1
|
Huang YT, Yang TJ, Liu KC, Chen MC, Chan PYS, Chen JC. Intranasal α-Synuclein induces progressive behavioral impairments in mice. Behav Brain Res 2025; 485:115517. [PMID: 40024483 DOI: 10.1016/j.bbr.2025.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
α-Synuclein (α-Syn) is implicated in the progression of Parkinson's disease, yet the disease's etiology remains unclear. This study aims to explore how α-Syn affects olfactory, motor, mood and cognitive functions if it initiates from the olfactory bulb. Mice were administered intranasal human AAV-α-Syn and subsequently evaluated for olfactory, motor, mood, and cognitive functions. Immunofluorescence was performed to assess dopaminergic neuronal damage. Results shown that olfactory dysfunction was evident as AAV-α-Syn-treated mice took longer to find buried pellets compared to controls at 3, 9, and 12 months post-instillation. Motor activity remained normal at 6 months but significantly declined at 9 months. Reduced tyrosine hydroxylase expression but increased amount of human α-Syn were observed in the substantia nigra at end of behavioral measurements. AAV-α-Syn mice showed reduced sucrose intake and decreased time in the center zone of the open field at 9 months. Cognitive deficits were observed in recognition function and social memory at 6 and 9 months, with impaired working memory at 12 months. Thus, intranasal AAV-α-Syn instillation in mice leads to progressive olfactory, motor, anxiety, depression-like, and cognitive dysfunctions, reflecting α-Syn pathology propagation.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Jung Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kou-Chen Liu
- Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chi Chen
- Department of Public Health and Biostatistics Consulting Center, Chang Gung University, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ying S Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Liu N, Zhang T, Zhao W, Zhao X, Xue Y, Deng Q. Current trends in blood biomarkers detection and neuroimaging for Parkinson's disease. Ageing Res Rev 2025; 104:102658. [PMID: 39793764 DOI: 10.1016/j.arr.2025.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and cognitive impairments. A significant challenge in managing PD is the variability of symptoms and disease progression rates. This variability is primarily attributed to unclear biomarkers associated with the disease and the lack of early diagnostic technologies and effective imaging methods. PD-specific biomarkers are essential for developing practical tools that facilitate accurate diagnosis, patient stratification, and monitoring of disease progression. Hence, creating valuable tools for detecting and diagnosing PD based on specific biomarkers is imperative. Blood testing, less invasive than obtaining cerebrospinal fluid through a lumbar puncture, is an ideal source for these biomarkers. Although such biomarkers were previously lacking, recent advancements in various detection techniques related to PD biomarkers and new imaging methods have emerged. However, basic research requires more detailed guidelines on effectively implementing these biomarkers in diagnostic procedures to enhance the diagnostic accuracy of PD blood testing in clinical practice. This review discusses the developmental trends of PD-related blood biomarker detection technologies, including optical analysis platforms. Despite the progress in developing various biomarkers for PD, their specificity and sensitivity remain suboptimal. Therefore, the integration of multimodal biomarkers along with optical and imaging technologies is likely to significantly improve diagnostic accuracy and facilitate the implementation of personalized medicine. This review forms valid research hypotheses for PD research and guides future empirical studies.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Tianjiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Zhao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuechao Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Yuan Xue
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Qihong Deng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Zhu S, Li H, Huang Z, Zeng Y, Huang J, Li G, Yang S, Zhou H, Chang Z, Xie Z, Que R, Wei X, Li M, Liang Y, Xian W, Li M, Pan Y, Huang F, Shi L, Yang C, Deng C, Batzu L, Poplawska-Domaszewicz K, Chen S, Chan LL, Ray Chaudhuri K, Tan EK, Wang Q. Plasma fibronectin is a prognostic biomarker of disability in Parkinson's disease: a prospective, multicenter cohort study. NPJ Parkinsons Dis 2025; 11:1. [PMID: 39747089 PMCID: PMC11697031 DOI: 10.1038/s41531-024-00865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
In a prospective longitudinal study with 218 Parkinson's disease (PD) patients in the discovery cohort and 84 in the validation cohort, we aimed to identify novel blood biomarkers predicting disability milestones in PD. Through Least Absolute Shrinkage and Selection Operator-Cox (Lasso-Cox) regression, developed nomogram predictive model and Linear mixed-effects models, we identified low level of plasma fibronectin (pFN) as one of the best-performing risk markers in predicting disability milestones. A low level of pFN was associated with a short milestone-free survival period in PD. Longitudinal analysis showed an annual decline in the rate of pFN was significantly associated with the annual elevation rate in the Hoehn-Yahr stage. Moreover, pFN level was negatively correlated with phosphorylated α-synuclein, and a low level of pFN was associated with BBB disruption in the striatum on neuroimaging, providing evidence for pFN's role in PD progression. We finally identified pFN as a novel blood biomarker that predicted first-milestone disability in PD.
Collapse
Affiliation(s)
- Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hualin Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yiheng Zeng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jianmin Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Guixia Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shujuan Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Minzi Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yanran Liang
- Department of Neurology, Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenbiao Xian
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital of South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Ying Pan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fanheng Huang
- Department of Radiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of MassachusettPopulation and Quantitative Health Sciences, T.H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Karolina Poplawska-Domaszewicz
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Shuhan Chen
- Guangdong Experimental High School, Guangzhou, Guangdong, 51000, People's Republic of China
| | - Ling-Ling Chan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK.
