1
|
Tapken I, Schweitzer T, Paganin M, Schüning T, Detering NT, Sharma G, Niesert M, Saffari A, Kuhn D, Glynn A, Cieri F, Santonicola P, Cannet C, Gerstner F, Faller KME, Huang YT, Kothary R, Gillingwater TH, Di Schiavi E, Simon CM, Hensel N, Ziegler A, Viero G, Pich A, Claus P. The systemic complexity of a monogenic disease: the molecular network of spinal muscular atrophy. Brain 2025; 148:580-596. [PMID: 39183150 DOI: 10.1093/brain/awae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal muscular atrophy (SMA) is one such monogenic model, caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow the identification of crucial disease-driving molecules. Here, we analysed the systemic characteristics of SMA, using proteomics, phosphoproteomics, translatomics and interactomics, from two mouse models with different disease severities and genetics. This systems approach revealed subnetworks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes, creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.
Collapse
Affiliation(s)
- Ines Tapken
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Theresa Schweitzer
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | | | - Tobias Schüning
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Nora T Detering
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Gaurav Sharma
- CNR Unit, Institute of Biophysics, Trento 38123, Italy
| | - Moritz Niesert
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Afshin Saffari
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Daniela Kuhn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover 30625, Germany
| | - Amy Glynn
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
| | - Federica Cieri
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
- Department of Biology, University of Naples Federico II, Naples 80131, Italy
| | - Pamela Santonicola
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | | | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Rashmi Kothary
- Faculty of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Elia Di Schiavi
- CNR, Institute of Biosciences and Bioresources (IBBR), Naples 80131, Italy
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Niko Hensel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Andreas Ziegler
- Department of Pediatrics I, Center for Pediatrics and Adolescent Medicine, Heidelberg University, Heidelberg 69120, Germany
| | | | - Andreas Pich
- Research Core Unit Proteomics, Hannover Medical School (MHH), Hannover 30625, Germany
- Institute of Toxicology, Hannover Medical School (MHH), Hannover 30625, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover 30625, Germany
- Center for Systems Neuroscience (ZSN), Hannover 30559, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
2
|
Schüning T, Zeug A, Strienke K, Franz P, Tsiavaliaris G, Hensel N, Viero G, Ponimaskin E, Claus P. The spinal muscular atrophy gene product regulates actin dynamics. FASEB J 2024; 38:e70055. [PMID: 39305126 DOI: 10.1096/fj.202300183r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by low levels of the Survival of Motoneuron (SMN) protein. SMN interacts with and regulates the actin-binding protein profilin2a, thereby influencing actin dynamics. Dysfunctional actin dynamics caused by SMN loss disrupts neurite outgrowth, axonal pathfinding, and formation of functional synapses in neurons. Whether the SMN protein directly interacts with and regulates filamentous (F-) and monomeric globular (G-) actin is still elusive. In a quantitative single cell approach, we show that SMN loss leads to dysregulated F-/G-actin fractions. Furthermore, quantitative assessment of cell morphology suggests an F-actin organizational defect. Interestingly, this is mediated by an interaction of SMN with G- and F-actin. In co-immunoprecipitation, in-vitro pulldown and co-localization assays, we elucidated that this interaction is independent of the SMN-profilin2a interaction. Therefore, we suggest two populations being relevant for functional actin dynamics in healthy neurons: SMN-profilin2a-actin and SMN-actin. Additionally, those two populations may influence each other and therefore regulate binding of SMN to actin. In SMA, we showed a dysregulated co-localization pattern of SMN-actin which could only partially rescued by SMN restoration. However, dysregulation of F-/G-actin fractions was reduced by SMN restoration. Taken together, our results suggest a novel molecular function of SMN in binding to actin independent from SMN-profilin2a interaction.
