1
|
Purkartova Z, Krakorova K, Babuska V, Tuma J, Houdek Z, Roy Choudhury N, Kapl S, Kolinko Y, Sucha M, Porras-Garcia E, Kralickova M, Cendelin J. Quantification of Solid Embryonic Cerebellar Graft Volume in a Degenerative Ataxia Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1811-1823. [PMID: 38430389 DOI: 10.1007/s12311-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Substitution of lost neurons by neurotransplantation would be a possible management of advanced degenerative cerebellar ataxias in which insufficient cerebellar reserve remains. In this study, we examined the volume and structure of solid embryonic cerebellar grafts in adult Lurcher mice, a model of olivocerebellar degeneration, and their healthy littermates. Grafts taken from enhanced green fluorescent protein (EGFP)-positive embryos were injected into the cerebellum of host mice. Two or six months later, the brains were examined histologically. The grafts were identified according to the EGFP fluorescence in frozen sections and their volumes were estimated using the Cavalieri principle. For gross histological evaluation, graft-containing slices were processed using Nissl and hematoxylin-eosin staining. Adjustment of the volume estimation approach suggested that it is reasonable to use all sections without sampling, but that calculation of values for up to 20% of lost section using linear interpolation does not constitute substantial error. Mean graft volume was smaller in Lurchers than in healthy mice when examined 6 months after the transplantation. We observed almost no signs of graft destruction. In some cases, compact grafts disorganized the structure of the host's cerebellar cortex. In Lurchers, the grafts had a limited contact with the host's cerebellum. Also, graft size was of greater variability in Lurchers than in healthy mice. The results are in compliance with our previous findings that Lurcher phenotype-associated factors have a negative effect on graft development. These factors can hypothetically include cerebellar morphology, local tissue milieu, or systemic factors such as immune system abnormalities.
Collapse
Affiliation(s)
- Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Kristyna Krakorova
- Department of Neurology, Faculty Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zbyněk Houdek
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Nilpawan Roy Choudhury
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Stepan Kapl
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martina Sucha
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Elena Porras-Garcia
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, Seville, Spain
| | - Milena Kralickova
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
2
|
Schellino R, Besusso D, Parolisi R, Gómez-González GB, Dallere S, Scaramuzza L, Ribodino M, Campus I, Conforti P, Parmar M, Boido M, Cattaneo E, Buffo A. hESC-derived striatal progenitors grafted into a Huntington's disease rat model support long-term functional motor recovery by differentiating, self-organizing and connecting into the lesioned striatum. Stem Cell Res Ther 2023; 14:189. [PMID: 37507794 PMCID: PMC10386300 DOI: 10.1186/s13287-023-03422-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| | - Dario Besusso
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Gabriela B Gómez-González
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Sveva Dallere
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Linda Scaramuzza
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Marta Ribodino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Ilaria Campus
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| |
Collapse
|
3
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
4
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
5
|
Gelfo F, Petrosini L. Environmental Enrichment Enhances Cerebellar Compensation and Develops Cerebellar Reserve. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095697. [PMID: 35565093 PMCID: PMC9099498 DOI: 10.3390/ijerph19095697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
The brain is able to change its structure and function in response to environmental stimulations. Several human and animal studies have documented that enhanced stimulations provide individuals with strengthened brain structure and function that allow them to better cope with damage. In this framework, studies based on the exposure of animals to environmental enrichment (EE) have provided indications of the mechanisms involved in such a beneficial action. The cerebellum is a very plastic brain region that responds to every experience with deep structural and functional rearrangement. The present review specifically aims to collect and synthesize the evidence provided by animal models on EE exposure effects on cerebellar structure and function by considering the studies on healthy subjects and on animals exposed to EE both before and after damage involving cerebellar functionality. On the whole, the evidence supports the role of EE in enhancing cerebellar compensation and developing cerebellar reserve. However, since studies addressing this issue are still scarce, large areas of inconsistency and lack of clarity remain. Further studies are required to provide suggestions on possible mechanisms of enhancement of compensatory responses in human patients following cerebellar damage.
