1
|
Ryuzaki M, Mizukami H, Takeuchi Y, Osonoi S, Sasaki T, Wang Z, Kushibiki H, Yamada T, Yamazaki K, Ogasawara S, Tarusawa T, Mikami T, Hakamada K, Nakaji S. Moderate cryptoxanthin intake correlates with maintenance of a proper PINT index in a general Japanese population. Nutr Neurosci 2025; 28:481-491. [PMID: 39052592 DOI: 10.1080/1028415x.2024.2383082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Small fibre neuropathy (SFN) is an early manifestation of diabetic polyneuropathy. Although oxidative stress, inflammation and change of intestinal bacterial population are assumed to be their pathogenesis, the effects of dietary nutrition have not been evaluated. The relationship between dietary nutrition intake and pain sensation was evaluated in the Japanese population. METHODS We conducted the Iwaki project, a population-based study recruiting 1,028 individuals, in 2018. The relationships between the pain threshold from intraepidermal electrical stimulation (PINT) and the amount of dietary nutrition evaluated by a brief-type self-administered diet history questionnaire were examined. The odds ratio was further explored after categorizing subjects based on low (< 63.7 μg/day), intermediate (63.7-159.2 μg/day), and high cryptoxanthin levels (> 159.2 μg/day). RESULTS Univariate linear regression analyses showed significant correlations between PINT and cryptoxanthin intake even after adjustments for other nutritional intakes (ß = 0.107, p < 0.01). Multivariate logistic regression analysis revealed low and high cryptoxanthin intake as significant risk factors for abnormal PINT (≥ 0.20 mA). Multivariate linear regression analyses showed significant correlations between PINT and cryptoxanthin intake levels after adjustment for other clinically PINT-related factors (ß = 0.09, p < 0.01). CONCLUSIONS Adequate intake of cryptoxanthin is recommended to maintain the pain threshold in the Japanese population.
Collapse
Affiliation(s)
- Masaki Ryuzaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Zhenchao Wang
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takahiro Yamada
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Gastrointestinal Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Gastrointestinal Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takefusa Tarusawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Hakamada
- Department of Gastrointestinal Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
2
|
Plesz SB, Adlan LG, Büki A, Makra N, Ligeti B, Ágg B, Szabó D, Zádori ZS, Ferdinandy P, Horvath G, Kekesi G. Dysbiosis is associated with the behavioral phenotype observed in the triple-hit Wisket rat model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111276. [PMID: 39880276 DOI: 10.1016/j.pnpbp.2025.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Comorbidities between gastrointestinal diseases and psychiatric disorders have been widely reported, with the gut-brain axis implicated as a potential biological basis. Thus, dysbiosis may play an important role in the etiology of schizophrenia, which is barely detected. Triple-hit Wisket model rats exhibit various schizophrenia-like behavioral phenotypes. The present study aimed to compare the diversity and abundance of gut microbiota in Wisket model and control rats; furthermore, to correlate the microbial taxonomic profiles to indices of behavioral change. Tail-flick and Ambitus tests were used to assess acute heat pain sensitivity, and record exploration and locomotor activity along with motivation in young adult, control and Wisket model rats. Fecal microbiota composition was profiled by deep sequencing of bacterial 16S rRNA, and it was correlated to behavioral phenotype. Wisket rats exhibited significantly decreased pain sensitivity, lower locomotor activity and exploration, and impaired motivation compared with controls. No significant differences were observed in bacterial alpha diversity between the groups; however, clear differences in community structure were observed. Wisket rats showed decreases in several genera of Firmicutes and Saccharimonas, and increases in Bacteriodetes and Helicobacter phyla compared with controls. Correlation analysis revealed significant associations between the microbiota profile and the behavioral phenotype. This is the first demonstration that fecal microbiota composition is markedly altered in a triple-hit schizophrenia rat model, suggesting the contribution of the microbiota-gut-brain axis in the development of the schizophrenia-like behavioral phenotype. Thus targeting the gut microbiota may be a novel approach to treat such impairments.
Collapse
Affiliation(s)
- Szonja B Plesz
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| | - Leatitia G Adlan
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| | - Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| | - Nóra Makra
- HUN-REN Human Microbiota Study Group, Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.
| | - Balázs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary.
| | - Dóra Szabó
- HUN-REN Human Microbiota Study Group, Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.
| | - Zoltán S Zádori
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary.