Collapse
Affiliation(s)
- Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andre Zeug
- Institute of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Katharina Strienke
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Franz
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Niko Hensel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gabriella Viero
- Institute of Biophysics (IBF), CNR Unit at Trento, Trento, Italy
| | - Evgeni Ponimaskin
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Virla F, Turano E, Scambi I, Schiaffino L, Boido M, Mariotti R. Administration of adipose-derived stem cells extracellular vesicles in a murine model of spinal muscular atrophy: effects of a new potential therapeutic strategy. Stem Cell Res Ther 2024; 15:94. [PMID: 38561840 PMCID: PMC10986013 DOI: 10.1186/s13287-024-03693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.
Collapse
Affiliation(s)
- Federica Virla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Schiaffino
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
4
|
Benarroch E. What Is the Role of the Rho-ROCK Pathway in Neurologic Disorders? Neurology 2023; 101:536-543. [PMID: 37722862 PMCID: PMC10516277 DOI: 10.1212/wnl.0000000000207779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023] Open
|
5
|
Schmitt LI, David C, Steffen R, Hezel S, Roos A, Schara-Schmidt U, Kleinschnitz C, Leo M, Hagenacker T. Spinal astrocyte dysfunction drives motor neuron loss in late-onset spinal muscular atrophy. Acta Neuropathol 2023; 145:611-635. [PMID: 36930296 PMCID: PMC10119066 DOI: 10.1007/s00401-023-02554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder caused by a loss of the survival of motor neuron 1 (SMN1) gene, resulting in a loss of spinal motor neurons (MNs), leading to muscle weakness and wasting. The pathogenesis of MN loss in SMA and the selective vulnerability in different cellular populations are not fully understood. To investigate the role of spinal astrocytes in the pathogenesis of late-onset SMA, we used a mouse model in addition to in vitro approaches. Immunostaining, Western blot analysis, small interfering ribonucleic acid (siRNA) transfections, functional assays, enzyme-linked immunosorbent assay (ELISA), behavioral tests, and electrophysiological measurements were performed. Early activation of spinal astrocytes and a reduction of the excitatory amino acid transporter 1 (EAAT1) on postnatal day (P) 20 preceded the loss of spinal MNs in SMA mice occurring on P42. EAAT1 reduction resulted in elevated glutamate levels in the spinal cord of SMA mice at P20 and P42. SMA-like astrocytes generated by siRNA and an ex vivo model of glutamate excitotoxicity involving organotypic spinal cord slice cultures revealed the critical role of glutamate homeostasis in the degeneration of MNs. The pre-emptive administration of arundic acid (AA), as an inhibitor of astrocyte activation, to SMA mice prior to the loss of motor neurons (P28) resulted in elevated EAAT1 protein levels compared to vehicle-treated SMA mice and prevented the increase of glutamate in the spinal cord and the loss of spinal MNs. Furthermore, AA preserved motor functions during behavioral experiments, the electrophysiological properties, and muscle alteration of SMA mice. In a translational approach, we transfected healthy human fibroblasts with SMN1 siRNA, resulting in reduced EAAT1 expression and reduced uptake but increased glutamate release. These findings were verified by detecting elevated glutamate levels and reduced levels of EAAT1 in cerebrospinal fluid of untreated SMA type 2 and 3 patients. In addition, glutamate was elevated in serum samples, while EAAT1 was not detectable. Our data give evidence for the crucial role of spinal astrocytes in the pathogenesis of late-onset SMA, a potential driving force for MN loss by glutamate excitotoxicity caused by EAAT1 reduction as an early pathophysiological event. Furthermore, our study introduces EAAT1 as a potential therapeutic target for additional SMN-independent therapy strategies to complement SMN-enhancing drugs.
