease model and Drosophila pink1-deficient PD model. Finally, examination of clinical data reveals a significant effect of RAAS inhibitors in delaying PD progression. Our findings reveal the therapeutic potential and mechanisms of targeting the RAAS pathway for neuroprotection and demonstrate a salient approach that bridges basic science to translational medicine. Parkinson’s disease is caused by the slow death and deterioration of brain cells, in particular of the neurons that produce a chemical messenger known as dopamine. Certain drugs can mitigate the resulting drop in dopamine levels and help to manage symptoms, but they cause dangerous side-effects. There is no treatment that can slow down or halt the progress of the condition, which affects 0.3% of the population globally. Many factors, both genetic and environmental, contribute to the emergence of Parkinson’s disease. For example, dysfunction of the mitochondria, the internal structures that power up cells, is a known mechanism associated with the death of dopamine-producing neurons. Zebrafish are tiny fish which can be used to study Parkinson’s disease, as they are easy to manipulate in the lab and share many characteristics with humans. In particular, they can be helpful to test the effects of various potential drugs on the condition. Here, Kim et al. established a new zebrafish model in which dopamine-producing brain cells die due to their mitochondria not working properly; they then used this assay to assess the impact of 1,403 different chemicals on the integrity of these cells. A group of molecules called renin-angiotensin-aldosterone (RAAS) inhibitors was shown to protect dopamine-producing neurons and stopped them from dying as often. These are already used to treat high blood pressure as they help to dilate blood vessels. In the brain, however, RAAS worked by restoring certain mitochondrial processes. Kim et al. then investigated whether these results are relevant in other, broader contexts. They were able to show that RAAS inhibitors have the same effect in other animals, and that Parkinson’s disease often progresses more slowly in patients that already take these drugs for high blood pressure. Taken together, these findings therefore suggest that RAAS inhibitors may be useful to treat Parkinson’s disease, as well as other brain illnesses that emerge because of mitochondria not working properly. Clinical studies and new ways to improve these drugs are needed to further investigate and capitalize on these potential benefits.
Collapse
Affiliation(s)
- Gha-Hyun J Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, United States
| | - Han Mo
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Harrison Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Graduate Program of Bioengineering, University of California, San Francisco, San Francisco, United States
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Steven Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Daryl Nucum
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States
| | - James Shortland
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Longping Peng
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Department of Cardiovascular Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mannuel Elepano
- Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Benjamin Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Steven Olson
- Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States.,Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Nick Paras
- Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Graduate Program of Bioengineering, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, United States
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
13
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
14
|
Chen Z, Rasheed M, Deng Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson's disease. Brain Pathol 2021; 32:e13012. [PMID: 34414627 PMCID: PMC9048811 DOI: 10.1111/bpa.13012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is one of the crucial factors involved in PD’s pathogenicity, which emerges from a combination of genetic and environmental factors. These factors cause differential molecular expression in neurons, such as varied transcriptional regulation of genes, elevated oxidative stress, α‐synuclein aggregation and endogenous neurotoxins release, which induces epigenetic modifications and triggers energy crisis by damaging mitochondria of the dopaminergic neurons (DN). So far, these events establish a complicated relationship with underlying mechanisms of mitochondrial anomalies in PD, which has remained unclear for years and made PD diagnosis and treatment extremely difficult. Therefore, in this review, we endeavored to discuss the complex association of epigenetic modifications and other associated vital factors in mitochondrial dysfunction. We propose a hypothesis that describes a vicious cycle in which mitochondrial dysfunction and oxidative stress act as a hub for regulating DA neuron's fate in PD. Oxidative stress triggers the release of endogenous neurotoxins (CTIQs) that lead to mitochondrial dysfunction along with abnormal α‐synuclein aggregation and epigenetic modifications. These disturbances further intensify oxidative stress and mitochondrial damage, amplifying the synthesis of CTIQs and works vice versa. This vicious cycle may result in the degeneration of DN to hallmark Parkinsonism. Furthermore, we have also highlighted various endogenous compounds and epigenetic marks (neurotoxic and neuroprotective), which may help for devising future diagnostic biomarkers and target specific drugs using novel PD management strategies.
