1
|
Cristiani CM, Mimmi S, Parrotta EI, Talarico M, Tolomeo AM, Pingitore E, Fatima K, Vescio B, Scaramuzzino L, Crapella V, Zimbo AM, Iaccino E, Cuda G, Quattrone A, Quattrone A. Neuronally Derived Extracellular Vesicles' Oligomeric and p129-α-Synuclein Levels for Differentiation of Parkinson's Disease from Essential Tremor. Int J Mol Sci 2025; 26:3819. [PMID: 40332541 PMCID: PMC12028296 DOI: 10.3390/ijms26083819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Clinical differentiation between Parkinson's disease (PD) and essential tremor (ET) may be challenging, highlighting the need for easily assessable diagnostic biomarkers. Neuronally derived extracellular vesicles (NDEVs) have been proposed as a peripheral matrix that can well recapitulate the cellular composition of neurons. We investigated the clinical usefulness of NDEV oligomeric and p129-α-synuclein levels in discriminating between patients with PD and those with ET. NDEV oligomeric and p129-α-synuclein species were assessed using an ELISA in 43 patients with PD, 21 patients with ET, and 45 healthy controls (HCs). NDEV oligomeric α-synuclein levels were significantly higher in PD in comparison with ET and HCs, while p129-α-synuclein values were significantly lower in HCs compared to other groups. By using a receiver operator characteristic (ROC) analysis, oligomeric-α-synuclein achieved an excellent classification performance in distinguishing PD from both ET and HCs (AUC: 0.976 and 0.997, respectively), while lower performance was obtained in differentiating ET from HCs (AUC: 0.85). On the other hand, p129-α-synuclein accurately discriminated both PD and ET from HCs (AUC: 0.997 and 0.952, respectively) but had very low performance in differentiating PD from ET (AUC: 0.47). Our study suggests that NDEV oligomeric α-synuclein is an accurate blood-derived biomarker to differentiate PD from ET, while p129-α-synuclein may be useful in distinguishing ET from HCs.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Selena Mimmi
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Laboratory of Stem Cells, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mariagrazia Talarico
- Laboratory of Stem Cells, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Anna Maria Tolomeo
- Institute of Pediatric Research Città della Speranza, 35128 Padua, Italy
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128 Padua, Italy
| | - Elisabetta Pingitore
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Khushboo Fatima
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Basilio Vescio
- Biotecnomed S.c.ar.l., 88100 Catanzaro, Italy
- IBSBC-CNR, Via T. Campanella, 115, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Valentina Crapella
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
3
|
Stehouwer JS, Huang G, Saturnino Guarino D, Debnath ML, Polu A, Geib SJ, Lopresti B, Ikonomovic MD, Mason N, Mach RH, Mathis CA. Structure-Activity Relationships and Evaluation of 2-(Heteroaryl-cycloalkyl)-1 H-indoles as Tauopathy Positron Emission Tomography Radiotracers. J Med Chem 2025; 68:6462-6492. [PMID: 40068019 PMCID: PMC11956013 DOI: 10.1021/acs.jmedchem.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Structure-activity relationship studies were performed on a library of synthesized compounds based on previously identified tau ligands. The top 13 new compounds had Ki values in the range of 5-14 nM in Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) post-mortem brain tissues. One of the more promising new compounds ([3H]75) bound with high affinity in AD, PSP, and CBD tissues (KD's = 1-1.5 nM) and Pick's disease tissue (KD = 3.8 nM). Autoradiography studies with [3H]75 demonstrated specific binding in AD, PSP, and CBD post-mortem tissues. Nonhuman primate brain PET imaging with [18F]75 demonstrated a peak standardized uptake value (SUV) of ∼5 in the cerebellum, ∼4.5 in the cortex, and ∼4 in whole brain with SUV 2-to-90 min ratios of 3.9 in whole brain, 4.9 in cortex, and 4.5 in cerebellum. Compound [18F]75 is a promising candidate for translation to human brain PET imaging studies.