Collapse
Affiliation(s)
- Linda-Isabell Schmitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Christina David
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Rebecca Steffen
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Stefanie Hezel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Andreas Roos
- Department of Pediatrics 1, Division of Neuropediatrics, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatrics 1, Division of Neuropediatrics, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
6
|
Sansa A, Miralles MP, Beltran M, Celma-Nos F, Calderó J, Garcera A, Soler RM. ERK MAPK signaling pathway inhibition as a potential target to prevent autophagy alterations in Spinal Muscular Atrophy motoneurons. Cell Death Discov 2023; 9:113. [PMID: 37019880 PMCID: PMC10076363 DOI: 10.1038/s41420-023-01409-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a severe genetic neuromuscular disorder that occurs in childhood and is caused by misexpression of the survival motor neuron (SMN) protein. SMN reduction induces spinal cord motoneuron (MN) degeneration, which leads to progressive muscular atrophy and weakness. The link between SMN deficiency and the molecular mechanisms altered in SMA cells remains unclear. Autophagy, deregulation of intracellular survival pathways and ERK hyperphosphorylation may contribute to SMN-reduced MNs collapse, offering a useful strategy to develop new therapies to prevent neurodegeneration in SMA. Using SMA MN in vitro models, the effect of pharmacological inhibition of PI3K/Akt and ERK MAPK pathways on SMN and autophagy markers modulation was studied by western blot analysis and RT-qPCR. Experiments involved primary cultures of mouse SMA spinal cord MNs and differentiated SMA human MNs derived from induced pluripotent stem cells (iPSCs). Inhibition of the PI3K/Akt and the ERK MAPK pathways reduced SMN protein and mRNA levels. Importantly, mTOR phosphorylation, p62, and LC3-II autophagy markers protein level were decreased after ERK MAPK pharmacological inhibition. Furthermore, the intracellular calcium chelator BAPTA prevented ERK hyperphosphorylation in SMA cells. Our results propose a link between intracellular calcium, signaling pathways, and autophagy in SMA MNs, suggesting that ERK hyperphosphorylation may contribute to autophagy deregulation in SMN-reduced MNs.
Collapse
Affiliation(s)
- Alba Sansa
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Maria P Miralles
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Maria Beltran
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Ferran Celma-Nos
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Jordi Calderó
- Patologia Neuromuscular Experimental, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Ana Garcera
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Rosa M Soler
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
7
|
Ortiz C, Klein S, Reul WH, Magdaleno F, Gröschl S, Dietrich P, Schierwagen R, Uschner FE, Torres S, Hieber C, Meier C, Kraus N, Tyc O, Brol M, Zeuzem S, Welsch C, Poglitsch M, Hellerbrand C, Alfonso-Prieto M, Mira F, Keller UAD, Tetzner A, Moore A, Walther T, Trebicka J. Neprilysin-dependent neuropeptide Y cleavage in the liver promotes fibrosis by blocking NPY-receptor 1. Cell Rep 2023; 42:112059. [PMID: 36729833 PMCID: PMC9989826 DOI: 10.1016/j.celrep.2023.112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Development of liver fibrosis is paralleled by contraction of hepatic stellate cells (HSCs), the main profibrotic hepatic cells. Yet, little is known about the interplay of neprilysin (NEP) and its substrate neuropeptide Y (NPY), a potent enhancer of contraction, in liver fibrosis. We demonstrate that HSCs are the source of NEP. Importantly, NPY originates majorly from the splanchnic region and is cleaved by NEP in order to terminate contraction. Interestingly, NEP deficiency (Nep-/-) showed less fibrosis but portal hypertension upon liver injury in two different fibrosis models in mice. We demonstrate the incremental benefit of Nep-/- in addition to AT1R blocker (ARB) or ACE inhibitors for fibrosis and portal hypertension. Finally, oral administration of Entresto, a combination of ARB and NEP inhibitor, decreased hepatic fibrosis and portal pressure in mice. These results provide a mechanistic rationale for translation of NEP-AT1R-blockade in human liver fibrosis and portal hypertension.
Collapse
Affiliation(s)
- Cristina Ortiz
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sabine Klein
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Internal Medicine B, University of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany
| | - Winfried H Reul
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Stefanie Gröschl
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Department of Internal Medicine 1, FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Robert Schierwagen
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Frank E Uschner
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sandra Torres
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Hieber
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Caroline Meier
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Nico Kraus
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Olaf Tyc
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Maximilian Brol
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christoph Welsch
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Mercedes Alfonso-Prieto
- Institute for Neuroscience and Medicine INM-9 and Institute for Advanced Simulations IAS-5, Forschungszentrum Jülich, Jülich, Germany; Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabio Mira
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anja Tetzner
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Andrew Moore
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Thomas Walther
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Department of Pediatric Surgery, Centre for Fetal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany; Department of Obstetrics, Centre for Fetal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany; Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain; Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Internal Medicine B, University of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany.