Collapse
Affiliation(s)
- Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Madiha Rasheed
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
15
|
Wang X, Zhang JB, He KJ, Wang F, Liu CF. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front Pharmacol 2021; 12:713963. [PMID: 34335276 PMCID: PMC8317260 DOI: 10.3389/fphar.2021.713963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disease (NDD), including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, are characterized by the progressive loss of neurons which leads to the decline of motor and/or cognitive function. Currently, the prevalence of NDD is rapidly increasing in the aging population. However, valid drugs or treatment for NDD are still lacking. The clinical heterogeneity and complex pathogenesis of NDD pose a great challenge for the development of disease-modifying therapies. Numerous animal models have been generated to mimic the pathological conditions of these diseases for drug discovery. Among them, zebrafish (Danio rerio) models are progressively emerging and becoming a powerful tool for in vivo study of NDD. Extensive use of zebrafish in pharmacology research or drug screening is due to the high conserved evolution and 87% homology to humans. In this review, we summarize the zebrafish models used in NDD studies, and highlight the recent findings on pharmacological targets for NDD treatment. As high-throughput platforms in zebrafish research have rapidly developed in recent years, we also discuss the application prospects of these new technologies in future NDD research.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China
| |
Collapse
|
16
|
Huang Y, Wen Q, Huang J, Luo M, Xiao Y, Mo R, Wang J. Manganese (II) chloride leads to dopaminergic neurotoxicity by promoting mitophagy through BNIP3-mediated oxidative stress in SH-SY5Y cells. Cell Mol Biol Lett 2021; 26:23. [PMID: 34078255 PMCID: PMC8173824 DOI: 10.1186/s11658-021-00267-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Background Manganese overexposure can induce neurotoxicity, lead to manganism and result in clinical manifestations similar to those of parkinsonism. However, the underlying molecular mechanism is still unclear. This study demonstrated that MnCl2 induces mitophagy and leads to neurotoxicity by promoting BNIP3-mediated reactive oxygen species (ROS) generation. Methods Human neuroblastoma SH-SY5Y cells were used throughout our experiments. Cell viability was detected by cell proliferation/toxicity test kits. Mitochondrial membrane potential was measured by flow cytometry. ROS generation was detected using a microplate reader. Protein levels were evaluated by Western blot. Transmission electron microscopy was used to evaluate mitochondrial morphology. Co-immunoprecipitation was used to verify the interaction between BNIP3 and LC3. Results MnCl2 led to loss of mitochondrial membrane potential and apoptosis of SH-SY5Y cells by enhancing expression of BNIP3 and conversion of LC3-I to LC3-II. Moreover, MnCl2 reduced expression of the mitochondrial marker protein TOMM20 and promoted interaction between BNIP3 and LC3. The results also indicated that a decrease in BNIP3 expression reduced the mitochondrial membrane potential loss, attenuated apoptosis and reduced mitochondrial autophagosome formation in SH-SY5Y cells after MnCl2 treatment. Finally, we found that manganese-induced ROS generation could be reversed by the antioxidant N-acetyl cysteine (NAC) or silencing BNIP3 expression. Conclusions BNIP3 mediates MnCl2-induced mitophagy and neurotoxicity in dopaminergic SH-SY5Y cells through ROS. Thus, BNIP3 contributes to manganese-induced neurotoxicity by functioning as a mitophagy receptor protein.
Collapse
Affiliation(s)
- Yanning Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiaolin Wen
- Department of Neurology, Liuzhou Worker's Hospital, Liuzhou, 545005, China
| | - Jinfeng Huang
- Department of Neurology, First Peoples Hospital of Nanning, Nanning, 530021, China
| | - Man Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ruikang Mo
- Department of Neurology, First Peoples Hospital of Nanning, Nanning, 530021, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
17
|
Mechanism of Pacemaker Activity in Zebrafish DC2/4 Dopaminergic Neurons. J Neurosci 2021; 41:4141-4157. [PMID: 33731451 DOI: 10.1523/jneurosci.2124-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 11/21/2022] Open
Abstract
Zebrafish models are used increasingly to study the molecular pathogenesis of Parkinson's disease (PD), owing to the extensive array of techniques available for their experimental manipulation and analysis. The ascending dopaminergic projection from the posterior tuberculum (TPp; diencephalic populations DC2 and DC4) to the subpallium is considered the zebrafish correlate of the mammalian nigrostriatal projection, but little is known about the neurophysiology of zebrafish DC2/4 neurons. This is an important knowledge gap, because autonomous activity in mammalian substantia nigra (SNc) dopaminergic neurons contributes to their vulnerability in PD models. Using a new transgenic zebrafish line to label living dopaminergic neurons, and a novel brain slice preparation, we conducted whole-cell patch clamp recordings of DC2/4 neurons from adult zebrafish of both sexes. Zebrafish DC2/4 neurons share many physiological properties with mammalian dopaminergic neurons, including the cell-autonomous generation of action potentials. However, in contrast to mammalian dopaminergic neurons, the pacemaker driving intrinsic rhythmic activity in zebrafish DC2/4 neurons does not involve calcium conductances, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, or sodium leak currents. Instead, voltage clamp recordings and computational models show that interactions between three components - a small, predominantly potassium, leak conductance, voltage-gated sodium channels, and voltage-gated potassium channels - are sufficient for pacemaker activity in zebrafish DC2/4 neurons. These results contribute to understanding the comparative physiology of the dopaminergic system and provide a conceptual basis for interpreting data derived from zebrafish PD models. The findings further suggest new experimental opportunities to address the role of dopaminergic pacemaker activity in the pathogenesis of PD.SIGNIFICANCE STATEMENT Posterior tuberculum (TPp) DC2/4 dopaminergic neurons are considered the zebrafish correlate of mammalian substantia nigra (SNc) neurons, whose degeneration causes the motor signs of Parkinson's disease (PD). Our study shows that DC2/4 and SNc neurons share a number of electrophysiological properties, including depolarized membrane potential, high input resistance, and continual, cell-autonomous pacemaker activity, that strengthen the basis for the increasing use of zebrafish models to study the molecular pathogenesis of PD. The mechanisms driving pacemaker activity differ between DC2/4 and SNc neurons, providing: (1) experimental opportunities to dissociate the contributions of intrinsic activity and underlying pacemaker currents to pathogenesis; and (2) essential information for the design and interpretation of studies using zebrafish PD models.