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- Duke-National University of Singapore Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
4
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
5
|
Beheshti I, Perron J, Ko JH. Neuroanatomical Signature of the Transition from Normal Cognition to MCI in Parkinson's Disease. Aging Dis 2024; 16:AD.2024.0323. [PMID: 38913040 PMCID: PMC11745458 DOI: 10.14336/ad.2024.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/23/2024] [Indexed: 06/25/2024] Open
Abstract
The progression of Parkinson's disease (PD) is often accompanied by cognitive decline. We had previously developed a brain age estimation program utilizing structural MRI data of 949 healthy individuals from publicly available sources. Structural MRI data of 244 PD patients who were cognitively normal at baseline was acquired from the Parkinson Progression Markers Initiative (PPMI). 192 of these showed stable normal cognitive function from baseline out to 5 years (PD-SNC), and the remaining 52 had unstable normal cognition and developed mild cognitive impairment within 5 years (PD-UNC). 105 healthy controls were also included in the analysis as a reference. First, we examined if there were any baseline differences in regional brain structure between PD-UNC and PD-SNC cohorts utilizing the three most widely used atrophy estimation pipelines, i.e., voxel-based morphometry (VBM), deformation-based morphometry and cortical thickness analyses. We then investigated if accelerated brain age estimation with our multivariate regressive machine learning algorithm was different across these groups (HC, PD-SNC, and PD-UNC). As per the VBM analysis, PD-UNC patients demonstrated a noticeable increase in GM volume in the posterior and anterior lobes of the cerebellum, sub-lobar, extra-nuclear, thalamus, and pulvinar regions when compared to PD-SNC at baseline. PD-UNC patients were observed to have significantly older brain age compared to both PD-SNC patients (p=0.009) and healthy controls (p<0.009). The increase in GM volume in the PD-UNC group could potentially indicate an inflammatory or neuronal hypertrophy response, which could serve as a biomarker for future cognitive decline among this population.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada.
| | - Jarrad Perron
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada.
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada.
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Liu C, Su Y, Ma X, Wei Y, Qiao R. How close are we to a breakthrough? The hunt for blood biomarkers in Parkinson's disease diagnosis. Eur J Neurosci 2024; 59:2563-2576. [PMID: 38379501 DOI: 10.1111/ejn.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Parkinson's disease (PD), being the second largest neurodegenerative disease, poses challenges in early detection, resulting in a lack of timely treatment options to effectively manage the disease. By the time clinical diagnosis becomes possible, more than 60% of dopamine neurons in the substantia nigra (SN) of patients have already degenerated. Therefore, early diagnosis or identification of warning signs is crucial for the prompt and timely beginning of the treatment. However, conducting invasive or complex diagnostic procedures on asymptomatic patients can be challenging, making routine blood tests a more feasible approach in such cases. Numerous studies have been conducted over an extended period to search for effective diagnostic biomarkers in blood samples. However, thus far, no highly effective biomarkers have been confirmed. Besides classical proteins like α-synuclein (α-syn), phosphorylated α-syn and oligomeric α-syn, other molecules involved in disease progression should also be given equal attention. In this review, we will not only discuss proposed biomarkers that are currently under investigation but also delve into the mechanisms underlying the disease, focusing on processes such as α-syn misfolding, intercellular transmission and the crossing of the blood-brain barrier (BBB). Our aim is to provide an updated overview of molecules based on these processes that may potentially serve as blood biomarkers.
Collapse
Affiliation(s)
- Cheng Liu
- Peking University Third Hospital, Beijing, China
| | - Yang Su
- Peking University Third Hospital, Beijing, China
| | - Xiaolong Ma
- Peking University Third Hospital, Beijing, China
| | - Yao Wei
- Peking University Third Hospital, Beijing, China
| | - Rui Qiao
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
8
|
Taha HB, Bogoniewski A. Extracellular vesicles from bodily fluids for the accurate diagnosis of Parkinson's disease and related disorders: A systematic review and diagnostic meta-analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e121. [PMID: 38939363 PMCID: PMC11080888 DOI: 10.1002/jex2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 06/29/2024]
Abstract
Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) are often misdiagnosed due to overlapping symptoms and the absence of precise biomarkers. Furthermore, there are no current methods to ascertain the progression and conversion of prodromal conditions such as REM behaviour disorder (RBD). Extracellular vesicles (EVs), containing a mixture of biomolecules, have emerged as potential sources for parkinsonian diagnostics. However, inconsistencies in previous studies have left their diagnostic potential unclear. We conducted a meta-analysis, following PRISMA guidelines, to assess the diagnostic accuracy of general EVs isolated from various bodily fluids, including cerebrospinal fluid (CSF), plasma, serum, urine or saliva, in differentiating patients with parkinsonian disorders from healthy controls (HCs). The meta-analysis included 21 studies encompassing 1285 patients with PD, 24 with MSA, 105 with DLB, 99 with PSP, 101 with RBD and 783 HCs. Further analyses were conducted only for patients with PD versus HCs, given the limited number for other comparisons. Using bivariate and hierarchal receiver operating characteristics (HSROC) models, the meta-analysis revealed moderate diagnostic accuracy in distinguishing patients with PD from HCs, with substantial heterogeneity and publication bias. The trim-and-fill method revealed at least two missing studies with null or low diagnostic accuracy. CSF-EVs showed better overall diagnostic accuracy, while plasma-EVs had the lowest performance. General EVs demonstrated higher diagnostic accuracy compared to CNS-originating EVs, which are more time-consuming, labour- and cost-intensive to isolate. In conclusion, while holding promise, utilizing biomarkers in general EVs for PD diagnosis remains unfeasible due to existing challenges. The focus should shift toward harmonizing the field through standardization, collaboration, and rigorous validation. Current efforts by the International Society For Extracellular Vesicles (ISEV) aim to enhance the accuracy and reproducibility of EV-related research through rigor and standardization, aiming to bridge the gap between theory and practical clinical application.