| |
Collapse
|
8
|
Wang Z, Ren D, Zheng P. The role of Rho/ROCK in epileptic seizure-related neuronal damage. Metab Brain Dis 2022; 37:881-887. [PMID: 35119588 PMCID: PMC9042975 DOI: 10.1007/s11011-022-00909-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
Epilepsy is one of the most severe neurological disorders characterized by spontaneous recurrent seizures. Although more than two-thirds of patients can be cured with anti-epileptic drugs (AEDs), the rest one-third of epilepsy patients are resistant to AEDs. A series of studies have demonstrated Rho/Rho-associated kinase (ROCK) pathway might be involved in the pathogenesis of epilepsy in the recent twenty years. Several related pathway inhibitors of Rho/ROCK have been used in the treatment of epilepsy. We searched PubMed from Jan 1, 2000 to Dec 31, 2020, using the terms "epilepsy AND Rho AND ROCK" and "seizure AND Rho AND ROCK". We selected articles that characterized Rho/ROCK in animal models of epilepsy and patients. We then chose the most relevant research studies including in-vitro, in-vivo and clinical trials. The expression of Rho/ROCK could be a potential non-invasive biomarker to apply in treatment for patients with epilepsy. RhoA and ROCK show significant upregulation in the acute and chronic stage of epilepsy. ROCK inhibitors can reduce the epilepsy, epileptic seizure-related neuronal death and comorbidities. These findings demonstrate the novel development for diagnosis and treatment for patients with epilepsy. Rho/ROCK signaling pathway inhibitors may show more promising effects in epilepsy and related neurological diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Dabin Ren
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China
| | - Ping Zheng
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
9
|
Kubinski S, Claus P. Protein Network Analysis Reveals a Functional Connectivity of Dysregulated Processes in ALS and SMA. Neurosci Insights 2022; 17:26331055221087740. [PMID: 35372839 PMCID: PMC8966079 DOI: 10.1177/26331055221087740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) are neurodegenerative diseases which are characterized by the loss of motoneurons within the central nervous system. SMA is a monogenic disease caused by reduced levels of the Survival of motoneuron protein, whereas ALS is a multi-genic disease with over 50 identified disease-causing genes and involvement of environmental risk factors. Although these diseases have different causes, they partially share identical phenotypes and pathomechanisms. To analyze and identify functional connections and to get a global overview of altered pathways in both diseases, protein network analyses are commonly used. Here, we used an in silico tool to test for functional associations between proteins that are involved in actin cytoskeleton dynamics, fatty acid metabolism, skeletal muscle metabolism, stress granule dynamics as well as SMA or ALS risk factors, respectively. In network biology, interactions are represented by edges which connect proteins (nodes). Our approach showed that only a few edges are necessary to present a complex protein network of different biological processes. Moreover, Superoxide dismutase 1, which is mutated in ALS, and the actin-binding protein profilin1 play a central role in the connectivity of the aforementioned pathways. Our network indicates functional links between altered processes that are described in either ALS or SMA. These links may not have been considered in the past but represent putative targets to restore altered processes and reveal overlapping pathomechanisms in both diseases.