Collapse
|
18
|
High-Resolution Respirometry Reveals MPP + Mitochondrial Toxicity Mechanism in a Cellular Model of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21217809. [PMID: 33105548 PMCID: PMC7659480 DOI: 10.3390/ijms21217809] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
MPP+ is the active metabolite of MPTP, a molecule structurally similar to the herbicide Paraquat, known to injure the dopaminergic neurons of the nigrostriatal system in Parkinson’s disease models. Within the cells, MPP+ accumulates in mitochondria where it inhibits complex I of the electron transport chain, resulting in ATP depletion and neuronal impairment/death. So far, MPP+ is recognized as a valuable tool to mimic dopaminergic degeneration in various cell lines. However, despite a large number of studies, a detailed characterization of mitochondrial respiration in neuronal cells upon MPP+ treatment is still missing. By using high-resolution respirometry, we deeply investigated oxygen consumption related to each respiratory state in differentiated neuroblastoma cells exposed to the neurotoxin. Our results indicated the presence of extended mitochondrial damage at the inner membrane level, supported by increased LEAK respiration, and a drastic drop in oxygen flow devoted to ADP phosphorylation in respirometry measurements. Furthermore, prior to complex I inhibition, an enhancement of complex II activity was observed, suggesting the occurrence of some compensatory effect. Overall our findings provide a mechanistic insight on the mitochondrial toxicity mediated by MPP+, relevant for the standardization of studies that employ this neurotoxin as a disease model.
Collapse
|
19
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
20
|
Van Laar VS, Chen J, Zharikov AD, Bai Q, Di Maio R, Dukes AA, Hastings TG, Watkins SC, Greenamyre JT, St Croix CM, Burton EA. α-Synuclein amplifies cytoplasmic peroxide flux and oxidative stress provoked by mitochondrial inhibitors in CNS dopaminergic neurons in vivo. Redox Biol 2020; 37:101695. [PMID: 32905883 PMCID: PMC7486459 DOI: 10.1016/j.redox.2020.101695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Convergent evidence implicates impaired mitochondrial function and α-Synuclein accumulation as critical upstream events in the pathogenesis of Parkinson's disease, but comparatively little is known about how these factors interact to provoke neurodegeneration. We previously showed that α-Synuclein knockdown protected rat substantia nigra dopaminergic neurons from systemic exposure to the mitochondrial complex I inhibitor rotenone. Here we show that motor abnormalities prior to neuronal loss in this model are associated with extensive α-Synuclein-dependent cellular thiol oxidation. In order to elucidate the underlying events in vivo we constructed novel transgenic zebrafish that co-express, in dopaminergic neurons: (i) human α-Synuclein at levels insufficient to provoke neurodegeneration or neurobehavioral abnormalities; and (ii) genetically-encoded ratiometric fluorescent biosensors to detect cytoplasmic peroxide flux and glutathione oxidation. Live intravital imaging of the intact zebrafish CNS at cellular resolution showed unequivocally that α-Synuclein amplified dynamic cytoplasmic peroxide flux in dopaminergic neurons following exposure to the mitochondrial complex I inhibitors MPP+ or rotenone. This effect was robust and clearly evident following either acute or prolonged exposure to each inhibitor. In addition, disturbance of the resting glutathione redox potential following exogenous hydrogen peroxide challenge was augmented by α-Synuclein. Together these data show that α-Synuclein is a critical determinant of the redox consequences of mitochondrial dysfunction in dopaminergic neurons. The findings are important because the mechanisms underlying α-Synuclein-dependent reactive oxygen species fluxes and antioxidant suppression might provide a pharmacological target in Parkinson's disease to prevent progression from mitochondrial dysfunction and oxidative stress to cell death. Extensive neuronal thiol oxidation in a rat PD model is α-Synuclein-dependent. Peroxide flux and glutathione oxidation can be imaged in live transgenic zebrafish. α-Synuclein amplifies cytosolic peroxide flux in dopaminergic neurons. α-Synuclein exacerbates dynamic disturbances of the glutathione redox potential. The underlying molecular mechanisms may provide therapeutic targets in PD.
Collapse
Affiliation(s)
- Victor S Van Laar
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianming Chen
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alevtina D Zharikov
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - April A Dukes
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Theocharopoulou G. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS Neurosci 2020; 7:43-65. [PMID: 32455165 PMCID: PMC7242057 DOI: 10.3934/neuroscience.2020004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Orderly mitochondrial life cycle, plays a key role in the pathology of neurodegenerative diseases. Mitochondria are ubiquitous in neurons as they respond to an ever-changing demand for energy supply. Mitochondria constantly change in shape and location, feature of their dynamic nature, which facilitates a quality control mechanism. Biological studies in mitochondria dynamics are unveiling the mechanisms of fission and fusion, which essentially arrange morphology and motility of these organelles. Control of mitochondrial network homeostasis is a critical factor for the proper function of neurons. Disease-related genes have been reported to be implicated in mitochondrial dysfunction. Increasing evidence implicate mitochondrial perturbation in neuronal diseases, such as AD, PD, HD, and ALS. The intricacy involved in neurodegenerative diseases and the dynamic nature of mitochondria point to the idea that, despite progress toward detecting the biology underlying mitochondrial disorders, its link to these diseases is difficult to be identified in the laboratory. Considering the need to model signaling pathways, both in spatial and temporal level, there is a challenge to use a multiscale modeling framework, which is essential for understanding the dynamics of a complex biological system. The use of computational models in order to represent both a qualitative and a quantitative structure of mitochondrial homeostasis, allows to perform simulation experiments so as to monitor the conformational changes, as well as the intersection of form and function.