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Huang J, Yuan X, Chen L, Hu B, Wang H, Huang W. The Biology, Pathological Roles of Exosomes and Their Clinical Application in Parkinson's Disease. Neuroscience 2023; 531:24-38. [PMID: 37689233 DOI: 10.1016/j.neuroscience.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a high global incidence and places a great burden on the patient, their family and society. Early diagnosis of PD is the key to hindering the progression process and may enable treatment to partially reverse the disease course. Exosomes are lipid bilayers with a diameter of 40-160 nm (average ∼100 nm), show a cup-shaped structure in transmission electron microscopy (TEM) images, and contain different types of nucleic acids and proteins. On the one hand, several molecules contained in exosomes are correlated with PD pathology. On the other hand, biomarkers based on exosomes have gradually become diagnostic tools in PD. Since exosomes can freely cross the blood-brain barrier, CNS-derived exosomes obtained from the periphery have the potential to be a powerful marker for early PD diagnosis. Of course, exosomes also have great potential as drug delivery systems due to their low toxicity, lipid solubility and immunological inertness. However, there is still a lack of standardized, efficient, and ultrasensitive methods for the isolation of exosomes, hindering the development of effective biomarkers. Therefore, this review describes the biological characteristics of exosomes, exosome extraction methods, and the pathological role, diagnostic/therapeutic value of exosomes in PD.
Collapse
Affiliation(s)
- Juan Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Xingxing Yuan
- The department of Anesthesiology, Hunan Provincial People,s Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lin Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Binbin Hu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Hui Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
10
|
Zhang Q, Duan Q, Gao Y, He P, Huang R, Huang H, Li Y, Ma G, Zhang Y, Nie K, Wang L. Cerebral Microvascular Injury Induced by Lag3-Dependent α-Synuclein Fibril Endocytosis Exacerbates Cognitive Impairment in a Mouse Model of α-Synucleinopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301903. [PMID: 37381656 PMCID: PMC10477873 DOI: 10.1002/advs.202301903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The pathological accumulation of α-synuclein (α-Syn) and the transmission of misfolded α-Syn underlie α-synucleinopathies. Increased plasma α-Syn levels are associated with cognitive impairment in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies, but it is still unknown whether the cognitive deficits in α-synucleinopathies have a common vascular pathological origin. Here, it is reported that combined injection of α-Syn preformed fibrils (PFFs) in the unilateral substantia nigra pars compacta, hippocampus, and cerebral cortex results in impaired spatial learning and memory abilities at 6 months post-injection and that this cognitive decline is related to cerebral microvascular injury. Moreover, insoluble α-Syn inclusions are found to form in primary mouse brain microvascular endothelial cells (BMVECs) through lymphocyte-activation gene 3 (Lag3)-dependent α-Syn PFFs endocytosis, causing poly(ADP-ribose)-driven cell death and reducing the expression of tight junction proteins in BMVECs. Knockout of Lag3 in vitro prevents α-Syn PFFs from entering BMVECs, thereby reducing the abovementioned response induced by α-Syn PFFs. Deletion of endothelial cell-specific Lag3 in vivo reverses the negative effects of α-Syn PFFs on cerebral microvessels and cognitive function. In short, this study reveals the effectiveness of targeting Lag3 to block the spread of α-Syn fibrils to endothelial cells in order to improve cognition.
Collapse
Affiliation(s)
- Qingxi Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510100China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Qingrui Duan
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuyuan Gao
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Peikun He
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Rui Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Haifeng Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yanyi Li
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Guixian Ma
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuhu Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Kun Nie
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Lijuan Wang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
11
|
Vaz M, Soares Martins T, Henriques AG. Extracellular vesicles in the study of Alzheimer's and Parkinson's diseases: Methodologies applied from cells to biofluids. J Neurochem 2022; 163:266-309. [PMID: 36156258 PMCID: PMC9828694 DOI: 10.1111/jnc.15697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (EVs) are gaining increased importance in fundamental research as key players in disease pathogenic mechanisms, but also in translational and clinical research due to their value in biomarker discovery, either for diagnostics and/or therapeutics. In the first research scenario, the study of EVs isolated from neuronal models mimicking neurodegenerative diseases can open new avenues to better understand the pathological mechanisms underlying these conditions or to identify novel molecular targets for diagnosis and/or therapeutics. In the second research scenario, the easy availability of EVs in body fluids and the specificity of their cargo, which can reflect the cell of origin or disease profiles, turn these into attractive diagnostic tools. EVs with exosome-like characteristics, circulating in the bloodstream and other peripheral biofluids, constitute a non-invasive and rapid alternative to study several conditions, including brain-related disorders. In both cases, several EVs isolation methods are already available, but each neuronal model or biofluid presents its own challenges. Herein, a literature overview on EVs isolation methodologies from distinct neuronal models (cellular culture and brain tissue) and body fluids (serum, plasma, cerebrospinal fluid, urine and saliva) was carried out. Focus was given to approaches employed in the context of Alzheimer's and Parkinson's diseases, and the main research findings discussed. The topics here revised will facilitate the choice of EVs isolation methodologies and potentially prompt new discoveries in EVs research and in the neurodegenerative diseases field.