Collapse
Affiliation(s)
- Sabrina Kubinski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
| |
Collapse
|
10
|
Hensel N, Brickwedde H, Tsaknakis K, Grages A, Braunschweig L, Lüders KA, Lorenz HM, Lippross S, Walter LM, Tavassol F, Lienenklaus S, Neunaber C, Claus P, Hell AK. Altered bone development with impaired cartilage formation precedes neuromuscular symptoms in spinal muscular atrophy. Hum Mol Genet 2021; 29:2662-2673. [PMID: 32644125 DOI: 10.1093/hmg/ddaa145] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a fatal neurodegenerative disease of newborns and children caused by mutations or deletions of the survival of motoneuron gene 1 resulting in low levels of the SMN protein. While neuromuscular degeneration is the cardinal symptom of the disease, the reduction of the ubiquitously expressed SMN additionally elicits non-motoneuron symptoms. Impaired bone development is a key feature of SMA, but it is yet unknown whether this is an indirect functional consequence of muscle weakness or caused by bone-intrinsic mechanisms. Therefore, we radiologically examined SMA patients in a prospective, non-randomized cohort study characterizing bone size and bone mineral density (BMD) and performed equivalent measurements in pre-symptomatic SMA mice. BMD as well as lumbar vertebral body size were significantly reduced in SMA patients. This growth defect but not BMD reduction was confirmed in SMA mice by μCT before the onset of neuromuscular symptoms indicating that it is at least partially independent of neuromuscular degeneration. Interestingly, the number of chondroblasts in the hypertrophic zone of the growth plate was significantly reduced. This was underlined by RNAseq and expression data from developing SMA mice vertebral bodies, which revealed molecular changes related to cell division and cartilage remodeling. Together, these findings suggest a bone intrinsic defect in SMA. This phenotype may not be rescued by novel drugs that enhance SMN levels in the central nervous system only.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Hermann Brickwedde
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Konstantinos Tsaknakis
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Antonia Grages
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Lena Braunschweig
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Katja A Lüders
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Heiko M Lorenz
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Lippross
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Frank Tavassol
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | | | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Anna K Hell
- Pediatric Orthopedics, Department of Trauma, Orthopedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy. Proc Natl Acad Sci U S A 2021; 118:2007785118. [PMID: 33931501 DOI: 10.1073/pnas.2007785118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.
Collapse
|
12
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
13
|
Menduti G, Rasà DM, Stanga S, Boido M. Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment. Front Pharmacol 2020; 11:592234. [PMID: 33281605 PMCID: PMC7689316 DOI: 10.3389/fphar.2020.592234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen-Spinraza; Onasemnogene abeparvovec or AVXS-101-Zolgensma; Risdiplam-Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of SMN-independent targets. Therefore, the research of new therapeutic strategies is still a hot topic in the SMA field and many efforts are spent in drug discovery. In this review, we describe two promising strategies to select effective molecules: drug screening (DS) and drug repositioning (DR). By using compounds libraries of chemical/natural compounds and/or Food and Drug Administration-approved substances, DS aims at identifying new potentially effective compounds, whereas DR at testing drugs originally designed for the treatment of other pathologies. The drastic reduction in risks, costs and time expenditure assured by these strategies make them particularly interesting, especially for those diseases for which the canonical drug discovery process would be long and expensive. Interestingly, among the identified molecules by DS/DR in the context of SMA, besides the modulators of SMN2 transcription, we highlighted a convergence of some targeted molecular cascades contributing to SMA pathology, including cell death related-pathways, mitochondria and cytoskeleton dynamics, neurotransmitter and hormone modulation.