Collapse
Affiliation(s)
- Jeffrey S. Stehouwer
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Guofeng Huang
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Dinahlee Saturnino Guarino
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Manik L. Debnath
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Ashok Polu
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Steven J. Geib
- X-ray
Crystallography Laboratory, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Brian Lopresti
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Milos D. Ikonomovic
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Geriatric
Research and Clinical Education, VA Pittsburgh
Healthcare System, Pittsburgh, Pennsylvania 15240, United States
| | - Neale Mason
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Robert H. Mach
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Chester A. Mathis
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Almasi F, Abbasloo F, Soltani N, Dehbozorgi M, Moghadam Fard A, Kiani A, Ghasemzadeh N, Mesgari H, Zadeh Hosseingholi E, Payandeh Z, Rahmanpour P. Biology, Pathology, and Targeted Therapy of Exosomal Cargoes in Parkinson's Disease: Advances and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04788-7. [PMID: 39998798 DOI: 10.1007/s12035-025-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) involves the loss of dopamine neurons and accumulation of alpha-synuclein (α-syn), leading to Lewy bodies. While α-syn-targeting immunotherapies show promise, clinical application is challenging. Emerging strategies include nano-platforms for targeted delivery and imaging, and cell-based therapies with patient-specific dopaminergic neurons, aiming to enhance treatment effectiveness despite challenges. Exosome-based methodologies are emerging as a promising area of research in PD due to their role in the spread of α-syn pathology. Exosomes are small extracellular vesicles that can carry misfolded α-syn and transfer it between cells, contributing to the progression of PD. They can be isolated from biological fluids such as blood and cerebrospinal fluid, making them valuable biomarkers for the disease. Additionally, engineering exosomes to deliver therapeutic agents, including small molecules, RNA, or proteins, offers a novel approach for targeted therapy, capitalizing on their natural ability to cross the blood-brain barrier (BBB). Ongoing studies are evaluating the safety and efficacy of these engineered exosomes in clinical settings. This review explores the role of exosomes in PD, focusing on their potential for diagnosis, treatment, and understanding of pathology. It highlights advancements and future directions in using exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Faezeh Almasi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Faeze Abbasloo
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Soltani
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Masoud Dehbozorgi
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen), Aachen City, Germany
| | | | - Arash Kiani
- Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasim Ghasemzadeh
- School of Natural Sciences and Mathematics, University of Dallas, Richardson, TX, USA
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Zadeh Hosseingholi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| | | |
Collapse
|
5
|
Ma J, Tang Z, Wu Y, Zhang J, Wu Z, Huang L, Liu S, Wang Y. Differences in Blood and Cerebrospinal Fluid Between Parkinson's Disease and Related Diseases. Cell Mol Neurobiol 2024; 45:9. [PMID: 39729132 DOI: 10.1007/s10571-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
It is difficult to distinguish Parkinson's disease (PD) in the early stage from those of various disorders including atypical Parkinson's syndrome (APS), vascular parkinsonism (VP), and even essential tremor (ET), because of the overlap of symptoms. Other, more challenging problems will arise when Parkinson's disease develops into Parkinson's disease dementia (PDD) in the middle and late stages. At this time, the differential diagnosis of PDD and DLB becomes thorny. These complicate the diagnostic process for PD, which traditionally heavily relies on symptomatic assessment and treatment response. Recent advances have identified several biomarkers in the blood and cerebrospinal fluid (CSF), including α-synuclein, lysosomal enzymes, fatty acid-binding proteins, and neurofilament light chain, whose concentration differs in PD and the related diseases. However, not all these molecules can effectively discriminate PD from related disorders. This review advocates for a paradigm shift toward biomarker-based diagnosis to effectively distinguish between PD and similar conditions. These biomarkers may reflect the diversity that exist among different diseases and provide an effective way to accurately understand their mechanisms. This review focused on blood and CSF biomarkers of PD that may have differential diagnostic value and the related molecular measurement methods with high diagnostic performance due to emerging technologies.
