1
|
Yera M, Wang JJ, Zhang SX. Protocol for real-time assessment of energy metabolism in dissociated mouse retinal photoreceptors using a SeahorseXFe24 analyzer. STAR Protoc 2025; 6:103595. [PMID: 39854204 PMCID: PMC11795547 DOI: 10.1016/j.xpro.2025.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Defects in retinal metabolism have been linked to the onset and progression of various retinal diseases. Herein, we provide a protocol for measuring bioenergetics in dissociated mouse retinal photoreceptors. We outline detailed instructions for obtaining morphologically intact and viable photoreceptor cells from adult mice and preparing the cells for metabolic analysis using a SeahorseXFe24 analyzer. This protocol allows a real-time assessment of mitochondrial respiration and glycolysis in retinal photoreceptors in response to genetic modifications or pathological insults in mouse models.
Collapse
Affiliation(s)
- Maria Yera
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Joshua J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
2
|
Sharma MK, Priyam K, Kumar P, Garg PK, Roy TS, Jacob TG. Effect of chloroquine on autophagy and the severity of caerulein-induced acute pancreatitis in mice. Acta Histochem 2025; 127:152234. [PMID: 39913992 DOI: 10.1016/j.acthis.2025.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Impaired autophagy is implicated in the pathogenesis of caerulein-induced model of acute pancreatitis (AP). Chloroquine blocks the fusion of autophagosome and lysosome and affects completion of the cellular autophagic flux. Adult, male, Swiss albino mice (20-25 g) were divided into four groups- 1, 2, 3 and 4 of 6 mice each. Mice in Group1 were given 8, hourly intraperitoneal injections of normal saline. Group 2 was also given intraperitoneal injections of chloroquine (60 mg/Kg) at 14 h and 30-min prior to first injection of normal saline. Mice in Groups 3 and 4 given 8, hourly intraperitoneal injections of caerulein (50 µg /Kg/dose). Group 4 also received chloroquine as Group 2. After sacrifice at the 9th hour in CO2-chamber, blood was drawn for amylase activity and cytokines estimation (IL-6, TNF-α, GM-CSF, IL-1β and IL-10) and pancreas was harvested for histopathology, transmission electron microscopy (TEM) and immunoblotting (LC3II, Beclin 1, SQSTM1, RIPK1, P65, Caspase-3, RIPK3, HMGB1). The relative expression of SQSTM1 and the autophagic vacuole area was higher in groups 2, 3 and 4 (p < 0.05), suggestive of increased impairment of autophagic flux. Autolysosome count was significantly increased in group 3 in comparison to group 1 (p = 0.0049). Autolysosome area was also increased in group 4 in comparison to group 3 (p = 0.031), which suggested impairment of autophagy. Total histopathological score and amylase activity were equivalent in groups 3 and 4. RIPK1 in pancreas and TNF-α level in plasma were more in group 4 than 3 (p = 0.014, 0.02, respectively). Expression of Caspase-3, was lesser in group 4 than 3 (p < 0.001). Expression of HMGB1was more in group 4 than 3 (p = 0.046). Chloroquine enhances necrosis and inflammation in caerulein-induced pancreatitis.
Collapse
Affiliation(s)
| | - Kumari Priyam
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Tara Sankar Roy
- Department of Anatomy, North DMC Medical College & Hindu Rao Hospital, New Delhi, India
| | - Tony George Jacob
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Lo Giudice G, Alessandria A, Imburgia A, Anastasi M, Randazzo V, Masaniello F, Pioppo A. UNILATERAL MACULAR HOLE IN A PATIENT WITH RETINITIS PIGMENTOSA TREATED WITH COVER FLAP TECHNIQUE WITH THE USE OF PLATELET-RICH PLASMA UNDER AIR TAMPONADE. Retin Cases Brief Rep 2025; 19:84-90. [PMID: 37756670 PMCID: PMC11649180 DOI: 10.1097/icb.0000000000001491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
PURPOSE The purpose of the study is to show the excellent anatomical result of the inverted flap-assisted technique with platelet-rich plasma under air for retinitis pigmentosa complicated with macular hole. METHODS A 32-year-old woman, previously diagnosed with retinitis pigmentosa, was referred to our department complaining of decreased central vision in her left eye for 4 weeks. At the time of presentation, the optical coherence tomography and fundoscopy examination showed the presence of a macular hole of 620 μ m in diameter. The closure of the macular hole was observed after the surgical procedure, but endophthalmitis occurred 5 days, postoperatively. RESULTS In our presented case, the cover flap-assisted technique with platelet-rich plasma under air for retinitis pigmentosa complicated with macular hole resulted in excellent anatomical outcomes with unremarkable visual recovery. CONCLUSION The physiopathology of full-thickness macular holes in retinitis pigmentosa patients remains still not fully elucidated. Pars plana vitrectomy with the adjunct of highly concentrated pure platelet-rich plasma have shown successful results.