Collapse
Affiliation(s)
- Margarida Vaz
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Tânia Soares Martins
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Ana Gabriela Henriques
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| |
Collapse
|
12
|
Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson's disease: potential for future applications in clinical research and practice. J Neural Transm (Vienna) 2022; 129:1201-1217. [PMID: 35428925 PMCID: PMC9463345 DOI: 10.1007/s00702-022-02498-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801, Bochum, Nordrhein-Westfalen, Germany.
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Jochen Klucken
- Department of Digital Medicine, University Luxembourg, LCSB, L-4367, Belval, Luxembourg
- Digital Medicine Research Group, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg, Digital Medicine Research Clinic, L-1210, Luxembourg, Luxembourg
| | - Eun Hae Kwon
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, 13088, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, Universitätsklinikum Gießen and Marburg, Marburg Site, 35043, Marburg, Germany
- Center of Mind, Brain and Behaviour (CMBB), Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, University of Freiburg, 79106, Freiburg, Germany
| | - Peter Riederer
- Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, 97080, Wuerzburg, Germany
- University of Southern Denmark Odense, 5000, Odense, Denmark
| | - Paul Lingor
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, 81675, München, Germany
| |
Collapse
|
13
|
Plasma arylsulfatase A levels are associated with cognitive function in Parkinson’s disease. Neurol Sci 2022; 43:4753-4759. [PMID: 35486332 PMCID: PMC9349122 DOI: 10.1007/s10072-022-06093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/22/2022] [Indexed: 12/03/2022]
Abstract
Background Arylsulfatase A (ARSA), a lysosomal enzyme, has been shown to inhibit the aggregation and propagation of α-synuclein (α-syn) through its molecular chaperone function. The relationship between ARSA levels and Parkinson’s disease (PD) in the Chinese Han population remains controversial, and few quantitative research studies have investigated the relationship between plasma ARSA levels and PD. Objectives The purpose of this study was to investigate the relationships between ARSA levels and cognitive function in PD patients and to evaluate the association of ARSA and α-syn levels with nonmotor symptoms. Methods Enzyme-linked immunosorbent assay (ELISA) was used to measure the plasma ARSA and α-syn levels in 50 healthy controls, 120 PD patients (61 PD patients with no cognitive impairment (PD-NCI) and 59 PD patients with cognitive impairment (PD-CI)). Motor symptoms and nonmotor symptoms (cognitive function, Unified Parkinson’s Disease Rating Scale (UPDRS) score, depression, anxiety, constipation, olfactory dysfunction, sleep disruption, and other symptoms) were assessed with the relevant scales. The Kruskal–Wallis H test was used for comparison between groups, and Pearson/Spearman analysis was used for correlation analysis. Results The plasma ARSA concentrations were lower in the PD-CI group than in the PD-NCI group. The plasma α-syn levels in the PD-CI group were higher than those in the healthy control group, and the plasma ARSA levels were correlated with the Mini-Mental State Examination (MMSE scores) and Hoehn and Yahr (H-Y) stage. Conclusion We used a quantitative assessment method to show that low plasma ARSA levels and high α-syn levels are related to cognitive impairment in PD patients. Plasma ARSA levels gradually decrease with PD progression.
Collapse
|
14
|
Ghosh S, Ghosh S. Exosome: The “Off-the-Shelf” Cellular Nanocomponent as a Potential Pathogenic Agent, a Disease Biomarker, and Neurotherapeutics. Front Pharmacol 2022; 13:878058. [PMID: 35685643 PMCID: PMC9170956 DOI: 10.3389/fphar.2022.878058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized “off-the-shelf” lipid vesicles released by almost all cell types and play a significant role in cell–cell communication. Exosomes have already been proven to carry cell-specific cargos of proteins, lipids, miRNA, and noncoding RNA (ribonucleic acid). These vesicles can be selectively taken up by the neighboring cell and can regulate cellular functions. Herein, we have discussed three different roles of exosomes in neuroscience. First, we have discussed how exosomes play the role of a pathogenic agent as a part of cell–cell communication and transmit pathogens such as amyloid-beta (Aβ), further helping in the propagation of neurodegenerative and other neurological diseases. In the next section, the review talks about the role of exosomes in biomarker discovery in neurological disorders. Toward the end, we have reviewed how exosomes can be harnessed and engineered for therapeutic purposes in different brain diseases. This review is based on the current knowledge generated in this field and our comprehension of this domain.