Collapse
|
22
|
Xie W, Jiao B, Bai Q, Ilin VA, Sun M, Burton CE, Kolodieznyi D, Calderon MJ, Stolz DB, Opresko PL, St Croix CM, Watkins S, Van Houten B, Bruchez MP, Burton EA. Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity. eLife 2020; 9:e51845. [PMID: 32180546 PMCID: PMC7077989 DOI: 10.7554/elife.51845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of multiple neurological diseases, but elucidation of underlying mechanisms is limited experimentally by the inability to damage specific mitochondria in defined neuronal groups. We developed a precision chemoptogenetic approach to target neuronal mitochondria in the intact nervous system in vivo. MG2I, a chemical fluorogen, produces singlet oxygen when bound to the fluorogen-activating protein dL5** and exposed to far-red light. Transgenic zebrafish expressing dL5** within neuronal mitochondria showed dramatic MG2I- and light-dependent neurobehavioral deficits, caused by neuronal bioenergetic crisis and acute neuronal depolarization. These abnormalities resulted from loss of neuronal respiration, associated with mitochondrial fragmentation, swelling and elimination of cristae. Remaining cellular ultrastructure was preserved initially, but cellular pathology downstream of mitochondrial damage eventually culminated in neuronal death. Our work provides powerful new chemoptogenetic tools for investigating mitochondrial homeostasis and pathophysiology and shows a direct relationship between mitochondrial function, neuronal biogenetics and whole-animal behavior.
Collapse
Affiliation(s)
- Wenting Xie
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Binxuan Jiao
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Tsinghua University Medical SchoolBeijingChina
| | - Qing Bai
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Vladimir A Ilin
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
| | - Ming Sun
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
| | | | - Dmytro Kolodieznyi
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
| | - Michael J Calderon
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Donna B Stolz
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
| | - Claudette M St Croix
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Simon Watkins
- Center for Biologic Imaging, University of PittsburghPittsburghUnited States
- Department of Cell Biology, University of PittsburghPittsburghUnited States
| | - Bennett Van Houten
- Genome Stability Program, UPMC Hillman Cancer CenterPittsburghUnited States
- Department of Pharmacology and Chemical Biology, University of PittsburghPittsburghUnited States
| | - Marcel P Bruchez
- Departments of Biological Sciences and Chemistry, Carnegie Mellon UniversityPittsburghUnited States
- Molecular Biosensors and Imaging Center, Carnegie Mellon UniversityPittsburghUnited States
| | - Edward A Burton
- Department of Neurology, University of PittsburghPittsburghUnited States
- Pittsburgh Institute for Neurodegenerative Diseases, University of PittsburghPittsburghUnited States
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare SystemPittsburghUnited States
| |
Collapse
|
23
|
|
24
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
25
|
Developmental exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) selectively decreases brain dopamine levels in Northern leopard frogs. Toxicol Appl Pharmacol 2019; 377:114623. [PMID: 31195004 DOI: 10.1016/j.taap.2019.114623] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic compounds that are a major public health concern due to widespread use, long environmental and biological half-lives, detection in most human plasma samples, and links to multiple adverse health outcomes. The literature suggests that some PFAS may be neurotoxic. However, there are major gaps in the literature with respect to how environmentally-relevant doses during development may influence the nervous system. To address this gap, we utilized a sentinel species, Northern leopard frogs (Lithobates pipiens) to determine the effects of developmental exposure to environmentally relevant perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on major neurotransmitter systems. Frog larvae at Gosner stage 25 were exposed to 10, 100, or 1000 ppb PFOS or PFOA for 30 days before neurochemical analysis. High performance liquid chromatography (HPLC) with electrochemical detection or fluorescent detection assays was used to measure neurotransmitter levels, which were normalized to protein levels in each sample. Dopamine (DA) decreased significantly in the brains of frogs treated with PFOA (1000 ppb) and PFOS (100 and 1000 ppb). Significant increases in DA turnover also resulted from PFOA and PFOS treatment. Neither PFOS, nor PFOA produced detectable alterations in serotonin (nor its metabolite), norepinephrine, gamma-amino butyric acid (GABA), glutamate, or acetylcholine. PFAS body burdens showed that PFOS accumulated relative to dose, while PFOA did not. These data suggest that DArgic neurotransmission is selectively affected in developmentally exposed amphibians and that PFAS should be evaluated for a potential role in diseases that target the DA system.
Collapse
|
26
|
Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 2019; 20:ijms20102409. [PMID: 31096646 PMCID: PMC6567007 DOI: 10.3390/ijms20102409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.