Collapse
Affiliation(s)
- Jie Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Tang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zitao Wu
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Lulu Huang
- Medical Affairs, The Department of ICON Pharma Development Solutions (IPD), ICON Public Limited Company (ICON Plc), Beijing, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Cristiani CM, Scaramuzzino L, Parrotta EI, Cuda G, Quattrone A, Quattrone A. Serum Tau Species in Progressive Supranuclear Palsy: A Pilot Study. Diagnostics (Basel) 2024; 14:2746. [PMID: 39682654 DOI: 10.3390/diagnostics14232746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Progressive Supranuclear Palsy (PSP) is a tauopathy showing a marked symptoms overlap with Parkinson's Disease (PD). PSP pathology suggests that tau protein might represent a valuable biomarker to distinguish between the two diseases. Here, we investigated the presence and diagnostic value of six different tau species (total tau, 4R-tau isoform, tau aggregates, p-tau202, p-tau231 and p-tau396) in serum from 13 PSP and 13 PD patients and 12 healthy controls (HCs). METHODS ELISA commercial kits were employed to assess all the tau species except for t-tau, which was assessed by a single molecule array (SIMOA)-based commercial kit. Possible correlations between tau species and biological and clinical features of our cohorts were also evaluated. RESULTS Among the six tau species tested, only p-tau396 was detectable in serum. Concentration of p-tau396 was significantly higher in both PSP and PD groups compared to HC, but PSP and PD patients showed largely overlapping values. Moreover, serum concentration of p-tau396 strongly correlated with disease severity in PSP and not in PD. CONCLUSIONS Overall, we identified serum p-tau396 as the most expressed phosphorylated tau species in serum and as a potential tool for assessing PSP clinical staging. Moreover, we demonstrated that other p-tau species may be present at too low concentrations in serum to be detected by ELISA, suggesting that future work should focus on other biological matrices.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Clinical and Experimental Medicine, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Akbari-Gharalari N, Ghahremani-Nasab M, Naderi R, Chodari L, Nezhadshahmohammad F. The potential of exosomal biomarkers: Revolutionizing Parkinson's disease: How do they influence pathogenesis, diagnosis, and therapeutic strategies? AIMS Neurosci 2024; 11:374-397. [PMID: 39431275 PMCID: PMC11486621 DOI: 10.3934/neuroscience.2024023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the pathological accumulation of α-synuclein, which has driven extensive research into the role of exosomes in disease mechanisms. Exosomes are nanoscale vesicles enriched with proteins, RNA, and lipids that facilitate critical intercellular communication processes. Recent studies have elucidated the role of exosomes in transmitting misfolded proteins among neurons, which significantly impacts the progression of PD. The presence of disease-associated exosomes in cerebrospinal fluid and blood highlights their substantial diagnostic potential for PD. Specifically, exosomes derived from the central nervous system (CNS) have emerged as promising biomarkers because of their ability to accurately reflect pathological states. Furthermore, the isolation of exosomes from distinct brain cell types allows the identification of precise biomarkers, increasing diagnostic specificity and accuracy. In addition to being useful for diagnostics, exosomes hold therapeutic promise given their ability to cross the blood-brain barrier (BBB) and selectively modulate their cargo. These findings suggest that these materials could be used as delivery systems for therapeutic drugs for the treatment of neurodegenerative diseases. This review comprehensively examines the multifaceted roles of exosomes in PD pathogenesis, diagnosis, and treatment. It also addresses the associated clinical challenges and underscores the urgent need for further research and development to fully leverage exosome-based strategies in PD management.
Collapse
Affiliation(s)
- Naeimeh Akbari-Gharalari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Naderi
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
8
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
9
|
Cristiani CM, Scaramuzzino L, Quattrone A, Parrotta EI, Cuda G, Quattrone A. Serum Oligomeric α-Synuclein and p-tau181 in Progressive Supranuclear Palsy and Parkinson's Disease. Int J Mol Sci 2024; 25:6882. [PMID: 38999992 PMCID: PMC11241320 DOI: 10.3390/ijms25136882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Clinical differentiation of progressive supranuclear palsy (PSP) from Parkinson's disease (PD) is challenging due to overlapping phenotypes and the late onset of specific atypical signs. Therefore, easily assessable diagnostic biomarkers are highly needed. Since PD is a synucleopathy while PSP is a tauopathy, here, we investigated the clinical usefulness of serum oligomeric-α-synuclein (o-α-synuclein) and 181Thr-phosphorylated tau (p-tau181), which are considered as the most important pathological protein forms in distinguishing between these two parkinsonisms. We assessed serum o-α-synuclein and p-tau181 by ELISA and SIMOA, respectively, in 27 PSP patients, 43 PD patients, and 39 healthy controls (HC). Moreover, we evaluated the correlation between serum biomarkers and biological and clinical features of these subjects. We did not find any difference in serum concentrations of p-tau181 and o-α-synuclein nor in the o-α-synuclein/p-tau181 ratio between groups. However, we observed that serum p-tau181 positively correlated with age in HC and PD, while serum o-α-synuclein correlated positively with disease severity in PD and negatively with age in PSP. Finally, the o-α-synuclein/p-tau181 ratio showed a negative correlation with age in PD.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Clinical and Experimental Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| |
Collapse
|
10
|
Park C, Weerakkody JS, Schneider R, Miao S, Pitt D. CNS cell-derived exosome signatures as blood-based biomarkers of neurodegenerative diseases. Front Neurosci 2024; 18:1426700. [PMID: 38966760 PMCID: PMC11222337 DOI: 10.3389/fnins.2024.1426700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
Molecular biomarkers require the reproducible capture of disease-associated changes and are ideally sensitive, specific and accessible with minimal invasiveness to patients. Exosomes are a subtype of extracellular vesicles that have gained attention as potential biomarkers. They are released by all cell types and carry molecular cargo that reflects the functional state of the cells of origin. These characteristics make them an attractive means of measuring disease-related processes within the central nervous system (CNS), as they cross the blood-brain barrier (BBB) and can be captured in peripheral blood. In this review, we discuss recent progress made toward identifying blood-based protein and RNA biomarkers of several neurodegenerative diseases from circulating, CNS cell-derived exosomes. Given the lack of standardized methodology for exosome isolation and characterization, we discuss the challenges of capturing and quantifying the molecular content of exosome populations from blood for translation to clinical use.