Collapse
Affiliation(s)
| | | | | | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Rademacher S, Detering NT, Schüning T, Lindner R, Santonicola P, Wefel IM, Dehus J, Walter LM, Brinkmann H, Niewienda A, Janek K, Varela MA, Bowerman M, Di Schiavi E, Claus P. A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells 2020; 9:cells9112405. [PMID: 33153033 PMCID: PMC7692393 DOI: 10.3390/cells9112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Nora T. Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Pamela Santonicola
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Inga-Maria Wefel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Janina Dehus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Lisa M. Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Agathe Niewienda
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Katharina Janek
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
15
|
Rodriguez-Torres R, Fabiano J, Goodwin A, Rao AK, Kinirons S, De Vivo D, Montes J. Neuroanatomical Models of Muscle Strength and Relationship to Ambulatory Function in Spinal Muscular Atrophy. J Neuromuscul Dis 2020; 7:459-466. [PMID: 32925091 DOI: 10.3233/jnd-200550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals with spinal muscular atrophy (SMA) III walk independently, but experience muscle weakness, gait impairments, and fatigue. Although SMA affects proximal more than distal muscles, the characteristic pattern of selective muscle weakness has not been explained. Two theories have been proposed: 1) location of spinal motor neurons; and 2) differences in segmental innervation. OBJECTIVE To identify neuroanatomical models that explain the selective muscle weakness in individuals with SMA and assess the relationship of these models to ambulatory function. METHODS Data from 23 ambulatory SMA participants (78.2% male), ages 10-56 years, enrolled in two clinical studies (NCT01166022, NCT02895789) were included. Strength was assessed using the Medical Research Council (MRC) score; ambulatory function was measured by distance walked on the 6-minute walk test (6 MWT). Three models were identified, and relationships assessed using Pearson correlation coefficients and linear regression. RESULTS All models demonstrated a positive association between strength and function, (p < 0.02). Linear regression revealed that Model 3B, consisting of muscles innervated by lower lumbar and sacral segments, explained 67% of the variability observed in 6 MWT performance (β= 0.670, p = 0.003). CONCLUSIONS Muscles innervated by lower lumbar and sacral segments, i.e. hip extensors, hip abductors, knee flexors and ankle dorsiflexors, correlated with and predicted greater ambulatory function. The neuroanatomical patterns of muscle weakness may contribute to a better understanding of disease mechanisms and enable delivery of targeted therapies.
Collapse
Affiliation(s)
- Rafael Rodriguez-Torres
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia Fabiano
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashley Goodwin
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashwini K Rao
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA.,G.H. Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Stacy Kinirons
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Darryl De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Huang Y, Wang C, Li K, Ye Y, Shen A, Guo L, Chen P, Meng C, Wang Q, Yang X, Huang Z, Xing X, Lin Y, Liu X, Peng J, Lin Y. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20. Cancer Sci 2020; 111:2803-2813. [PMID: 32449268 PMCID: PMC7419049 DOI: 10.1111/cas.14499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
Death-associated protein kinase 1 (DAPK) is a calcium/calmodulin kinase that plays a vital role as a suppressor gene in various cancers. Yet its role and target gene independent of p53 is still unknown in hepatocellular carcinoma (HCC). In this study, we discovered that DAPK suppressed HCC cell migration and invasion instead of proliferation or colony formation. Using a proteomics approach, we identified DEAD-box helicase 20 (DDX20) as an important downstream target of DAPK in HCC cells and critical for DAPK-mediated inhibition of HCC cell migration and invasion. Using integrin inhibitor RGD and GTPase activity assays, we discovered that DDX20 suppressed HCC cell migration and invasion through the CDC42-integrin pathway, which was previously reported as an important downstream pathway of DAPK in cancer. Further research using cycloheximide found that DAPK attenuates the proteasomal degradation of DDX20 protein, which is dependent on the kinase activity of DAPK. Our results shed light on new functions and regulation for both DAPK and DDX20 in carcinogenesis and identifies new potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yide Huang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Chenyi Wang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Yan Ye
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine on GeriatricAcademy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Libin Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Pengchen Chen
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Chen Meng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Qingshui Wang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Xinliu Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Zhen Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on GeriatricAcademy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical UniversityCollaborative Innovation Center for Rehabilitation TechnologyFujian University of Traditional Chinese MedicineFuzhouChina