Collapse
Affiliation(s)
- Gianluca Fichi
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Valentina Naef
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | - Maria Marchese
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
27
|
Quevedo C, Behl M, Ryan K, Paules RS, Alday A, Muriana A, Alzualde A. Detection and Prioritization of Developmentally Neurotoxic and/or Neurotoxic Compounds Using Zebrafish. Toxicol Sci 2019; 168:225-240. [PMID: 30521027 PMCID: PMC6390653 DOI: 10.1093/toxsci/kfy291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The standard methods for toxicity testing using rodent models cannot keep pace with the increasing number of chemicals in our environment due to time and resource limitations. Hence, there is an unmet need for fast, sensitive, and cost-effective alternate models to reliably predict toxicity. As part of Tox21 Phase III's effort, a 90-compound library was created and made available to researchers to screen for neurotoxicants using novel technology and models. The chemical library was evaluated in zebrafish in a dose-range finding test for embryo-toxicity (ie, mortality or morphological alterations induced by each chemical). In addition, embryos exposed to the lowest effect level and nonobservable effect level were used to measure the internal concentration of the chemicals within the embryos by bioanalysis. Finally, considering the lowest effect level as the highest testing concentration, a functional assay was performed based on locomotor activity alteration in response to light-dark changes. The quality control chemicals included in the library, ie, negative controls and replicated chemicals, indicate that the assays performed were reliable. The use of analytical chemistry pointed out the importance of measuring chemical concentration inside embryos, and in particular, in the case of negative chemicals to avoid false negative classification. Overall, the proposed approach presented a good sensitivity and supports the inclusion of zebrafish assays as a reliable, relevant, and efficient screening tool to identify, prioritize, and evaluate chemical toxicity.
Collapse
Affiliation(s)
- Celia Quevedo
- *Biobide, Donostia-San Sebastián, 20009 Gipuzkoa, Spain
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | | | | | | |
Collapse
|
28
|
Cromberg LE, Saez TMM, Otero MG, Tomasella E, Alloatti M, Damianich A, Pozo Devoto V, Ferrario J, Gelman D, Rubinstein M, Falzone TL. Neuronal
KIF
5b
deletion induces
striatum
‐dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors. J Neurochem 2019; 149:362-380. [DOI: 10.1111/jnc.14665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/27/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas E. Cromberg
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Trinidad M. M. Saez
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| | - María G. Otero
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Eugenia Tomasella
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| | - Matías Alloatti
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Ana Damianich
- Instituto de Investigaciones Farmacológicas ININFA, (CONICET‐UBA) Buenos Aires Argentina
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular INGEBI (CONICET) Buenos Aires Argentina
| | - Victorio Pozo Devoto
- Center for Translational Medicine (CTM) International Clinical Research Center St. Anne's University Hospital (ICRC‐FNUSA) Brno Czech Republic
| | - Juan Ferrario
- Instituto de Investigaciones Farmacológicas ININFA, (CONICET‐UBA) Buenos Aires Argentina
| | - Diego Gelman
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular INGEBI (CONICET) Buenos Aires Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires Argentina
| | - Tomás L. Falzone
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| |
Collapse
|
29
|
Lopez A, Fleming A, Rubinsztein DC. Seeing is believing: methods to monitor vertebrate autophagy in vivo. Open Biol 2018; 8:rsob.180106. [PMID: 30355753 PMCID: PMC6223212 DOI: 10.1098/rsob.180106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an intracellular clearance pathway that delivers cytoplasmic contents to the lysosome for degradation. It plays a critical role in maintaining protein homeostasis and providing nutrients under conditions where the cell is starved. It also helps to remove damaged organelles and misfolded or aggregated proteins. Thus, it is not surprising that defects in this pathway are associated with a variety of pathological conditions, such as neurodegeneration, cancer and infection. Pharmacological upregulation of autophagy is considered a promising therapeutic strategy for the treatment of neurodegenerative and infectious diseases. Studies in knockout mice have demonstrated that autophagy is essential for nervous system function, and data from invertebrate and vertebrate models suggest that the efficiency of autophagic processes generally declines with age. However, much of our understanding of the intracellular regulation of autophagy comes from in vitro studies, and there is a paucity of knowledge about how this process is regulated within different tissues and during the processes of ageing and disease. Here, we review the available tools to probe these questions in vivo within vertebrate model systems. We discuss how these tools have been used to date and consider future avenues of research.
Collapse
Affiliation(s)
- Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK .,UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
30
|
Beyond autophagy: a novel role for autism-linked Wdfy3 in brain mitophagy. Sci Rep 2018; 8:11348. [PMID: 30054502 PMCID: PMC6063930 DOI: 10.1038/s41598-018-29421-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023] Open
Abstract
WD repeat and FYVE domain-containing 3 (WDFY3; also known as Autophagy-Linked FYVE or Alfy) is an identified intellectual disability, developmental delay and autism risk gene. This gene encodes for a scaffolding protein that is expressed in both the developing and adult central nervous system and required for autophagy and aggrephagy with yet unexplored roles in mitophagy. Given that mitochondrial trafficking, dynamics and remodeling have key roles in synaptic plasticity, we tested the role of Wdfy3 on brain bioenergetics by using Wdfy3+/lacZ mice, the only known Wdfy3 mutant animal model with overt neurodevelopmental anomalies that survive to adulthood. We found that Wdfy3 is required for sustaining brain bioenergetics and morphology via mitophagy. Decreased mitochondrial quality control by conventional mitophagy was partly compensated for by the increased formation of mitochondria-derived vesicles (MDV) targeted to lysosomal degradation (micromitophagy). These observations, extended through proteomic analysis of mitochondria-enriched cortical fractions, showed significant enrichment for pathways associated with mitophagy, mitochondrial transport and axon guidance via semaphorin, Robo, L1cam and Eph-ephrin signaling. Collectively, our findings support a critical role for Wdfy3 in mitochondrial homeostasis with implications for neuron differentiation, neurodevelopment and age-dependent neurodegeneration.