Collapse
Affiliation(s)
- Calvin Park
- Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | | | | | - Sheng Miao
- Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David Pitt
- Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
11
|
Wu S, Shang X, Guo M, Su L, Wang J. Exosomes in the Diagnosis of Neuropsychiatric Diseases: A Review. BIOLOGY 2024; 13:387. [PMID: 38927267 PMCID: PMC11200774 DOI: 10.3390/biology13060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Exosomes are 30-150 nm small extracellular vesicles (sEVs) which are highly stable and encapsulated by a phospholipid bilayer. Exosomes contain proteins, lipids, RNAs (mRNAs, microRNAs/miRNAs, long non-coding RNAs/lncRNAs), and DNA of their parent cell. In pathological conditions, the composition of exosomes is altered, making exosomes a potential source of biomarkers for disease diagnosis. Exosomes can cross the blood-brain barrier (BBB), which is an advantage for using exosomes in the diagnosis of central nervous system (CNS) diseases. Neuropsychiatric diseases belong to the CNS diseases, and many potential diagnostic markers have been identified for neuropsychiatric diseases. Here, we review the potential diagnostic markers of exosomes in neuropsychiatric diseases and discuss the potential application of exosomal biomarkers in the early and accurate diagnosis of these diseases. Additionally, we outline the limitations and future directions of exosomes in the diagnosis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Song Wu
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xinmiao Shang
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Meng Guo
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Lei Su
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China;
| | - Jun Wang
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
12
|
Ishiguro Y, Tsunemi T, Shimada T, Yoroisaka A, Ueno SI, Takeshige-Amano H, Hatano T, Inoue Y, Saiki S, Hattori N. Extracellular vesicles contain filamentous alpha-synuclein and facilitate the propagation of Parkinson's pathology. Biochem Biophys Res Commun 2024; 703:149620. [PMID: 38359614 DOI: 10.1016/j.bbrc.2024.149620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Parkinson's disease (PD) is characterized by the pathological deposition of a-synuclein (a-syn) inclusions, known as Lewy bodies/neurites. Emerging evidence suggests that extracellular vesicles (EVs) play a role in facilitating the spreading of Lewy pathology between the peripheral nervous system and the central nervous system. We analyzed serum EVs obtained from patients with PD (n = 142), multiple system atrophy (MSA) (n = 18), progressive supranuclear palsy (PSP) (n = 28), rapid eye movement sleep behavior disorder (n = 31), and controls (n = 105). While we observed a significant reduction in the number of EVs in PD compared to controls (p = 0.006), we also noted a substantial increase in filamentous α-synuclein within EVs in PD compared to controls (p < 0.0001), MSA (0.012), and PSP (p = 0.03). Further analysis unveiled the role of EVs in facilitating the transmission of filamentous α-synuclein between neurons and from peripheral blood to the CNS. These findings highlight the potential utility of serum α-synuclein filaments within EVs as diagnostic markers for synucleinopathies and underscore the significance of EVs in promoting the dissemination of filamentous α-synuclein throughout the entire body.
Collapse
Affiliation(s)
- Yuta Ishiguro
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taiji Tsunemi
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Neurology, Koto Hospital, 6-8-5 Ojima, Koto-ku, Tokyo, 136-0072, Japan.