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhouChina
| |
Collapse
|
17
|
Hensel N, Kubinski S, Claus P. The Need for SMN-Independent Treatments of Spinal Muscular Atrophy (SMA) to Complement SMN-Enhancing Drugs. Front Neurol 2020; 11:45. [PMID: 32117013 PMCID: PMC7009174 DOI: 10.3389/fneur.2020.00045] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is monogenic motoneuron disease caused by low levels of the Survival of Motoneuron protein (SMN). Recently, two different drugs were approved for the treatment of the disease. The antisense oligonucleotide Nusinersen/Spinraza® and the gene replacement therapy Onasemnogene Abeparvovec/Zolgensma® both enhance SMN levels. These treatments result in impressive benefits for the patients. However, there is a significant number of non-responders and an intervention delay has a strong negative impact on the efficacy. Obviously, later stages of motoneuron degeneration cannot be reversed by SMN-restoration. Therefore, complementary, SMN-independent strategies are needed which are able to address such SMN-irreversible degenerative processes. Those are defined as pathological alterations which are not reversed by SMN-restoration for a given dose and intervention delay. It is crucial to tailor SMN-independent approaches to the novel clinical situation with SMN-restoring treatments. On the molecular level, such SMN-irreversible changes become manifest in altered signaling modules as described by molecular systems biology. Based on our current knowledge about altered signaling, we introduce a network approach for an informed decision for the most potent SMN-independent treatment targets. Finally, we present recommendations for the identification of novel treatments which can be combined with SMN-restoring drugs.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN), Hannover, Germany
| | - Sabrina Kubinski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
18
|
Membrane-Associated, Not Cytoplasmic or Nuclear, FGFR1 Induces Neuronal Differentiation. Cells 2019; 8:cells8030243. [PMID: 30875802 PMCID: PMC6468866 DOI: 10.3390/cells8030243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
The intracellular transport of receptor tyrosine kinases results in the differential activation of various signaling pathways. In this study, optogenetic stimulation of fibroblast growth factor receptor type 1 (FGFR1) was performed to study the effects of subcellular targeting of receptor kinases on signaling and neurite outgrowth. The catalytic domain of FGFR1 fused to the algal light-oxygen-voltage-sensing (LOV) domain was directed to different cellular compartments (plasma membrane, cytoplasm and nucleus) in human embryonic kidney (HEK293) and pheochromocytoma (PC12) cells. Blue light stimulation elevated the pERK and pPLCγ1 levels in membrane-opto-FGFR1-transfected cells similarly to ligand-induced receptor activation; however, no changes in pAKT levels were observed. PC12 cells transfected with membrane-opto-FGFR1 exhibited significantly longer neurites after light stimulation than after growth factor treatment, and significantly more neurites extended from their cell bodies. The activation of cytoplasmic FGFR1 kinase enhanced ERK signaling in HEK293 cells but not in PC12 cells and did not induce neuronal differentiation. The stimulation of FGFR1 kinase in the nucleus also did not result in signaling changes or neurite outgrowth. We conclude that FGFR1 kinase needs to be associated with membranes to induce the differentiation of PC12 cells mainly via ERK activation.
Collapse
|
19
|
Schellino R, Boido M, Borsello T, Vercelli A. Pharmacological c-Jun NH 2-Terminal Kinase (JNK) Pathway Inhibition Reduces Severity of Spinal Muscular Atrophy Disease in Mice. Front Mol Neurosci 2018; 11:308. [PMID: 30233310 PMCID: PMC6131195 DOI: 10.3389/fnmol.2018.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neurodegenerative disorder that occurs in early childhood. The disease is caused by the deletion/mutation of the survival motor neuron 1 (SMN1) gene resulting in progressive skeletal muscle atrophy and paralysis, due to the degeneration of spinal motor neurons (MNs). Currently, the cellular and molecular mechanisms underlying MN death are only partly known, although recently it has been shown that the c-Jun NH2-terminal kinase (JNK)-signaling pathway might be involved in the SMA pathogenesis. After confirming the activation of JNK in our SMA mouse model (SMN2+/+; SMNΔ7+/+; Smn−/−), we tested a specific JNK-inhibitor peptide (D-JNKI1) on these mice, by chronic administration from postnatal day 1 to 10, and histologically analyzed the spinal cord and quadriceps muscle at age P12. We observed that D-JNKI1 administration delayed MN death and decreased inflammation in spinal cord. Moreover, the inhibition of JNK pathway improved the trophism of SMA muscular fibers and the size of the neuromuscular junctions (NMJs), leading to an ameliorated innervation of the muscles that resulted in improved motor performances and hind-limb muscular tone. Finally, D-JNKI1 treatment slightly, but significantly increased lifespan in SMA mice. Thus, our results identify JNK as a promising target to reduce MN cell death and progressive skeletal muscle atrophy, providing insight into the role of JNK-pathway for developing alternative pharmacological strategies for the treatment of SMA.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|