Collapse
|
15
|
Younas N, Fernandez Flores LC, Hopfner F, Höglinger GU, Zerr I. A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Transl Neurodegener 2022; 11:28. [PMID: 35527262 PMCID: PMC9082915 DOI: 10.1186/s40035-022-00301-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of maladies, characterized by progressive loss of neurons. These diseases involve an intricate pattern of cross-talk between different types of cells to maintain specific signaling pathways. A component of such intercellular cross-talk is the exchange of various types of extracellular vesicles (EVs). Exosomes are a subset of EVs, which are increasingly being known for the role they play in the pathogenesis and progression of neurodegenerative diseases, e.g., synucleinopathies and tauopathies. The ability of the central nervous system exosomes to cross the blood–brain barrier into blood has generated enthusiasm in their study as potential biomarkers. However, the lack of standardized, efficient, and ultra-sensitive methods for the isolation and detection of brain-derived exosomes has hampered the development of effective biomarkers. Exosomes mirror heterogeneous biological changes that occur during the progression of these incurable illnesses, potentially offering a more comprehensive outlook of neurodegenerative disease diagnosis, progression and treatment. In this review, we aim to discuss the challenges and opportunities of peripheral biofluid-based brain-exosomes in the diagnosis and biomarker discovery of Alzheimer’s and Parkinson’s diseases. In the later part, we discuss the traditional and emerging methods used for the isolation of exosomes and compare their advantages and disadvantages in clinical settings.
Collapse
|
16
|
Liepelt-Scarfone I, Ophey A, Kalbe E. Cognition in prodromal Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:93-111. [PMID: 35248208 DOI: 10.1016/bs.pbr.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One characteristic of Parkinson's disease (PD) is a prodromal phase, lasting many years during which both pre-clinical motor and non-motor symptoms occur. Around one-fifth of patients with PD manifest mild cognitive impairment at time of clinical diagnosis. Thus, important challenges are to define the time of onset of cognitive dysfunction in the prodromal phase of PD, and to define its co-occurrence with other specific characteristics. Evidence for cognitive change in prodromal PD comes from various study designs, including both longitudinal and cross-sectional approaches with different target groups. These studies support the concept that changes in global cognitive function and alterations in executive functions occur, and that these changes may be present up to 6 years before clinical PD diagnosis. Notably, this evidence led to including global cognitive impairment as an independent prodromal marker in the recently updated research criteria of the Movement Disorder Society for prodromal PD. Knowledge in this field, however, is still at its beginning, and evidence is sparse about many aspects of this topic. Further longitudinal studies including standardized assessments of global and domain-specific cognitive functions are needed to gain further knowledge about the first appearance, the course, and the interaction of cognitive deficits with other non-motor symptoms in prodromal stage PD. Treatment approaches, including non-pharmacological interventions, in individuals with prodromal PD might help to prevent or delay cognitive dysfunction in early PD.
Collapse
Affiliation(s)
- Inga Liepelt-Scarfone
- German Center for Neurodegenerative Diseases (DZNE) and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany; IB-Hochschule, Stuttgart, Germany.
| | - Anja Ophey
- Medical Psychology, Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Medical Faculty of the University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Medical Psychology, Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Medical Faculty of the University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Ren J, Pan C, Wang Y, Xue C, Lin H, Xu J, Wang H, Zhang W, Xu P, Chen Y, Liu W. Plasma α-synuclein and phosphorylated tau 181 as a diagnostic biomarker panel for de novo Parkinson's Disease. J Neurochem 2022; 161:506-515. [PMID: 35234288 PMCID: PMC9314946 DOI: 10.1111/jnc.15601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
The use of a diagnostic panel comprising multiple biomarkers has the potential to accurately diagnose Parkinson’s disease (PD). However, a panel consisting solely of plasma biomarkers to diagnose PD is not available. This study aimed to examine the diagnostic ability of plasma biomarker panels for de novo PD using novel digital ultrasensitive immunoassay technology. We recruited 45 patients with de novo PD and 20 healthy controls (HCs). The concentrations of plasma α‐synuclein (α‐syn), amyloid β‐42 (Aβ42), Aβ40, phosphorylated tau 181 (p‐tau181), neurofilament light (NFL), and glial fibrillary acidic protein (GFAP) were quantified using the ultrasensitive single molecule array (Simoa) platform. Patients with de novo PD had higher plasma levels of α‐syn and p‐tau181 than HCs, adjusting for age and sex. Plasma levels of α‐syn and p‐tau181 were positively correlated in de novo PD patients. Higher plasma α‐syn levels were significantly associated with worse Unified Parkinson’s Disease Rating Scale (UPDRS) Part III motor scores, modified Hoehn and Yahr (H‐Y) stages, and increased risk of PD with mild cognitive impairment (PD‐MCI). Higher plasma p‐tau181 concentrations were linked to worse H‐Y stages. The diagnostic panel using plasma α‐syn and p‐tau181, combined with age and sex, showed good performance in discriminating de novo PD patients from HCs (area under the curve = 0.806). These findings suggest that plasma α‐syn and p‐tau181 together may be a promising diagnostic biomarker panel for de novo PD patients.