| | - Tomoyo Shimada
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Asako Yoroisaka
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruka Takeshige-Amano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Shinji Saiki
- Department of Neurology Faculty of Medicine, University of Tsukuba, 2-1-1 Tenkubo, Tsukuba-shi, Ibaragi, 305-8576, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
13
|
Taha HB, Bogoniewski A. Analysis of biomarkers in speculative CNS-enriched extracellular vesicles for parkinsonian disorders: a comprehensive systematic review and diagnostic meta-analysis. J Neurol 2024; 271:1680-1706. [PMID: 38103086 PMCID: PMC10973014 DOI: 10.1007/s00415-023-12093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS), exhibit overlapping early-stage symptoms, complicating definitive diagnosis despite heterogeneous cellular and regional pathophysiology. Additionally, the progression and the eventual conversion of prodromal conditions such as REM behavior disorder (RBD) to PD, MSA, or DLB remain challenging to predict. Extracellular vesicles (EVs) are small, membrane-enclosed structures released by cells, playing a vital role in communicating cell-state-specific messages. Due to their ability to cross the blood-brain barrier into the peripheral circulation, measuring biomarkers in blood-isolated speculative CNS enriched EVs has become a popular diagnostic approach. However, replication and independent validation remain challenging in this field. Here, we aimed to evaluate the diagnostic accuracy of speculative CNS-enriched EVs for parkinsonian disorders. METHODS We conducted a PRISMA-guided systematic review and meta-analysis, covering 18 studies with a total of 1695 patients with PD, 253 with MSA, 21 with DLB, 172 with PSP, 152 with CBS, 189 with RBD, and 1288 HCs, employing either hierarchical bivariate models or univariate models based on study size. RESULTS Diagnostic accuracy was moderate for differentiating patients with PD from HCs, but revealed high heterogeneity and significant publication bias, suggesting an inflation of the perceived diagnostic effectiveness. The bias observed indicates that studies with non-significant or lower effect sizes were less likely to be published. Although results for differentiating patients with PD from those with MSA or PSP and CBS appeared promising, their validity is limited due to the small number of involved studies coming from the same research group. Despite initial reports, our analyses suggest that using speculative CNS-enriched EV biomarkers may not reliably differentiate patients with MSA from HCs or patients with RBD from HCs, due to their lesser accuracy and substantial variability among the studies, further complicated by substantial publication bias. CONCLUSION Our findings underscore the moderate, yet unreliable diagnostic accuracy of biomarkers in speculative CNS-enriched EVs in differentiating parkinsonian disorders, highlighting the presence of substantial heterogeneity and significant publication bias. These observations reinforce the need for larger, more standardized, and unbiased studies to validate the utility of these biomarkers but also call for the development of better biomarkers for parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
15
|
Gualerzi A, Picciolini S, Bedoni M, Guerini FR, Clerici M, Agliardi C. Extracellular Vesicles as Biomarkers for Parkinson's Disease: How Far from Clinical Translation? Int J Mol Sci 2024; 25:1136. [PMID: 38256215 PMCID: PMC10816807 DOI: 10.3390/ijms25021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting about 10 million people worldwide with a prevalence of about 2% in the over-80 population. The disease brings in also a huge annual economic burden, recently estimated by the Michael J Fox Foundation for Parkinson's Research to be USD 52 billion in the United States alone. Currently, no effective cure exists, but available PD medical treatments are based on symptomatic prescriptions that include drugs, surgical approaches and rehabilitation treatment. Due to the complex biology of a PD brain, the design of clinical trials and the personalization of treatment strategies require the identification of accessible and measurable biomarkers to monitor the events induced by treatment and disease progression and to predict patients' responsiveness. In the present review, we strive to briefly summarize current knowledge about PD biomarkers, focusing on the role of extracellular vesicles as active or involuntary carriers of disease-associated proteins, with particular attention to those research works that envision possible clinical applications.
Collapse
Affiliation(s)
- Alice Gualerzi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Marzia Bedoni
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Mario Clerici
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Cristina Agliardi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| |
Collapse
|
16
|
Schaeffer E, Kluge A, Schulte C, Deuschle C, Bunk J, Welzel J, Maetzler W, Berg D. Association of Misfolded α-Synuclein Derived from Neuronal Exosomes in Blood with Parkinson's Disease Diagnosis and Duration. JOURNAL OF PARKINSON'S DISEASE 2024; 14:667-679. [PMID: 38669557 PMCID: PMC11191501 DOI: 10.3233/jpd-230390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/28/2024]
Abstract