Collapse
Affiliation(s)
| | | | - Aurelio Imburgia
- Ophthalmic Unit, Department Head and Neck, ARNAS-Civico, Palermo, Italy
| | - Marco Anastasi
- Ophthalmic Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
| | | | | | - Antonino Pioppo
- Ophthalmic Unit, Department Head and Neck, ARNAS-Civico, Palermo, Italy
| |
Collapse
|
4
|
Aísa-Marín I, Rovira Q, Díaz N, Calvo-López L, Vaquerizas JM, Marfany G. Specific photoreceptor cell fate pathways are differentially altered in NR2E3-associated diseases. Neurobiol Dis 2024; 194:106463. [PMID: 38485095 DOI: 10.1016/j.nbd.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/21/2024] Open
Abstract
Mutations in NR2E3, a gene encoding an orphan nuclear transcription factor, cause two retinal dystrophies with a distinct phenotype, but the precise role of NR2E3 in rod and cone transcriptional networks remains unclear. To dissect NR2E3 function, we performed scRNA-seq in the retinas of wildtype and two different Nr2e3 mouse models that show phenotypes similar to patients carrying NR2E3 mutations. Our results reveal that rod and cone populations are not homogeneous and can be separated into different sub-classes. We identify a previously unreported cone pathway that generates hybrid cones co-expressing both cone- and rod-related genes. In mutant retinas, this hybrid cone subpopulation is more abundant and includes a subpopulation of rods transitioning towards a cone cell fate. Hybrid photoreceptors with high misexpression of cone- and rod-related genes are prone to regulated necrosis. Overall, our results shed light on the role of NR2E3 in modulating photoreceptor differentiation towards cone and rod fates and explain how different mutations in NR2E3 lead to distinct visual disorders in humans.
Collapse
Affiliation(s)
- Izarbe Aísa-Marín
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain; IBUB-IRSJD, Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Sant Joan de Déu, Barcelona 08028, Spain; CIBERER, Instituto de Salud Carlos III, Barcelona 08028, Spain
| | - Quirze Rovira
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Noelia Díaz
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Laura Calvo-López
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain
| | - Juan M Vaquerizas
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany; MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK.; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Gemma Marfany
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain; IBUB-IRSJD, Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Sant Joan de Déu, Barcelona 08028, Spain; CIBERER, Instituto de Salud Carlos III, Barcelona 08028, Spain; DBGen Ocular Genomics, Barcelona 08028, Spain.