Collapse
Affiliation(s)
- Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy;
- Correspondence:
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy;
| |
Collapse
|
6
|
Boda E, Lorenzati M, Parolisi R, Harding B, Pallavicini G, Bonfanti L, Moccia A, Bielas S, Di Cunto F, Buffo A. Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nat Commun 2022; 13:2331. [PMID: 35484145 PMCID: PMC9051058 DOI: 10.1038/s41467-022-30010-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
In the developing mouse forebrain, temporally distinct waves of oligodendrocyte progenitor cells (OPCs) arise from different germinal zones and eventually populate either dorsal or ventral regions, where they present as transcriptionally and functionally equivalent cells. Despite that, developmental heterogeneity influences adult OPC responses upon demyelination. Here we show that accumulation of DNA damage due to ablation of citron-kinase or cisplatin treatment cell-autonomously disrupts OPC fate, resulting in cell death and senescence in the dorsal and ventral subsets, respectively. Such alternative fates are associated with distinct developmental origins of OPCs, and with a different activation of NRF2-mediated anti-oxidant responses. These data indicate that, upon injury, dorsal and ventral OPC subsets show functional and molecular diversity that can make them differentially vulnerable to pathological conditions associated with DNA damage.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy.
| | - Martina Lorenzati
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Brian Harding
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gianmarco Pallavicini
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Amanda Moccia
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ferdinando Di Cunto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| |
Collapse
|
7
|
Lalonde R, Strazielle C. The Herc1 gene in neurobiology. Gene X 2022; 814:146144. [PMID: 34990797 DOI: 10.1016/j.gene.2021.146144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
The function of the HERC1 gene has mainly been delineated by studying Herc1tbl (tambaleante) mutant mice, characterized by losses in cerebellar Purkinje cells, a lower number of synaptic vesicles in the hippocampus, and anomalies in climbing fiber projections from the inferior olive as well as alpha-motoneuron projections to the skeletal muscle. The salient behavioral phenotypes include cerebellar ataxia, a loss in motor coordination, muscle weakness, and spatial deficits. Similar neuropathological and behavioral profiles have been described in childhood-onset subjects with HERC1 variants, including cerebellar ataxia and hypotonia.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Rouen, Dept Psychology, 76821 Mont-Saint-Aignan, France; Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
8
|
Apoptosis-Inducing Factor Deficiency Induces Tissue-Specific Alterations in Autophagy: Insights from a Preclinical Model of Mitochondrial Disease and Exercise Training Effects. Antioxidants (Basel) 2022; 11:antiox11030510. [PMID: 35326160 PMCID: PMC8944439 DOI: 10.3390/antiox11030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effects of apoptosis-inducing factor (AIF) deficiency, as well as those of an exercise training intervention on autophagy across tissues (heart, skeletal muscle, cerebellum and brain), that are primarily affected by mitochondrial diseases, using a preclinical model of these conditions, the Harlequin (Hq) mouse. Autophagy markers were analyzed in: (i) 2, 3 and 6 month-old male wild-type (WT) and Hq mice, and (ii) WT and Hq male mice that were allocated to an exercise training or sedentary group. The exercise training started upon onset of the first symptoms of ataxia in Hq mice and lasted for 8 weeks. Higher content of autophagy markers and free amino acids, and lower levels of sarcomeric proteins were found in the skeletal muscle and heart of Hq mice, suggesting increased protein catabolism. Leupeptin-treatment demonstrated normal autophagic flux in the Hq heart and the absence of mitophagy. In the cerebellum and brain, a lower abundance of Beclin 1 and ATG16L was detected, whereas higher levels of the autophagy substrate p62 and LAMP1 levels were observed in the cerebellum. The exercise intervention did not counteract the autophagy alterations found in any of the analyzed tissues. In conclusion, AIF deficiency induces tissue-specific alteration of autophagy in the Hq mouse, with accumulation of autophagy markers and free amino acids in the heart and skeletal muscle, but lower levels of autophagy-related proteins in the cerebellum and brain. Exercise intervention, at least if starting when muscle atrophy and neurological symptoms are already present, is not sufficient to mitigate autophagy perturbations.
Collapse
|
9
|
Draganova R, Konietschke F, Steiner KM, Elangovan N, Gümüs M, Göricke SM, Ernst TM, Deistung A, van Eimeren T, Konczak J, Timmann D. Motor training-related brain reorganization in patients with cerebellar degeneration. Hum Brain Mapp 2021; 43:1611-1629. [PMID: 34894171 PMCID: PMC8886660 DOI: 10.1002/hbm.25746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/09/2022] Open
Abstract
Cerebellar degeneration progressively impairs motor function. Recent research showed that cerebellar patients can improve motor performance with practice, but the optimal feedback type (visual, proprioceptive, verbal) for such learning and the underlying neuroplastic changes are unknown. Here, patients with cerebellar degeneration (N = 40) and age‐ and sex‐matched healthy controls (N = 40) practiced single‐joint, goal‐directed forearm movements for 5 days. Cerebellar patients improved performance during visuomotor practice, but a training focusing on either proprioceptive feedback, or explicit verbal feedback and instruction did not show additional benefits. Voxel‐based morphometry revealed that after training gray matter volume (GMV) was increased prominently in the visual association cortices of controls, whereas cerebellar patients exhibited GMV increase predominantly in premotor cortex. The premotor cortex as a recipient of cerebellar efferents appears to be an important hub in compensatory remodeling following damage of the cerebro‐cerebellar motor system.