Background Misfolded α-synuclein can be detected in blood samples of Parkinson's disease (PD) patients by a seed amplification assay (SAA), but the association with disease duration is not clear, yet. Objective In the present study we aimed to elucidate whether seeding activity of misfolded α-synuclein derived from neuronal exosomes in blood is associated with PD diagnosis and disease duration. Methods Cross-sectional samples of PD patients were analyzed and compared to samples of age- and gender-matched healthy controls using a blood-based SAA. Presence of α-synuclein seeding activity and differences in seeding parameters, including fluorescence response (in arbitrary units) at the end of the amplification assay (F60) were analyzed. Additionally, available PD samples collected longitudinally over 5-9 years were included. Results In the cross-sectional dataset, 79 of 80 PD patients (mean age 69 years, SD = 8; 56% male) and none of the healthy controls (n = 20, mean age 70 years, SD = 10; 55% male) showed seeding activity (sensitivity 98.8%). When comparing subgroups divided by disease duration, longer disease duration was associated with lower α-synuclein seeding activity (F60: p < 0.001). In the longitudinal analysis 10/11 patients showed a gradual decrease of α-synuclein seeding activity over time. Conclusions This study confirms the high sensitivity of the blood-based α-synuclein SAA applied here. The negative association of α-synuclein seeding activity in blood with disease duration makes this parameter potentially interesting as biomarker for future studies on the pathophysiology of disease progression in PD, and for biologically oriented trials in this field.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Christian Deuschle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Josina Bunk
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
17
|
Taha HB, Ati SS. Evaluation of α-synuclein in CNS-originating extracellular vesicles for Parkinsonian disorders: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3741-3755. [PMID: 37416941 PMCID: PMC10651986 DOI: 10.1111/cns.14341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND & AIMS Parkinsonian disorders, such as Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), share early motor symptoms but have distinct pathophysiology. As a result, accurate premortem diagnosis is challenging for neurologists, hindering efforts for disease-modifying therapeutic discovery. Extracellular vesicles (EVs) contain cell-state-specific biomolecules and can cross the blood-brain barrier to the peripheral circulation, providing a unique central nervous system (CNS) insight. This meta-analysis evaluated blood-isolated neuronal and oligodendroglial EVs (nEVs and oEVs) α-synuclein levels in Parkinsonian disorders. METHODS Following PRISMA guidelines, the meta-analysis included 13 studies. An inverse-variance random-effects model quantified effect size (SMD), QUADAS-2 assessed risk of bias and publication bias was evaluated. Demographic and clinical variables were collected for meta-regression. RESULTS The meta-analysis included 1,565 patients with PD, 206 with MSA, 21 with DLB, 172 with PSP, 152 with CBS and 967 healthy controls (HCs). Findings suggest that combined concentrations of nEVs and oEVs α-syn is higher in patients with PD compared to HCs (SMD = 0.21, p = 0.021), while nEVs α-syn is lower in patients with PSP and CBS compared to patients with PD (SMD = -1.04, p = 0.0017) or HCs (SMD = -0.41, p < 0.001). Additionally, α-syn in nEVs and/or oEVs did not significantly differ in patients with PD vs. MSA, contradicting the literature. Meta-regressions show that demographic and clinical factors were not significant predictors of nEVs or oEVs α-syn concentrations. CONCLUSION The results highlight the need for standardized procedures and independent validations in biomarker studies and the development of improved biomarkers for distinguishing Parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Shomik S. Ati
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
18
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
19
|
Taha HB. Plasma versus serum for extracellular vesicle (EV) isolation: A duel for reproducibility and accuracy for CNS-originating EVs biomarker analysis. J Neurosci Res 2023; 101:1677-1686. [PMID: 37501394 DOI: 10.1002/jnr.25231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Blood-derived extracellular vesicles (EVs) are a popular source of biomarkers for central nervous system (CNS) diseases, but inconsistencies in isolation and analysis hinder their clinical translation. This review summarizes recent studies that investigate the impact of different anticoagulated plasma and serum on the yield, purity, and molecular content of EVs. Specifically, the studies compare ethylenediaminetetraacetic acid (EDTA), citrate, heparin plasma, and serum and highlight the risk of contamination from platelet-derived EVs. Here, I offer practical guidelines for standardizing EV isolation and analysis, recommending the use of plasma anticoagulated with acid-citrate-dextrose (ACD) or citrate followed by EDTA and heparin, subgroup analyses for samples from different biobank repositories, and avoiding serum and plasma-to-serum transformation. Other factors like illness, age, gender, meal timing, exercise, circadian timing, and arm pressure during blood draw can alter EV signatures. Yet, how these variables interact with different anticoagulated plasma or serum samples is unclear, necessitating further research. Furthermore, whether the changes are dependent on the isolation or quantification methodology remains an area of investigation. Importantly, the perspective emphasizes the need for consistency in experimental methodologies to improve the reproducibility and clinical applicability of CNS-originating EV biomarker studies. The proposed guidelines, along with ongoing efforts to standardize blood sample handling and collection, may facilitate the development of more reliable and informative CNS-originating EV biomarkers for diagnosis, prognosis, and treatment monitoring of CNS diseases.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