| |
Collapse
|
5
|
Berkowitz BA, Paruchuri A, Stanek J, Podolsky RH, Childers KL, Roberts R. Acetazolamide Challenge Changes Outer Retina Bioenergy-Linked and Anatomical OCT Biomarkers Depending on Mouse Strain. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38488413 PMCID: PMC10946704 DOI: 10.1167/iovs.65.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that optical coherence tomography (OCT) bioenergy-linked and anatomical biomarkers are responsive to an acetazolamide (ACZ) provocation. Methods C57BL/6J mice (B6J, a strain with relatively inefficient mitochondria) and 129S6/ev mice (S6, a strain with relatively efficient mitochondria) were given a single IP injection of ACZ (carbonic anhydrase inhibitor) or vehicle. In each mouse, the Mitochondrial Configuration within Photoreceptors based on the profile shape Aspect Ratio (MCP/AR) index was determined from the hyper-reflective band immediately posterior to the external limiting membrane (ELM). In addition, we tested for ACZ-induced acidification by measuring contraction of the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness; the hyporeflective band (HB) signal intensity at the photoreceptor tips was also examined. Finally, the nuclear layer thickness was measured. Results In response to ACZ, MCP/AR was greater-than-vehicle in B6J mice and lower-than-vehicle in S6 mice. ACZ-treated B6J and S6 mice both showed ELM-RPE contraction compared to vehicle-treated mice, consistent with dehydration in response to subretinal space acidification. The HB intensity at the photoreceptor tips and the outer nuclear layer thickness (B6J and S6), as well as the inner nuclear layer thickness of B6J mice, were all lower than vehicle following ACZ. Conclusions Photoreceptor respiratory efficacy can be evaluated in vivo based on distinct rod mitochondria responses to subretinal space acidification measured with OCT biomarkers and an ACZ challenge, supporting and extending our previous findings measured with light-dark conditions.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H. Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
6
|
García-Arroyo R, Domènech EB, Herrera-Úbeda C, Asensi MA, Núñez de Arenas C, Cuezva JM, Garcia-Fernàndez J, Pallardó FV, Mirra S, Marfany G. Exacerbated response to oxidative stress in the Retinitis Pigmentosa Cerkl KD/KO mouse model triggers retinal degeneration pathways upon acute light stress. Redox Biol 2023; 66:102862. [PMID: 37660443 PMCID: PMC10491808 DOI: 10.1016/j.redox.2023.102862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
The retina is particularly vulnerable to genetic and environmental alterations that generate oxidative stress and cause cellular damage in photoreceptors and other retinal neurons, eventually leading to cell death. CERKL (CERamide Kinase-Like) mutations cause Retinitis Pigmentosa and Cone-Rod Dystrophy in humans, two disorders characterized by photoreceptor degeneration and progressive vision loss. CERKL is a resilience gene against oxidative stress, and its overexpression protects cells from oxidative stress-induced apoptosis. Besides, CERKL contributes to stress granule-formation and regulates mitochondrial dynamics in the retina. Using the CerklKD/KO albino mouse model, which recapitulates the human disease, we aimed to study the impact of Cerkl knockdown on stress response and activation of photoreceptor death mechanisms upon light/oxidative stress. After acute light injury, we assessed immediate or late retinal stress response, by combining both omic and non-omic approaches. Our results show that Cerkl knockdown increases ROS levels and causes a basal exacerbated stress state in the retina, through alterations in glutathione metabolism and stress granule production, overall compromising an adequate response to additional oxidative damage. As a consequence, several cell death mechanisms are triggered in CerklKD/KO retinas after acute light stress. Our studies indicate that Cerkl gene is a pivotal player in regulating light-challenged retinal homeostasis and shed light on how mutations in CERKL lead to blindness by dysregulation of the basal oxidative stress response in the retina.
Collapse
Affiliation(s)
- Rocío García-Arroyo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Elena B Domènech
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain
| | - Miguel A Asensi
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Department of Physiology, University of Valencia-INCLIVA, Valencia, Spain
| | - Cristina Núñez de Arenas
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Departament of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - José M Cuezva
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Departament of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Department of Physiology, University of Valencia-INCLIVA, Valencia, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
7
|