Collapse
Affiliation(s)
- Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chenxi Pan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huixia Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxia Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong Chen
- Department of Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Lin W, Shaw J, Cheng F, Chen P. Plasma total tau predicts executive dysfunction in Parkinson's disease. Acta Neurol Scand 2022; 145:30-37. [PMID: 34398474 DOI: 10.1111/ane.13517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Cognitive impairment is an important non-motor aspect of Parkinson's disease (PD). Amyloid-β and tau pathologies are well-established in Alzheimer's disease and commonly coexist with synucleinopathy in PD. However, the levels of these biomarkers in the plasma of patients with PD and their relationship with specific cognition domains remain to be clarified. The current study compared the motor severity and neuropsychological assessment of general and specific cognition, with plasma levels of α-synuclein (α-syn), amyloid-β 42 (Aβ42), and total tau (t-tau) in PD subjects. METHODS Plasma levels of α-syn, Aβ42, and t-tau were measured in 55 participants with PD through immunomagnetic reduction assay. The evaluation of motor severity and comprehensive neuropsychological assessment was performed in all participants. RESULTS The level of plasma α-syn was negatively correlated with the scores of Unified Parkinson's Disease Rating Scale part III [r = (-.352), p = .008]. The level of plasma t-tau was negatively correlated with the scores of digits recall forwards and digits recall backwards [r = (-.446), p = .001; r = (-.417), p = .002, respectively]. No correlations were found between the levels of α-syn and Aβ42 and any neuropsychological tests. CONCLUSIONS This study concluded a lower level of plasma α-syn was correlated with motor dysfunction in PD patients, and a higher level of plasma t-tau was correlated with lower cognitive performance, especially for attention and executive function. These results propose the possibility of using plasma biomarkers to predict specific cognitive performance in PD subjects.
Collapse
Affiliation(s)
- Wei‐Ting Lin
- Department of Neurology MacKay Memorial Hospital Taipei Taiwan
| | - Jin‐Siang Shaw
- Institute of Mechatronic Engineering National Taipei University of Technology Taipei Taiwan
| | - Fang‐Yu Cheng
- Institute of Long‐Term Care MacKay Medical College New Taipei City Taiwan
| | - Pei‐Hao Chen
- Department of Neurology MacKay Memorial Hospital Taipei Taiwan
- Department of Medicine MacKay Medical College New Taipei City Taiwan
- College of Mechanical and Electrical Engineering National Taipei University of Technology Taipei Taiwan
| |
Collapse
|
19
|
French JA, Bebin M, Dichter MA, Engel J, Hartman AL, Jóźwiak S, Klein P, McNamara J, Twyman R, Vespa P. Antiepileptogenesis and disease modification: Clinical and regulatory issues. Epilepsia Open 2021; 6:483-492. [PMID: 34270884 PMCID: PMC8408600 DOI: 10.1002/epi4.12526] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
This is a summary report of clinical and regulatory issues discussed at the 2018 NINDS workshop, entitled “Accelerating Therapies for Antiepileptogenesis and Disease Modification.” The intent of the workshop was to optimize and accelerate development of therapies for antiepileptogenesis (AEG) and disease modification in the epilepsies. The working group discussed nomenclature for antiepileptogenic therapies, subdividing them into “antiepileptogenic therapies” and “disease modifying therapies,” both of which are urgently needed. We use the example of traumatic brain injury to explain issues and complexities in designing a trial for disease‐preventing antiepileptogenic therapies, including identifying timing of intervention, selecting the appropriate dose, and the need for biomarkers. We discuss the recent trials of vigabatrin to prevent onset and modify epilepsy outcome in children with tuberous sclerosis (Epistop and PreVeNT). We describe a potential approach to a disease modification trial in adults, using patients with temporal lobe epilepsy. Finally, we discuss regulatory hurdles for antiepileptogenesis and disease‐modifying trials.
Collapse
Affiliation(s)
| | - Martina Bebin
- UAB School of Medicine and UAB Epilepsy Center, Birmingham, AL, USA
| | | | - Jerome Engel
- David Geffen School of Medicine at, UCLA and the Brain Research Institute, Los Angeles, CA, USA
| | - Adam L Hartman
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD, USA
| | - Sergiusz Jóźwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | - James McNamara
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Paul Vespa
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
20
|
Proteomics Profiling of Neuron-Derived Small Extracellular Vesicles from Human Plasma: Enabling Single-Subject Analysis. Int J Mol Sci 2021; 22:ijms22062951. [PMID: 33799461 PMCID: PMC7999506 DOI: 10.3390/ijms22062951] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
Small extracellular vesicles have been intensively studied as a source of biomarkers in neurodegenerative disorders. The possibility to isolate neuron-derived small extracellular vesicles (NDsEV) from blood represents a potential window into brain pathological processes. To date, the absence of sensitive NDsEV isolation and full proteome characterization methods has meant their protein content has been underexplored, particularly for individual patients. Here, we report a rapid method based on an immunoplate covalently coated with mouse monoclonal anti-L1CAM antibody for the isolation and the proteome characterization of plasma-NDsEV from individual Parkinson’s disease (PD) patients. We isolated round-shaped vesicles with morphological characteristics consistent with exosomes. On average, 349 ± 38 protein groups were identified by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis, 20 of which are annotated in the Human Protein Atlas as being highly expressed in the brain, and 213 were shared with a reference NDsEV dataset obtained from cultured human neurons. Moreover, this approach enabled the identification of 23 proteins belonging to the Parkinson disease KEGG pathway, as well as proteins previously reported as PD circulating biomarkers.