Collapse
|
31
|
Green AJ, Planchart A. The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:12-19. [PMID: 29199130 PMCID: PMC5936656 DOI: 10.1016/j.cbpc.2017.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The causes of neurodegenerative diseases are complex with likely contributions from genetic susceptibility and environmental exposures over an organism's lifetime. In this review, we examine the role that aquatic models, especially zebrafish, have played in the elucidation of mechanisms of heavy metal toxicity and nervous system function over the last decade. Focus is applied to cadmium, lead, and mercury as significant contributors to central nervous system morbidity, and the application of numerous transgenic zebrafish expressing fluorescent reporters in specific neuronal populations or brain regions enabling high-resolution neurodevelopmental and neurotoxicology research.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Behavior, Animal/drug effects
- Disease Models, Animal
- Gene Expression Regulation, Developmental/drug effects
- Heavy Metal Poisoning, Nervous System/etiology
- Heavy Metal Poisoning, Nervous System/genetics
- Heavy Metal Poisoning, Nervous System/metabolism
- Heavy Metal Poisoning, Nervous System/pathology
- Humans
- Metals, Heavy/toxicity
- Nerve Degeneration
- Nervous System/drug effects
- Nervous System/metabolism
- Nervous System/pathology
- Nervous System/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Risk Assessment
- Water Pollutants, Chemical/toxicity
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Adrian J Green
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Antonio Planchart
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
32
|
Vaz RL, Outeiro TF, Ferreira JJ. Zebrafish as an Animal Model for Drug Discovery in Parkinson's Disease and Other Movement Disorders: A Systematic Review. Front Neurol 2018; 9:347. [PMID: 29910763 PMCID: PMC5992294 DOI: 10.3389/fneur.2018.00347] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Movement disorders can be primarily divided into hypokinetic and hyperkinetic. Most of the hypokinetic syndromes are associated with the neurodegenerative disorder Parkinson’s disease (PD). By contrast, hyperkinetic syndromes encompass a broader array of diseases, including dystonia, essential tremor, or Huntington’s disease. The discovery of effective therapies for these disorders has been challenging and has also involved the development and characterization of accurate animal models for the screening of new drugs. Zebrafish constitutes an alternative vertebrate model for the study of movement disorders. The neuronal circuitries involved in movement in zebrafish are well characterized, and most of the associated molecular mechanisms are highly conserved. Particularly, zebrafish models of PD have contributed to a better understanding of the role of several genes implicated in the disease. Furthermore, zebrafish is a vertebrate model particularly suited for large-scale drug screenings. The relatively small size of zebrafish, optical transparency, and lifecycle, are key characteristics that facilitate the study of multiple compounds at the same time. Several transgenic, knockdown, and mutant zebrafish lines have been generated and characterized. Therefore, it is central to critically analyze these zebrafish lines and understand their suitability as models of movement disorders. Here, we revise the pathogenic mechanisms, phenotypes, and responsiveness to pharmacotherapies of zebrafish lines of the most common movement disorders. A systematic review of the literature was conducted by including all studies reporting the characterization of zebrafish models of the movement disorders selected from five bibliographic databases. A total of 63 studies were analyzed, and the most relevant data within the scope of this review were gathered. The majority (62%) of the studies were focused in the characterization of zebrafish models of PD. Overall, the zebrafish models included display conserved biochemical and neurobehavioral features of the phenomenology in humans. Nevertheless, in light of what is known for all animal models available, the use of zebrafish as a model for drug discovery requires further optimization. Future technological developments alongside with a deeper understanding of the molecular bases of these disorders should enable the development of novel zebrafish lines that can prove useful for drug discovery for movement disorders.