Parmann R, Tsang SH, Sparrow JR. Primary versus Secondary Elevations in Fundus Autofluorescence. Int J Mol Sci 2023; 24:12327. [PMID: 37569703 PMCID: PMC10419315 DOI: 10.3390/ijms241512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The method of quantitative fundus autofluorescence (qAF) can be used to assess the levels of bisretinoids in retinal pigment epithelium (RPE) cells so as to aid the interpretation and management of a variety of retinal conditions. In this review, we focused on seven retinal diseases to highlight the possible pathways to increased fundus autofluorescence. ABCA4- and RDH12-associated diseases benefit from known mechanisms whereby gene malfunctioning leads to elevated bisretinoid levels in RPE cells. On the other hand, peripherin2/RDS-associated disease (PRPH2/RDS), retinitis pigmentosa (RP), central serous chorioretinopathy (CSC), acute zonal occult outer retinopathy (AZOOR), and ceramide kinase like (CERKL)-associated retinal degeneration all express abnormally high fundus autofluorescence levels without a demonstrated pathophysiological pathway for bisretinoid elevation. We suggest that, while a known link from gene mutation to increased production of bisretinoids (as in ABCA4- and RDH12-associated diseases) causes primary elevation in fundus autofluorescence, a secondary autofluorescence elevation also exists, where an impairment and degeneration of photoreceptor cells by various causes leads to an increase in bisretinoid levels in RPE cells.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| |
Collapse
|
8
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
9
|
Sharma MK, Priyam K, Kumar P, Garg PK, Roy TS, Jacob TG. Effect of calorie-restriction and rapamycin on autophagy and the severity of caerulein-induced experimental acute pancreatitis in mice. FRONTIERS IN GASTROENTEROLOGY 2022; 1. [DOI: 10.3389/fgstr.2022.977169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BackgroundImpaired autophagy contributes to development of acute pancreatitis (AP). We studied the effect of inducing autophagy by calorie-restriction and rapamycin, separately, in the caerulein-induced model of severe AP.MethodsAdult, male, Swiss albino mice were given eight, hourly, intraperitoneal injections of caerulein (Ce) (50µg/Kg/dose). The interventions were calorie restriction (CR) and rapamycin (2mg/Kg). Mice were sacrificed at the 9th hour. Pancreas was harvested for histopathology and immunoblotting. Amylase activity and the levels of cytokines were measured in plasma.ResultsThe histopathological score and amylase activity were significantly lower in calorie-restricted caerulein-induced AP (CRCeAP) in comparison to animals that had unrestricted access to chow. In the CRCeAP group, levels of IL-6 and GM-CSF in plasma were lower and the expression of LC3II and Beclin-1 were higher. On transmission electron-microscopy, the area occupied by autophagic vacuoles was higher in CRCeAP. The expression of caspase-8 and caspase-9 was also higher in CRCeAP. In rapamycin with caerulein-induced AP (Rapa+CeAP), the histopathological score and amylase activity were significantly lower than caerulein-induced AP (CeAP). In Rapa+CeAP, the expression of LC3II and Beclin-1 were higher, whereas; SQSTM1 was decreased. The number of autophagic vacuoles in Rapa+CeAP group was fewer. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were lower in Rapa+CeAP. Caspase-3 increased and high mobility group box 1 (HMGB1) decreased in Rapa+CeAP.ConclusionCalorie-restriction and rapamycin can individually decrease the severity of injury in the caerulein-induced model of severe AP.
Collapse
|
10
|
Carrella S, Di Guida M, Brillante S, Piccolo D, Ciampi L, Guadagnino I, Garcia Piqueras J, Pizzo M, Marrocco E, Molinari M, Petrogiannakis G, Barbato S, Ezhova Y, Auricchio A, Franco B, De Leonibus E, Surace EM, Indrieri A, Banfi S. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases. EMBO Mol Med 2022; 14:e15941. [PMID: 36194668 DOI: 10.15252/emmm.202215941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a group of diseases whose common landmark is progressive photoreceptor loss. The development of gene-specific therapies for IRDs is hampered by their wide genetic heterogeneity. Mitochondrial dysfunction is proving to constitute one of the key pathogenic events in IRDs; hence, approaches that enhance mitochondrial activities have a promising therapeutic potential for these conditions. We previously reported that miR-181a/b downregulation boosts mitochondrial turnover in models of primary retinal mitochondrial diseases. Here, we show that miR-181a/b silencing has a beneficial effect also in IRDs. In particular, the injection in the subretinal space of an adeno-associated viral vector (AAV) that harbors a miR-181a/b inhibitor (sponge) sequence (AAV2/8-GFP-Sponge-miR-181a/b) improves retinal morphology and visual function both in models of autosomal dominant (RHO-P347S) and of autosomal recessive (rd10) retinitis pigmentosa. Moreover, we demonstrate that miR-181a/b downregulation modulates the level of the mitochondrial fission-related protein Drp1 and rescues the mitochondrial fragmentation in RHO-P347S photoreceptors. Overall, these data support the potential use of miR-181a/b downregulation as an innovative mutation-independent therapeutic strategy for IRDs, which can be effective both to delay disease progression and to aid gene-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Martina Di Guida