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Noureldein MH, Rumora AE, Teener SJ, Rigan DM, Hayes JM, Mendelson FE, Carter AD, Rubin WG, Savelieff MG, Feldman EL. Dietary Fatty Acid Composition Alters Gut Microbiome in Mice with Obesity-Induced Peripheral Neuropathy. Nutrients 2025; 17:737. [PMID: 40005065 PMCID: PMC11858455 DOI: 10.3390/nu17040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Peripheral neuropathy (PN), a complication of diabetes and obesity, progresses through a complex pathophysiology. Lifestyle interventions to manage systemic metabolism are recommended to prevent or slow PN, given the multifactorial risks of diabetes and obesity. A high-fat diet rich in saturated fatty acids (SFAs) induces PN, which a diet rich in monounsaturated fatty acids (MUFAs) rescues, independent of weight loss, suggesting factors beyond systemic metabolism impact nerve health. Interest has grown in gut microbiome mechanisms in PN, which is characterized by a distinct microbiota signature that correlates with sciatic nerve lipidome. METHODS Herein, we postulated that SFA- versus MUFA-rich diet would impact gut microbiome composition and correlate with PN development. To assess causality, we performed fecal microbiota transplantation (FMT) from donor mice fed SFA- versus MUFA-rich diet to lean recipient mice and assessed metabolic and PN phenotypes. RESULTS We found that the SFA-rich diet altered the microbiome community structure, which the MUFA-rich diet partially reversed. PN metrics correlated with several microbial families, some containing genera with feasible mechanisms of action for microbiome-mediated effects on PN. SFA and MUFA FMT did not impact metabolic phenotypes in recipient mice although SFA FMT marginally induced motor PN. CONCLUSIONS The involvement of diet-mediated changes in the microbiome on PN and gut-nerve axis may warrant further study.
Collapse
Affiliation(s)
- Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E. Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Samuel J. Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew D. Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Whitney G. Rubin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Wang Z, Kushibiki H, Tarusawa T, Osonoi S, Ogasawara S, Miura C, Sasaki T, Ryuzaki M, Yagihashi S, Mizukami H. Hypertension is associated with the reduction in epidermal small fibres independently of sural nerve inflammation in type 2 diabetic subjects. J Neurochem 2025; 169:e16235. [PMID: 39453752 PMCID: PMC11808456 DOI: 10.1111/jnc.16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/27/2024]
Abstract
Diabetic polyneuropathy (DPN) is a multifactorial disease associated not only with hyperglycaemia but also with circulatory disturbances such as hypertension. A close interaction between the immune system and hypertension is known. It remains unclear whether the inflammatory response is associated with hypertension in the pathology of human DPN. Autopsied patients were evaluated: 7 non-diabetic patients (nDM), 11 non-diabetic patients with hypertension (nDMHT), 6 patients with diabetes (DM) and 9 patients with hypertension and diabetes (DMHT). Intraepidermal nerve fibre density (IENFD) was examined by immunofluorescent staining. Dissected sural nerve (SNs) were morphometrically quantified. Dermal and endoneurial macrophage infiltration was evaluated by double immunostaining using anti-CD68 and anti-CD206 antibodies. IENFD was significantly decreased in DM compared to nDM (p < 0.05) and was further decreased in DMHT (p < 0.05). Myelinated nerve fibre density (MNFD) in the SN was significantly decreased in DM compared with nDM (p < 0.05) and further decreased in DMHT (p < 0.01 vs. DM). The infiltration of CD206-/CD68+ proinflammatory macrophages in the SN was significantly increased in DM compared to nDM (p < 0.05), whilst the number of CD206+/CD68+ anti-inflammatory macrophages was decreased in DM (p < 0.05). Hypertension had no impact on macrophage infiltration. The ratio of CD206- and CD206+ macrophage was negatively correlated with MNFD (r = 0.42, p < 0.05) but not IENFD (r = 0.30, p = 0.09). Dermal CD206+ macrophage infiltration was similar amongst all groups. Diabetes complicated by hypertension significantly increased the total diffusion barrier thickness (p < 0.01 vs. DM). Total diffusion barrier thickness was inversely correlated with both IENFD (r = -0.59, p < 0.01) and MNFD (r =-0.62, p < 0.01). Our results suggest that vascular factors and inflammation might be synergistically involved in pathological changes in human diabetic patients through different mechanisms.