Collapse
Affiliation(s)
- Rita L Vaz
- TechnoPhage, SA, Lisboa, Portugal.,Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,CEDOC, Chronic Diseases Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joaquim J Ferreira
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| |
Collapse
|
33
|
Rizzi N, Brunialti E, Cerri S, Cermisoni G, Levandis G, Cesari N, Maggi A, Blandini F, Ciana P. In vivo imaging of early signs of dopaminergic neuronal death in an animal model of Parkinson's disease. Neurobiol Dis 2018; 114:74-84. [PMID: 29486298 DOI: 10.1016/j.nbd.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/02/2018] [Accepted: 02/21/2018] [Indexed: 12/23/2022] Open
Abstract
The Parkinson's disease (PD) evolves over an extended period of time with the onset occurring long before clinical signs begin to manifest. Characterization of the molecular events underlying the PD onset is instrumental for the development of diagnostic markers and preventive treatments, progress in this field is hindered by technical limitations. We applied an imaging approach to demonstrate the activation of Nrf2 transcription factor as a hallmark of neurodegeneration in neurotoxin-driven models of PD. In dopaminergic SK-N-BE neuroblastoma cells, Nrf2 activation was detected in cells committed to die as proven by time lapse microscopy; in the substantia nigra pars compacta area of the mouse brain, the Nrf2 activation preceded dopaminergic neurodegeneration as demonstrated by in vivo and ex vivo optical imaging, a finding confirmed by co-localization experiments carried out by immunohistochemistry. Collectively, our results identify the Nrf2 signaling as an early marker of neurodegeneration, anticipating dopaminergic neurodegeneration and motor deficits.
Collapse
Affiliation(s)
- Nicoletta Rizzi
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Electra Brunialti
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Pavia, Italy
| | - Greta Cermisoni
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Giovanna Levandis
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Pavia, Italy
| | - Nicoletta Cesari
- Centro Clinico-Veterinario e Zootecnico-Sperimentale d'Ateneo, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Adriana Maggi
- Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Pavia, Italy
| | - Paolo Ciana
- Center of Excellence for Neurodegenerative Diseases, Department of Oncology and Hemato-Oncology, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
34
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|
35
|
Chandra G, Shenoi RA, Anand R, Rajamma U, Mohanakumar KP. Reinforcing mitochondrial functions in aging brain: An insight into Parkinson's disease therapeutics. J Chem Neuroanat 2017; 95:29-42. [PMID: 29269015 DOI: 10.1016/j.jchemneu.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria, the powerhouse of the neural cells in the brain, are also the seat of certain essential gene signaling pathways that control neuronal functions. Deterioration of mitochondrial functions has been widely reported in normal aging as well as in a spectrum of age-associated neurological diseases, including Parkinson's disease (PD). Evidences accumulated in the recent past provide not only advanced information on the causes of mitochondrial bioenergetics defects and redox imbalance in PD brains, but also much insight into mitochondrial biogenesis, quality control of mitochondrial proteins, and genes, which regulate intra- and extra-mitochondrial signaling that control the general health of neural cells. The mitochondrial quality control machinery is affected in aging and especially in PD, thus affecting intraneuronal protein transport and degradation, which are primarily responsible for accumulation of misfolded proteins and mitochondrial damage in sporadic as well as familial PD. Essentially we considered in the first half of this review, mitochondria-based targets such as mitochondrial oxidative stress and mitochondrial quality control pathways in PD, relevance of mitochondrial DNA mutations, mitophagy, mitochondrial proteases, mitochondrial flux, and finally mitochondria-based therapies possible for PD. Therapeutic aspects are considered in the later half and mitochondria-targeted antioxidant therapy, mitophagy enhancers, mitochondrial biogenesis boasters, mitochondrial dynamics modulators, and gene-based therapeutic approaches are discussed. The present review is a critical assessment of this information to distinguish some exemplary mitochondrial therapeutic targets, and provides a utilitarian perception of some avenues for therapeutic designs on identified mitochondrial targets for PD, a very incapacitating disorder of the geriatric population, world over.
Collapse
Affiliation(s)
- G Chandra
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India.
| | - R A Shenoi
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - R Anand
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - U Rajamma
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - K P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| |
Collapse
|
36
|
Smith GM, Gallo G. The role of mitochondria in axon development and regeneration. Dev Neurobiol 2017; 78:221-237. [PMID: 29030922 DOI: 10.1002/dneu.22546] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 10/08/2017] [Indexed: 12/26/2022]
Abstract
Mitochondria are dynamic organelles that undergo transport, fission, and fusion. The three main functions of mitochondria are to generate ATP, buffer cytosolic calcium, and generate reactive oxygen species. A large body of evidence indicates that mitochondria are either primary targets for neurological disease states and nervous system injury, or are major contributors to the ensuing pathologies. However, the roles of mitochondria in the development and regeneration of axons have just begun to be elucidated. Advances in the understanding of the functional roles of mitochondria in neurons had been largely impeded by insufficient knowledge regarding the molecular mechanisms that regulate mitochondrial transport, stalling, fission/fusion, and a paucity of approaches to image and analyze mitochondria in living axons at the level of the single mitochondrion. However, technical advances in the imaging and analysis of mitochondria in living neurons and significant insights into the mechanisms that regulate mitochondrial dynamics have allowed the field to advance. Mitochondria have now been attributed important roles in the mechanism of axon extension, regeneration, and axon branching. The availability of new experimental tools is expected to rapidly increase our understanding of the functions of axonal mitochondria during both development and later regenerative attempts. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 221-237, 2018.