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Davide Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Irene Guadagnino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Jorge Garcia Piqueras
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Marta Molinari
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Georgios Petrogiannakis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Advanced Biomedicine, University of Naples "Federico II", Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,Scuola Superiore Meridionale, School of Advanced Studies, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology (IBBC), National Research Council (CNR), Monterotondo, Rome, Italy
| | - Enrico Maria Surace
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
CERKL, a Retinal Dystrophy Gene, Regulates Mitochondrial Transport and Dynamics in Hippocampal Neurons. Int J Mol Sci 2022; 23:ijms231911593. [PMID: 36232896 PMCID: PMC9570143 DOI: 10.3390/ijms231911593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the Ceramide Kinase-like (CERKL) gene cause retinal dystrophies, characterized by progressive degeneration of retinal neurons, which eventually lead to vision loss. Among other functions, CERKL is involved in the regulation of autophagy, mitochondrial dynamics, and metabolism in the retina. However, CERKL is nearly ubiquitously expressed, and it has been recently described to play a protective role against brain injury. Here we show that Cerkl is expressed in the hippocampus, and we use mouse hippocampal neurons to explore the impact of either overexpression or depletion of CERKL on mitochondrial trafficking and dynamics along axons. We describe that a pool of CERKL localizes at mitochondria in hippocampal axons. Importantly, the depletion of CERKL in the CerklKD/KO mouse model is associated with changes in the expression of fusion/fission molecular regulators, induces mitochondrial fragmentation, and impairs axonal mitochondrial trafficking. Our findings highlight the role of CERKL, a retinal dystrophy gene, in the regulation of mitochondrial health and homeostasis in central nervous system anatomic structures other than the retina.
Collapse
|
12
|
Ciampi L, Mantica F, López-Blanch L, Permanyer J, Rodriguez-Marín C, Zang J, Cianferoni D, Jiménez-Delgado S, Bonnal S, Miravet-Verde S, Ruprecht V, Neuhauss SCF, Banfi S, Carrella S, Serrano L, Head SA, Irimia M. Specialization of the photoreceptor transcriptome by Srrm3-dependent microexons is required for outer segment maintenance and vision. Proc Natl Acad Sci U S A 2022; 119:e2117090119. [PMID: 35858306 PMCID: PMC9303857 DOI: 10.1073/pnas.2117090119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/28/2022] [Indexed: 01/14/2023] Open
Abstract
Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.
Collapse
Affiliation(s)
- Ludovica Ciampi
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Laura López-Blanch
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Cristina Rodriguez-Marín
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Damiano Cianferoni
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Senda Jiménez-Delgado
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Verena Ruprecht
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Stephan C. F. Neuhauss
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Sarah A. Head
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 2022; 203:115168. [PMID: 35835206 DOI: 10.1016/j.bcp.2022.115168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Pathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S. population, or about one in 1600 individuals. Vision impairment due to mitochondrial dysfunction in the eye is a prominent feature evident in numerous primary mitochondrial diseases and is common to the pathophysiology of many of the familiar ophthalmic disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma and retinopathy of prematurity - a collection of syndromes, diseases and disorders with significant unmet medical needs. Focusing on metabolic mitochondrial pathway mechanisms, including the possible roles of cuproptosis and ferroptosis in retinal mitochondrial dysfunction, we shed light on the potential of α-lipoyl-L-carnitine in treating eye diseases. α-Lipoyl-L-carnitine is a bioavailable mitochondria-targeting lipoic acid prodrug that has shown potential in protecting against retinal degeneration and photoreceptor cell loss in ophthalmic indications.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
14
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
16
|
Garanto A, Ferreira CR, Boon CJF, van Karnebeek CDM, Blau N. Clinical and biochemical footprints of inherited metabolic disorders. VII. Ocular phenotypes. Mol Genet Metab 2022; 135:311-319. [PMID: 35227579 PMCID: PMC10518078 DOI: 10.1016/j.ymgme.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