Collapse
Affiliation(s)
- Rossitza Draganova
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Katharina M Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Naveen Elangovan
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Meltem Gümüs
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sophia M Göricke
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas M Ernst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Deistung
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department for Radiation Medicine, University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Jürgen Konczak
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Affiliation(s)
- Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University; IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
11
|
Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration. THE CEREBELLUM 2020; 18:855-865. [PMID: 31418135 DOI: 10.1007/s12311-019-01067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar diseases causing substantial cell loss often lead to severe functional deficits and restoration of cerebellar function is difficult. Neurotransplantation therapy could become a hopeful method, but there are still many limitations and unknown aspects. Studies in a variety of cerebellar mutant mice reflecting heterogeneity of human cerebellar degenerations show promising results as well as new problems and questions to be answered. The aim of this work was to compare the development of embryonic cerebellar grafts in adult B6CBA Lurcher and B6.BR pcd mutant mice and strain-matched healthy wild type mice. Performance in the rotarod test, graft survival, structure, and volume was examined 2 months after the transplantation or sham-operation. The grafts survived in most of the mice of all types. In both B6CBA and B6.BR wild type mice and in pcd mice, colonization of the host's cerebellum was a common finding, while in Lurcher mice, the grafts showed a low tendency to infiltrate the host's cerebellar tissue. There were no significant differences in graft volume between mutant and wild type mice. Nevertheless, B6CBA mice had smaller grafts than their B6.BR counterparts. The transplantation did not improve the performance in the rotarod test. The study showed marked differences in graft integration into the host's cerebellum in two types of cerebellar mutants, suggesting disease-specific factors influencing graft fate.
Collapse
|
12
|
Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, Lee J, Manto M, Petrosini L, Shaikh AG, Schmahmann JD. Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to Cerebellar Disorders. CEREBELLUM (LONDON, ENGLAND) 2020; 19:131-153. [PMID: 31879843 PMCID: PMC6978437 DOI: 10.1007/s12311-019-01091-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebellar reserve refers to the capacity of the cerebellum to compensate for tissue damage or loss of function resulting from many different etiologies. When the inciting event produces acute focal damage (e.g., stroke, trauma), impaired cerebellar function may be compensated for by other cerebellar areas or by extracerebellar structures (i.e., structural cerebellar reserve). In contrast, when pathological changes compromise cerebellar neuronal integrity gradually leading to cell death (e.g., metabolic and immune-mediated cerebellar ataxias, neurodegenerative ataxias), it is possible that the affected area itself can compensate for the slowly evolving cerebellar lesion (i.e., functional cerebellar reserve). Here, we examine cerebellar reserve from the perspective of the three cornerstones of clinical ataxiology: control of ocular movements, coordination of voluntary axial and appendicular movements, and cognitive functions. Current evidence indicates that cerebellar reserve is potentiated by environmental enrichment through the mechanisms of autophagy and synaptogenesis, suggesting that cerebellar reserve is not rigid or fixed, but exhibits plasticity potentiated by experience. These conclusions have therapeutic implications. During the period when cerebellar reserve is preserved, treatments should be directed at stopping disease progression and/or limiting the pathological process. Simultaneously, cerebellar reserve may be potentiated using multiple approaches. Potentiation of cerebellar reserve may lead to compensation and restoration of function in the setting of cerebellar diseases, and also in disorders primarily of the cerebral hemispheres by enhancing cerebellar mechanisms of action. It therefore appears that cerebellar reserve, and the underlying plasticity of cerebellar microcircuitry that enables it, may be of critical neurobiological importance to a wide range of neurological/neuropsychiatric conditions.
Collapse
Affiliation(s)
- H Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan.