20
|
Taha HB, Bogoniewski A. Extracellular vesicles from bodily fluids for the accurate diagnosis of Parkinson's disease and related disorders: A systematic review and diagnostic meta-analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e121. [PMID: 38939363 PMCID: PMC11080888 DOI: 10.1002/jex2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 06/29/2024]
Abstract
Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) are often misdiagnosed due to overlapping symptoms and the absence of precise biomarkers. Furthermore, there are no current methods to ascertain the progression and conversion of prodromal conditions such as REM behaviour disorder (RBD). Extracellular vesicles (EVs), containing a mixture of biomolecules, have emerged as potential sources for parkinsonian diagnostics. However, inconsistencies in previous studies have left their diagnostic potential unclear. We conducted a meta-analysis, following PRISMA guidelines, to assess the diagnostic accuracy of general EVs isolated from various bodily fluids, including cerebrospinal fluid (CSF), plasma, serum, urine or saliva, in differentiating patients with parkinsonian disorders from healthy controls (HCs). The meta-analysis included 21 studies encompassing 1285 patients with PD, 24 with MSA, 105 with DLB, 99 with PSP, 101 with RBD and 783 HCs. Further analyses were conducted only for patients with PD versus HCs, given the limited number for other comparisons. Using bivariate and hierarchal receiver operating characteristics (HSROC) models, the meta-analysis revealed moderate diagnostic accuracy in distinguishing patients with PD from HCs, with substantial heterogeneity and publication bias. The trim-and-fill method revealed at least two missing studies with null or low diagnostic accuracy. CSF-EVs showed better overall diagnostic accuracy, while plasma-EVs had the lowest performance. General EVs demonstrated higher diagnostic accuracy compared to CNS-originating EVs, which are more time-consuming, labour- and cost-intensive to isolate. In conclusion, while holding promise, utilizing biomarkers in general EVs for PD diagnosis remains unfeasible due to existing challenges. The focus should shift toward harmonizing the field through standardization, collaboration, and rigorous validation. Current efforts by the International Society For Extracellular Vesicles (ISEV) aim to enhance the accuracy and reproducibility of EV-related research through rigor and standardization, aiming to bridge the gap between theory and practical clinical application.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
21
|
Huang J, Yuan X, Chen L, Hu B, Wang H, Huang W. The Biology, Pathological Roles of Exosomes and Their Clinical Application in Parkinson's Disease. Neuroscience 2023; 531:24-38. [PMID: 37689233 DOI: 10.1016/j.neuroscience.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a high global incidence and places a great burden on the patient, their family and society. Early diagnosis of PD is the key to hindering the progression process and may enable treatment to partially reverse the disease course. Exosomes are lipid bilayers with a diameter of 40-160 nm (average ∼100 nm), show a cup-shaped structure in transmission electron microscopy (TEM) images, and contain different types of nucleic acids and proteins. On the one hand, several molecules contained in exosomes are correlated with PD pathology. On the other hand, biomarkers based on exosomes have gradually become diagnostic tools in PD. Since exosomes can freely cross the blood-brain barrier, CNS-derived exosomes obtained from the periphery have the potential to be a powerful marker for early PD diagnosis. Of course, exosomes also have great potential as drug delivery systems due to their low toxicity, lipid solubility and immunological inertness. However, there is still a lack of standardized, efficient, and ultrasensitive methods for the isolation of exosomes, hindering the development of effective biomarkers. Therefore, this review describes the biological characteristics of exosomes, exosome extraction methods, and the pathological role, diagnostic/therapeutic value of exosomes in PD.
Collapse
Affiliation(s)
- Juan Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Xingxing Yuan
- The department of Anesthesiology, Hunan Provincial People,s Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lin Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Binbin Hu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Hui Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
22
|
Shi Q, Kang W, Liu Z, Zhu X. The role of exosomes in the diagnosis of Parkinson's disease. Heliyon 2023; 9:e20595. [PMID: 37928387 PMCID: PMC10622621 DOI: 10.1016/j.heliyon.2023.e20595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/22/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Parkinson's disease is a common neurodegenerative disease characterized by intracellular aggregation of misfolded α-synuclein as a major pathological hallmark. Exosomes are cell-derived lipid bilayer membrane vesicles with various components, including proteins, RNA, and lipids, that mediate intercellular communication. Currently, exosomes are found to be responsible for transporting misfolded proteins from unhealthy neurons to nearby cells, spreading the disease from cell to cell. Such exosomes can also be found in the cerebrospinal fluid and blood. Thus, exosomes may serve as a potential tool to detect the pathology of Parkinson's disease for clinical diagnosis. In this article, the role and challenges of exosomes in the diagnosis of Parkinson's disease are outlined.