Collapse
Affiliation(s)
- Zhenchao Wang
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takefusa Tarusawa
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Chinatsu Miura
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Masaki Ryuzaki
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
5
|
Mizukami H. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy. Pathol Int 2024; 74:438-453. [PMID: 38888200 PMCID: PMC11551828 DOI: 10.1111/pin.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Currently, there are more than 10 million patients with diabetes mellitus in Japan. Therefore, the need to explore the pathogenesis of diabetes and the complications leading to its cure is becoming increasingly urgent. Pathological examination of pancreatic tissues from patients with type 2 diabetes reveals a decrease in the volume of beta cells because of a combination of various stresses. In human type 2 diabetes, islet amyloid deposition is a unique pathological change characterized by proinflammatory macrophage (M1) infiltration into the islets. The pathological changes in the pancreas with islet amyloid were different according to clinical factors, which suggests that type 2 diabetes can be further subclassified based on islet pathology. On the other hand, diabetic peripheral neuropathy is the most frequent diabetic complication. In early diabetic peripheral neuropathy, M1 infiltration in the sciatic nerve evokes oxidative stress or attenuates retrograde axonal transport, as clearly demonstrated by in vitro live imaging. Furthermore, islet parasympathetic nerve density and beta cell volume were inversely correlated in type 2 diabetic Goto-Kakizaki rats, suggesting that diabetic peripheral neuropathy itself may contribute to the decrease in beta cell volume. These findings suggest that the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy may be interrelated.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
6
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
8
|
Kushibiki H, Mizukami H, Osonoi S, Takeuchi Y, Sasaki T, Ogasawara S, Wada K, Midorikawa S, Ryuzaki M, Wang Z, Yamada T, Yamazaki K, Tarusawa T, Tanba T, Mikami T, Matsubara A, Ishibashi Y, Hakamada K, Nakaji S. Tryptophan metabolism and small fibre neuropathy: a correlation study. Brain Commun 2024; 6:fcae103. [PMID: 38618209 PMCID: PMC11010654 DOI: 10.1093/braincomms/fcae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Small nerve fibres located in the epidermis sense pain. Dysfunction of these fibres decreases the pain threshold known as small fibre neuropathy. Diabetes mellitus is accompanied by metabolic changes other than glucose, synergistically eliciting small fibre neuropathy. These findings suggest that various metabolic changes may be involved in small fibre neuropathy. Herein, we explored the correlation between pain sensation and changes in plasma metabolites in healthy Japanese subjects. The pain threshold evaluated from the intraepidermal electrical stimulation was used to quantify pain sensation in a total of 1021 individuals in the 2017 Iwaki Health Promotion Project. Participants with a pain threshold evaluated from the intraepidermal electrical stimulation index <0.20 mA were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-low group (n = 751); otherwise, they were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-high group (n = 270). Metabolome analysis of plasma was conducted using capillary electrophoresis time-of-flight mass spectrometry. The metabolite set enrichment analysis revealed that the metabolism of tryptophan was significantly correlated with the pain threshold evaluated from the intraepidermal electrical stimulation index in all participants (P < 0.05). The normalized level of tryptophan was significantly decreased in participants with a high pain threshold evaluated from the intraepidermal electrical stimulation index. In addition to univariate linear regression analyses, the correlation between tryptophan concentration and the pain threshold evaluated from the intraepidermal electrical stimulation index remained significant after adjustment for multiple factors (β = -0.07615, P < 0.05). These findings indicate that specific metabolic changes are involved in the deterioration of pain thresholds. Here, we show that abnormal tryptophan metabolism is significantly correlated with an elevated pain threshold evaluated from the intraepidermal electrical stimulation index in the Japanese population. This correlation provides insight into the pathology and clinical application of small fibre neuropathy.
Collapse
Affiliation(s)
- Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shin Midorikawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Masaki Ryuzaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Zhenchao Wang
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takahiro Yamada
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takefusa Tarusawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Taiyo Tanba
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
9
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Mizukami H. Serine supplementation: Is it a new option for the treatment of diabetic polyneuropathy? J Diabetes Investig 2023; 14:1157-1159. [PMID: 37357504 PMCID: PMC10512908 DOI: 10.1111/jdi.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|