| | - A Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
| | - F Gelfo
- Department of Human Sciences, Guglielmo Marconi University, 00193, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - X Guell
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - E Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - S Kakei
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J Lee
- Komatsu University, Komatsu, Japan
| | - M Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000, Mons, Belgium
| | - L Petrosini
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - A G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - J D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
| |
Collapse
|
13
|
Donchin O, Timmann D. How to help cerebellar patients make the most of their remaining learning capacities. Brain 2019; 142:492-495. [PMID: 30810211 DOI: 10.1093/brain/awz020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Opher Donchin
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Israel
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstrasse 55, Essen, Germany
| |
Collapse
|
14
|
Cendelin J, Buffo A, Hirai H, Magrassi L, Mitoma H, Sherrard R, Vozeh F, Manto M. Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy? THE CEREBELLUM 2019; 18:575-592. [PMID: 30607797 DOI: 10.1007/s12311-018-0999-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Restoration of damaged central nervous system structures, functional recovery, and prevention of neuronal loss during neurodegenerative diseases are major objectives in cerebellar research. The highly organized anatomical structure of the cerebellum with numerous inputs/outputs, the complexity of cerebellar functions, and the large spectrum of cerebellar ataxias render therapies of cerebellar disorders highly challenging. There are currently several therapeutic approaches including motor rehabilitation, neuroprotective drugs, non-invasive cerebellar stimulation, molecularly based therapy targeting pathogenesis of the disease, and neurotransplantation. We discuss the goals and possible beneficial mechanisms of transplantation therapy for cerebellar damage and its limitations and factors determining outcome.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, 10043, Turin, Italy
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche Diagnostiche e Pediatriche, Fondazione IRCCS Policlinico S. Matteo, Università degli Studi di Pavia, 27100, Pavia, Italy
- Istituto di Genetica Molecolare - CNR, 27100, Pavia, Italy
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Rachel Sherrard
- IBPS, UMR8256 Biological Adaptation and Ageing, Sorbonne Université and CNRS, Paris, France
| | - Frantisek Vozeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium.
| |
Collapse
|
15
|
Restored presynaptic synaptophysin and cholinergic inputs contribute to the protective effects of physical running on spatial memory in aged mice. Neurobiol Dis 2019; 132:104586. [DOI: 10.1016/j.nbd.2019.104586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023] Open
|
16
|
Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. THE CEREBELLUM 2019; 17:428-437. [PMID: 29450804 DOI: 10.1007/s12311-018-0928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For many degenerative cerebellar diseases, currently, no effective treatment that would substantially restore cerebellar functions is available. Neurotransplantation could be a promising therapy for such cases. Nevertheless, there are still severe limitations for routine clinical use. The aim of the work was to assess volume and morphology and functional impact on motor skills of an embryonic cerebellar graft injected in the form of cell suspension in Lurcher mutant and wild-type mice of the B6CBA and C3H strains after a 6-month survival period. The grafts survived in the majority of the mice. In both B6CBA and C3H Lurcher mice, most of the grafts were strictly delimited with no tendency to invade the host cerebellum, while in wild-type mice, graft-derived Purkinje cells colonized the host's cerebellum. In C3H Lurcher mice, but not in B6CBA Lurchers, the grafts had smaller volume than in their wild-type counterparts. C3H wild-type mice had significantly larger grafts than B6CBA wild-type mice. No positive effect of the transplantation on performance in the rotarod test was observed. The findings suggest that the niche of the Lurcher mutant cerebellum has a negative impact on integration of grafted cells. This factor seems to be limiting for specific functional effects of the transplantation therapy in this mouse model of cerebellar degeneration.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| | - Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Jakub Kubik
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Erik Ulbricht
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
| |
Collapse
|
17
|
The beneficial roles of exercise training via autophagy in neurological diseases and possible mechanisms. Life Sci 2019; 221:130-134. [PMID: 30769113 DOI: 10.1016/j.lfs.2019.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is a conservative catabolism process, participating in delivering the cytosol and cytosolic components to the lysosome. Abnormal autophagy is related to human pathologies, for instance diabetes, neurodegeneration, cardiovascular, macular degeneration, pulmonary, and cancer. Enormous evidences indicate that autophagy may mediate the cellular pathological condition in the process of neurological diseases. Exercise as a form of physiological stress may cause an adaptation, and autophagy is a necessary process for adaptational response to exercise. Autophagy during exercise may improve neurological function, control tissue maintain tissue integrity, and activate different signals pathway for adaptation. In this review, we summarize the possible mechanisms of exercise training via autophagy in neurological diseases.
Collapse
|
18
|
Cerrato V, Mercurio S, Leto K, Fucà E, Hoxha E, Bottes S, Pagin M, Milanese M, Ngan CY, Concina G, Ottolenghi S, Wei CL, Bonanno G, Pavesi G, Tempia F, Buffo A, Nicolis SK. Sox2 conditional mutation in mouse causes ataxic symptoms, cerebellar vermis hypoplasia, and postnatal defects of Bergmann glia. Glia 2018; 66:1929-1946. [PMID: 29732603 DOI: 10.1002/glia.23448] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/07/2022]
Abstract
Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.
Collapse
Affiliation(s)
- Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Eriola Hoxha
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Sara Bottes
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genova, Viale Cembrano 4, Genoa, 16148, Italy
| | - Chew-Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Giulia Concina
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genova, Viale Cembrano 4, Genoa, 16148, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, 20100, Italy
| | - Filippo Tempia
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|