Collapse
Affiliation(s)
- George M Smith
- Department of Neuroscience, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140.,Shriners Hospitals Pediatric Research Center, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140.,Shriners Hospitals Pediatric Research Center, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
37
|
Alpha Lipoamide Ameliorates Motor Deficits and Mitochondrial Dynamics in the Parkinson's Disease Model Induced by 6-Hydroxydopamine. Neurotox Res 2017; 33:759-767. [PMID: 29019159 DOI: 10.1007/s12640-017-9819-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
The precise mechanisms underlying neuronal injury in Parkinson's disease (PD) are not yet fully elucidated; however, evidence from the in vitro and in vivo PD models suggest that mitochondrial dysfunction may play a major role in PD pathogenesis. Alpha lipoamide, a neutral amide derivative of the lipoic acid, is a better cofactor for mitochondrial dehydrogenase with a stronger protective effect on mitochondria than lipoic acid. Identification of these protective effects of alpha lipoamide on mitochondria, together with the evidence that mitochondrial dysfunction plays a critical role in PD, we speculate that alpha lipoamide may exert a protective effect in PD by regulating the mitochondrial function. The present study investigated the neuroprotective effects of alpha lipoamide in an animal model of PD induced by 6-hydroxydopamine (6-OHDA). The results demonstrated that alpha lipoamide could significantly antagonize the 6-OHDA-induced behavioral damages; restore ATP levels in the midbrain; and also improve the fragmentation, vacuolization, and morphology of the mitochondria. The results of Western blot indicated that alpha lipoamide significantly restored the number of dopaminergic neurons in midbrain and substantially recovered the balance between mitochondrial fission, fusion, and transport. In conclusion, the results demonstrated that alpha lipoamide might exert a significant neuroprotective effect in the animal model of PD by regulation of the dynamic properties of mitochondria.
Collapse
|
38
|
Aouacheria A, Baghdiguian S, Lamb HM, Huska JD, Pineda FJ, Hardwick JM. Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochem Int 2017; 109:141-161. [PMID: 28461171 DOI: 10.1016/j.neuint.2017.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
The morphology of a population of mitochondria is the result of several interacting dynamical phenomena, including fission, fusion, movement, elimination and biogenesis. Each of these phenomena is controlled by underlying molecular machinery, and when defective can cause disease. New understanding of the relationships between form and function of mitochondria in health and disease is beginning to be unraveled on several fronts. Studies in mammals and model organisms have revealed that mitochondrial morphology, dynamics and function appear to be subject to regulation by the same proteins that regulate apoptotic cell death. One protein family that influences mitochondrial dynamics in both healthy and dying cells is the Bcl-2 protein family. Connecting mitochondrial dynamics with life-death pathway forks may arise from the intersection of Bcl-2 family proteins with the proteins and lipids that determine mitochondrial shape and function. Bcl-2 family proteins also have multifaceted influences on cells and mitochondria, including calcium handling, autophagy and energetics, as well as the subcellular localization of mitochondrial organelles to neuronal synapses. The remarkable range of physical or functional interactions by Bcl-2 family proteins is challenging to assimilate into a cohesive understanding. Most of their effects may be distinct from their direct roles in apoptotic cell death and are particularly apparent in the nervous system. Dual roles in mitochondrial dynamics and cell death extend beyond BCL-2 family proteins. In this review, we discuss many processes that govern mitochondrial structure and function in health and disease, and how Bcl-2 family proteins integrate into some of these processes.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stephen Baghdiguian
- Institute of Evolutionary Sciences of Montpellier (ISEM), CNRS UMR 5554, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - Fernando J Pineda
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Sleigh JN, Vagnoni A, Twelvetrees AE, Schiavo G. Methodological advances in imaging intravital axonal transport. F1000Res 2017; 6:200. [PMID: 28344778 PMCID: PMC5333613 DOI: 10.12688/f1000research.10433.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied
in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the
in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.
Collapse
Affiliation(s)
- James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Alessio Vagnoni
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alison E Twelvetrees
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
40
|
Xu Y, Chen M, Hu B, Huang R, Hu B. In vivo Imaging of Mitochondrial Transport in Single-Axon Regeneration of Zebrafish Mauthner Cells. Front Cell Neurosci 2017; 11:4. [PMID: 28174522 PMCID: PMC5258718 DOI: 10.3389/fncel.2017.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial transport is essential for neuronal function, but the evidence of connections between mitochondrial transport and axon regeneration in the central nervous system (CNS) of living vertebrates remains limited. Here, we developed a novel model to explore mitochondrial transport in a single Mauthner axon (M axon) of zebrafish with non-invasive in vivo imaging. To confirm the feasibility of using this model, we treated labeled zebrafish with nocodazole and demonstrated that it could disrupt mitochondrial transport. We also used two-photon laser axotomy to precisely axotomize M axons and simultaneously recorded their regeneration and the process of mitochondrial transport in living zebrafish larvae. The findings showed that the injured axons with stronger regenerative capability maintain greater mitochondrial motility. Furthermore, to stimulate axon regeneration, treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP) could also augment mitochondrial motility. Taken together, our results provide new evidence that mitochondrial motility is positively correlated with axon regeneration in the living vertebrate CNS. This promising model will be useful for further studies on the interaction between axon regeneration and mitochondrial dynamics, using various genetic and pharmacological techniques.
Collapse
Affiliation(s)
- Yang Xu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China Hefei, China
| | - Min Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China Hefei, China
| | - Bingbing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China Hefei, China
| | - Rongchen Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China Hefei, China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China Hefei, China
| |
Collapse
|