Collapse
|
21
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
22
|
Potential of extracellular vesicles in the Parkinson's disease - Pathological mediators and biomarkers. Neurochem Int 2021; 144:104974. [PMID: 33485881 DOI: 10.1016/j.neuint.2021.104974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the progressive deterioration of motor function. Histopathologically, it is widely accepted that the progressive death of selected dopaminergic neuronal populations and the accumulation of hallmark Lewy bodies (LBs) composed of α-synuclein (α-syn) might be the two vital pathogenesis. Extracellular vesicles (EVs) are cell-derived membranous vesicles that are liberated from virtually all cell types including neurons, and harbor a variety of proteins, DNA, mRNA, and lipids. The roles of these vesicles include cell-cell signaling, removal of unwanted proteins, and transfer of pathogens (including misfolded proteins) between cells. In PD, EVs not only enhance the spread of α-syn at distant sites and reduce their clearance but also mediate other PD pathogenesis such as the activation of microglia and the dysfunction of autophagy and lysosomal degradation systems. Recently, clinical evidence for the diagnostic performance of EV-associated biomarkers, particularly exosome biomarkers, has merged. In this regard, we reviewed the recent understanding of the biological roles of EVs as important tools for biomarker discovery and pathological regulators of PD, and discuss the main concerns and challenges for the application of EV biomarkers in the clinical setting.
Collapse
|
23
|
Qu S, Meng X, Liu Y, Zhang X, Zhang Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway. Aging (Albany NY) 2020; 11:1934-1964. [PMID: 30958793 PMCID: PMC6503885 DOI: 10.18632/aging.101884] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Memory deficiency is a common non-motor symptom of Parkinson’s disease (PD), and conventionally, α-synuclein is considered to be an important biomarker for both motor and cognitive characteristics attributed to PD. However, the role of physiological α-synuclein in cognitive impairment remains undetermined. Ginsenoside Rb1 has been shown to protect dopaminergic neurons (DA) from death and inhibit α-synuclein fibrillation and toxicity in vitro. Our recent study also revealed that ginsenoside Rb1 ameliorates motor deficits and prevents DA neuron death via upregulating glutamate transporter GLT-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Whether Rb1 can improve memory deficiency and the underlying mechanism is still unknown. In this study, we found that Rb1 can prevent the spatial learning and memory deficits, increase long-term potentiation (LTP) and hippocampal glutamatergic transmission in the MPTP mouse model. The underlying neuroprotective mechanism of Rb1-improved synaptic plasticity involves Rb1 promoting hippocampal CA3 α-synuclein expression, restoring the glutamate in the CA3-schaffer collateral-CA1 pathway, and sequentially increasing postsynaptic density-95 (PSD-95) expression. Thus, we provide evidence that Rb1 modulates memory function, synaptic plasticity, and excitatory transmission via the trans-synaptic α-synuclein/PSD-95 pathway. Our findings suggest that Rb1 may serve as a functional drug in treating the memory deficiency in PD.
Collapse
Affiliation(s)
- Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
24
|
Hornung S, Dutta S, Bitan G. CNS-Derived Blood Exosomes as a Promising Source of Biomarkers: Opportunities and Challenges. Front Mol Neurosci 2020; 13:38. [PMID: 32265650 PMCID: PMC7096580 DOI: 10.3389/fnmol.2020.00038] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cells release different types of extracellular vesicles (EVs) including exosomes, ectosomes, and microvesicles. Exosomes are nanovesicles, 30–200 nm in diameter, that carry cell- and cell-state-specific cargo of proteins, lipids, and nucleic acids, including mRNA and miRNA. Recent studies have shown that central nervous system (CNS)-derived exosomes may carry amyloidogenic proteins and facilitate their cell-to-cell transfer, thus playing a critical role in the progression of neurodegenerative diseases, such as tauopathies and synucleinopathies. CNS-derived exosomes also have been shown to cross the blood-brain-barrier into the bloodstream and therefore have drawn substantial attention as a source of biomarkers for various neurodegenerative diseases as they can be isolated via a minimally invasive blood draw and report on the biochemical status of the CNS. However, although isolating specific brain-cell-derived exosomes from the blood is theoretically simple and the approach has great promise, practical details are of crucial importance and may compromise the reproducibility and utility of this approach, especially when different laboratories use different protocols. In this review we discuss the role of exosomes in neurodegenerative diseases, the usefulness of CNS-derived blood exosomes as a source of biomarkers for these diseases, and practical challenges associated with the methodology of CNS-derived blood exosomes and subsequent biomarker analysis.