Ocular manifestations are observed in approximately one third of all inherited metabolic disorders (IMDs). Although ocular involvement is not life-threatening, it can result in severe vision loss, thereby leading to an additional burden for the patient. Retinal degeneration with or without optic atrophy is the most frequent phenotype, followed by oculomotor problems, involvement of the cornea and lens, and refractive errors. These phenotypes can provide valuable clues that contribute to its diagnosis. In this issue we found 577 relevant IMDs leading to ophthalmologic manifestations. This article is the seventh of a series attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital Radboud Center for Mitochondrial and Metabolic Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands and Amsterdam University Medical Centers, Academic Medical Center, Department of Ophthalmology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital Radboud Center for Mitochondrial and Metabolic Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Departments of Pediatrics and Human Genetics, Emma Children's Hospital, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
17
|
Huang S, Hong Z, Zhang L, Guo J, Li Y, Li K. CERKL alleviates ischemia reperfusion-induced nervous system injury through modulating the SIRT1/PINK1/Parkin pathway and mitophagy induction. Biol Chem 2022; 403:691-701. [PMID: 35238502 DOI: 10.1515/hsz-2021-0411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Recent studies showed that Ceramide Kinase-Like Protein (CERKL)was expressed in the nerve cells and could regulate autophagy. Sirtuin-1 (SIRT1) is the regulator of the mitophagy, which can be stabilized by CERKL. Furthermore, the study also revealed that the SIRT1 induced mitophagy by activating PINK1/Parkin signaling. Therefore, we speculated that CERKL has potential to activate the SIRT1/PINK1/Parkin pathway to induce mitophagy. In this study, cerebral ischemia reperfusion mouse model was established. CERKL was overexpressed in those mice and human neuroblastoma cells. Tunel staining and flow cytometry were applied for the detection of cell apoptosis. The ratios of LC3Ⅱ to LC3Ⅰ and the expression of LC3Ⅱ in mitochondria were determined by gel electrophoresis. Overexpression of CERKL alleviated the cerebral ischemia reperfusion injury and damage to OGD/R human neuroblastoma cells. Overexpression of CERKL enhanced the expression of LC3 Ⅱ in mitochondria and induced occurrence of mitophagy. Overexpression of CERKL promoted the stability of SIRT1 and facilitated the expression of PINK1 and Parkin in those cells. Knockdown of PINK1 impeded the mitophagy and suppressed the expression of LC3 Ⅱ in mitochondria. It can be concluded that CERKL alleviated the ischemia reperfusion induced nervous system injury through inducing mitophagy in a SIRT1/PINK1/Parkin dependent pathway.
Collapse
Affiliation(s)
- Shaoyue Huang
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Zhen Hong
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Leguo Zhang
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Jian Guo
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Yanhua Li
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| | - Kuo Li
- Department of Neurology Cangzhou Central Hospital, No. 16 Xinhua Western Road, Cangzhou 061000, Hebei, China
| |
Collapse
|
18
|
Overexpression of CERKL Protects Retinal Pigment Epithelium Mitochondria from Oxidative Stress Effects. Antioxidants (Basel) 2021; 10:antiox10122018. [PMID: 34943121 PMCID: PMC8698444 DOI: 10.3390/antiox10122018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/02/2023] Open
Abstract
The precise function of CERKL, a Retinitis Pigmentosa (RP) causative gene, is not yet fully understood. There is evidence that CERKL is involved in the regulation of autophagy, stress granules, and mitochondrial metabolism, and it is considered a gene that is resilient against oxidative stress in the retina. Mutations in most RP genes affect photoreceptors, but retinal pigment epithelium (RPE) cells may be also altered. Here, we aimed to analyze the effect of CERKL overexpression and depletion in vivo and in vitro, focusing on the state of the mitochondrial network under oxidative stress conditions. Our work indicates that the depletion of CERKL increases the vulnerability of RPE mitochondria, which show a shorter size and altered shape, particularly upon sodium arsenite treatment. CERKL-depleted cells have dysfunctional mitochondrial respiration particularly upon oxidative stress conditions. The overexpression of two human CERKL isoforms (558 aa and 419 aa), which display different protein domains, shows that a pool of CERKL localizes at mitochondria in RPE cells and that CERKL protects the mitochondrial network—both in size and shape—against oxidative stress. Our results support CERKL being a resilient gene that regulates the mitochondrial network in RPE as in retinal neurons and suggest that RPE cell alteration contributes to particular phenotypic traits in patients carrying CERKL mutations.
Collapse
|