Collapse
Affiliation(s)
- Qingqing Shi
- Tianjin Medical University, General Hospital, 300000, Tianjin, China
| | - Wei Kang
- Beijing Conga Technology Co., LTD., Tianjin Branch, 300000, Tianjin, China
| | - Zhijun Liu
- Beijing Conga Technology Co., LTD., Tianjin Branch, 300000, Tianjin, China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University, General Hospital, 300000, Tianjin, China
| |
Collapse
|
23
|
Graves NJ, Gambin Y, Sierecki E. α-Synuclein Strains and Their Relevance to Parkinson's Disease, Multiple System Atrophy, and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:12134. [PMID: 37569510 PMCID: PMC10418915 DOI: 10.3390/ijms241512134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Like many neurodegenerative diseases, Parkinson's disease (PD) is characterized by the formation of proteinaceous aggregates in brain cells. In PD, those proteinaceous aggregates are formed by the α-synuclein (αSyn) and are considered the trademark of this neurodegenerative disease. In addition to PD, αSyn pathological aggregation is also detected in atypical Parkinsonism, including Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA), as well as neurodegeneration with brain iron accumulation, some cases of traumatic brain injuries, and variants of Alzheimer's disease. Collectively, these (and other) disorders are referred to as synucleinopathies, highlighting the relation between disease type and protein misfolding/aggregation. Despite these pathological relationships, however, synucleinopathies cover a wide range of pathologies, present with a multiplicity of symptoms, and arise from dysfunctions in different neuroanatomical regions and cell populations. Strikingly, αSyn deposition occurs in different types of cells, with oligodendrocytes being mainly affected in MSA, while aggregates are found in neurons in PD. If multiple factors contribute to the development of a pathology, especially in the cases of slow-developing neurodegenerative disorders, the common presence of αSyn aggregation, as both a marker and potential driver of disease, is puzzling. In this review, we will focus on comparing PD, DLB, and MSA, from symptomatology to molecular description, highlighting the role and contribution of αSyn aggregates in each disorder. We will particularly present recent evidence for the involvement of conformational strains of αSyn aggregates and discuss the reciprocal relationship between αSyn strains and the cellular milieu. Moreover, we will highlight the need for effective methodologies for the strainotyping of aggregates to ameliorate diagnosing capabilities and therapeutic treatments.
Collapse
Affiliation(s)
| | | | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; (N.J.G.)
| |
Collapse
|
24
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
25
|
Meloni M, Agliardi C, Guerini FR, Saibene FL, Milner AV, Zanzottera M, Bolognesi E, Puligheddu M, Figorilli M, Navarro J, Clerici M. Oligomeric Alpha-Synuclein and STX-1A from Neural-Derived Extracellular Vesicles (NDEVs) as Possible Biomarkers of REM Sleep Behavior Disorder in Parkinson's Disease: A Preliminary Cohort Study. Int J Mol Sci 2023; 24:ijms24108839. [PMID: 37240185 DOI: 10.3390/ijms24108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
REM sleep behavior disorder (RBD) has a tighter link with synucleinopathies than other neurodegenerative disorders. Parkinson's Disease (PD) patients with RBD have a more severe motor and cognitive impairment; biomarkers for RBD are currently unavailable. Synaptic accumulation of α-Syn oligomers and their interaction with SNARE proteins is responsible for synaptic dysfunction in PD. We verified whether oligomeric α-Syn and SNARE components in neural-derived extracellular vesicles (NDEVs) in serum could be biomarkers for RBD. Forty-seven PD patients were enrolled, and the RBD Screening Questionnaire (RBDSQ) was compiled. A cut-off score > 6 to define probable RBD (p-RBD) and probable non-RBD (p non-RBD) was used. NDEVs were isolated from serum by immunocapture, and oligomeric α-Syn and SNARE complex components VAMP-2 and STX-1 were measured by ELISA. NDEVs' STX-1A resulted in being decreased in p-RBD compared to p non-RBD PD patients. A positive correlation between NDEVs' oligomeric α-Syn and RBDSQ total score was found (p = 0.032). Regression analysis confirmed a significant association between NDEVs' oligomeric α-Syn concentration and RBD symptoms (p = 0.033) independent from age, disease duration, and motor impairment severity. Our findings suggest that synuclein-mediated neurodegeneration in PD-RBD is more diffuse. NDEVs' oligomeric α-Syn and SNARE complex components' serum concentrations could be regarded as reliable biomarkers for the RBD-specific PD endophenotype.
Collapse
Affiliation(s)
- Mario Meloni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | | | | | | | | | | | | | - Monica Puligheddu
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Michela Figorilli
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
26
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|