Collapse
Affiliation(s)
- Simon Hornung
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Suman Dutta
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
25
|
Yuan Y, Li Z, Yang N, Han Y, Ji X, Han D, Wang X, Li Y, Liu T, Yuan F, He J, Liu Y, Ni C, Zou P, Wang G, Guo X, Zhou Y. Exosome α-Synuclein Release in Plasma May be Associated With Postoperative Delirium in Hip Fracture Patients. Front Aging Neurosci 2020; 12:67. [PMID: 32231560 PMCID: PMC7082759 DOI: 10.3389/fnagi.2020.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/25/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Little is known about the underlying mechanisms of the similarities in the core features of postoperative delirium (POD) and α-synuclein (α-syn)-related cognitive disorders. We herein investigated associations between fluctuated levels of exosomal α-syn in the plasma and POD presentation in geriatric hip fracture patients. Methods: We conducted an observational, prospective, and 1:1 matched (on age older than 65, hip fracture diagnosis, American Society of Anesthesiologist’ (ASA) physical status, duration of surgery, and intraoperative bleeding) case-control study: POD cases and non-POD controls were selected from the overall cohort by using Confusion Assessment Method (CAM). Delirium severity was measured by the Memorial Delirium Assessment Scale (MDAS). Plasma exosome levels of α-syn were examined preoperatively and at the time that POD was diagnosed, by using an established immunocapture technology based on a putative brain-cell-specific marker. Circulating concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also determined. The relationship between α-syn levels and POD risk, as well as the association between α-syn and MDAS scores and plasma cytokines, were assessed. Results: POD incidence was 8.4% (17/202). Postoperative α-syn were either elevated or lowered. As primary outcome variables, the change of α-syn in POD patients was significantly higher than non-POD ones (21.0 ± 29.3 pg.ml−1 vs.1.9 ± 20.0, P = 0.047). The α-syn alteration was positively correlated to MDAS (r = 0.436, P = 0.010) and the change of IL-6 (r = 0.383, P = 0.025). Conclusions: Exosome α-syn release in plasma may be associated with the POD development which might be due to systemic inflammation. Clinical Trial Registration: www.clinicaltrials.gov, identifier ChiCTR-IPR-17012301. Prior Presentation: The abstract of this work has been selected for presentation in the 2019 ANESTHESIOLOGY Journal Symposium “What’s New with the old,” and it has been present in the ASA 2019 annual meeting October 21st, 2019 in Florida.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China.,Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiaojuan Ji
- Department of Cadre Health Care, Beijing Jishuitan Hospital, Beijing, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Feng Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jindan He
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Peng Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Geng Wang
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
26
|
Vinaiphat A, Sze SK. Clinical implications of extracellular vesicles in neurodegenerative diseases. Expert Rev Mol Diagn 2019; 19:813-824. [PMID: 31429341 DOI: 10.1080/14737159.2019.1657407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Extracellular vesicles (EVs) released by neural cells play a crucial role in intracellular communication in both physiological and pathological states. Recent studies have shown that the neuropathogenic manifestation of many progressive nervous system diseases including Parkinson's disease (PD), Alzheimer's diseases (AD), and amyotrophic lateral sclerosis (ALS). These diseases are frequently found to be associated with the accumulation of misfolded proteins, exploit EVs for the spread of aggregates to naive cells in a prion-like mechanism. Therefore, characterization of EVs and understanding their mechanism of action could open a window of opportunity to discover biomarkers and therapeutic targets in a disease-specific manner. Areas covered: In this review, we discuss the role of neural cells-derived EVs in normal and disease states. We also highlight their biomedical potential in modern medicine, including the use of circulating EVs as biomarkers for diagnosis with a special focus on newly-identified potential biomarkers in neurodegenerative disease, and novel methodologies in EVs isolation. Expert opinion: Systematic and comprehensive analysis of EVs in different biofluid sources is needed. Considering the potential for tremendous clinical benefits of EVs research in neurodegenerative disease, there is also an urgent need to standardize neural cells-derived EV enrichment protocols for consensus results.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University , Singapore Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University , Singapore Singapore
| |
Collapse
|
27
|
Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O, Mollenhauer B, Blennow K, Calabresi P. CSF and blood biomarkers for Parkinson's disease. Lancet Neurol 2019; 18:573-586. [PMID: 30981640 DOI: 10.1016/s1474-4422(19)30024-9] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
In the management of Parkinson's disease, reliable diagnostic and prognostic biomarkers are urgently needed. The diagnosis of Parkinson's disease mostly relies on clinical symptoms, which hampers the detection of the earliest phases of the disease-the time at which treatment with forthcoming disease-modifying drugs could have the greatest therapeutic effect. Reliable prognostic markers could help in predicting the response to treatments. Evidence suggests potential diagnostic and prognostic value of CSF and blood biomarkers closely reflecting the pathophysiology of Parkinson's disease, such as α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain. A combination of multiple CSF biomarkers has emerged as an accurate diagnostic and prognostic model. With respect to early diagnosis, the measurement of CSF α-synuclein aggregates is providing encouraging preliminary results. Blood α-synuclein species and neurofilament light chain are also under investigation because they would provide a non-invasive tool, both for early and differential diagnosis of Parkinson's disease versus atypical parkinsonian disorders, and for disease monitoring. In view of adopting CSF and blood biomarkers for improving Parkinson's disease diagnostic and prognostic accuracy, further validation in large independent cohorts is needed.
Collapse
Affiliation(s)
- Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy; Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center, Department of Neurology, Göttingen, Germany
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paolo Calabresi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|