1
|
Li J, Cheng Y, Lu W. The diagnostic significance of miR-20b-5p in schizophrenia and its impact on the symptoms of schizophrenia. Psychiatr Genet 2025:00041444-990000000-00070. [PMID: 40207588 DOI: 10.1097/ypg.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Schizophrenia is a long-term neurological condition that impacts the quality of life of patients. To explore the expression of miR-20b-5p in schizophrenia, to analyze the diagnostic role of miR-20b-5p in schizophrenia, and to demonstrate that miR-20b-5p affects the progression of schizophrenia. METHODS The expression of miR-20b-5p was detected by real-time quantitative PCR. The diagnostic role of miR-20b-5p in schizophrenia was analyzed by receiver operating characteristic (ROC) curves. A schizophrenic rat model was constructed by injecting MK-801, and anxiety and cognition in schizophrenic rats were evaluated by an open-field test, novel object recognition test, and Morris water maze test. RESULTS The expression level of miR-20b-5p was decreased in individuals with schizophrenia, and it could serve as a potential biomarker for the diagnosis of schizophrenia. In addition, miR-20b-5p affected anxiety-like and cognitive behavior in schizophrenic rats. CONCLUSION miR-20b-5p may inhibit the progression of schizophrenia.
Collapse
Affiliation(s)
| | - Yao Cheng
- Department of Psychiatric Nursing, Hengshui Seventh People's Hospital, Hengshui, China
| | | |
Collapse
|
2
|
Ghasroldasht MM, Park HS, Ali FL, Beckman A, Mohammadi M, Hafner N, Al-Hendy A. Adapted Exosomes for Addressing Chemotherapy-induced Premature Ovarian Insufficiency. Stem Cell Rev Rep 2025; 21:779-796. [PMID: 39921838 DOI: 10.1007/s12015-024-10820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) presents a multifaceted challenge with limited treatment options. This study explored the therapeutic potential of exosome-based interventions for chemotherapy-induced POI. METHODS Adapted exosomes were engineered from umbilical cord mesenchymal stem cells (UC-MSCs) under a specific co-culture system and used for treating in vitro and in vivo models of chemotherapy-induced premature ovarian insufficiency. RESULTS In vitro models revealed the significant impact of adapted exosomes, which promoted granulosa cell proliferation, decrease apoptosis, and enhanced ovarian functional markers. The findings in an in vivo chemotherapy-induced POI mouse model indicated the restoration of ovarian morphology, follicle numbers, and fertility in both the naïve and adapted exosome-treated groups. Notably, the adapted exosome group demonstrated a heightened pregnancy rate, increased numbers of primary follicles, and a significant reduction in ovarian apoptosis. MiRNA profiling revealed distinctive cargo in the adapted exosomes, among which miR-20b-5p played a pivotal role in regulating apoptosis and inflammation; this finding is especially important given that apoptosis is one of the primary complications of chemotherapy-induced POI. Furthermore, cells treated with adapted exosomes demonstrated significant overexpression of miR-20b-5p, resulting in decreased PTEN expression and the activation of the PI3K-AKT pathway-a crucial mechanism in mitigating chemotherapy-induced POI. CONCLUSIONS This study introduces an exosome-based therapeutic approach, emphasizing the importance of exosome cargo composition in treating disorders. Further investigation into the identified miRNA profile in adapted exosomes is necessary to clarify the underlying mechanisms, potentially leading to the development of a new treatment for clinical premature ovarian insufficiency.
Collapse
Affiliation(s)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Mahya Mohammadi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Nina Hafner
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Medical Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Yang HB, Lu DC, Shu M, Li J, Ma Z. The roles and therapeutic potential of exosomal non-coding RNAs in microglia-mediated intercellular communication. Int Immunopharmacol 2025; 148:114049. [PMID: 39823800 DOI: 10.1016/j.intimp.2025.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases. Nevertheless, the emerging role of exosomal ncRNAsin microglia-mediated phenotypes remains largely unexplored. This review aims to summarise the biological functions of exosomal ncRNAs and the molecular mechanisms that underlie their impact on microglia-mediated intercellular communication, modulating neuroinflammation and synaptic functions within the landscape of neurological disorders. Furthermore, this review comprehensively described the potential applications of exosomal ncRNAs as diagnostic and prognostic biomarkers, as well as innovative therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Hu-Bo Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Min Shu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
4
|
Chen L, Wang W. Microglia-derived sEV: Friend or foe in the pathogenesis of cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111287. [PMID: 39954801 DOI: 10.1016/j.pnpbp.2025.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
As immune cells, microglia serve a dual role in cognition. Microglia-derived sEV actively contribute to the development of cognitive impairment by selectively targeting specific cells through various substances such as proteins, RNA, DNA, lipids, and metabolic waste. In recent years, there has been an increasing focus on understanding the pathogenesis and therapeutic potential of sEV. This comprehensive review summarizes the detrimental effects of M1 microglial sEV on pathogenic protein transport, neuroinflammation, disruption of the blood-brain barrier (BBB), neuronal death and synaptic dysfunction in relation to cognitive damage. Additionally, it highlights the beneficial effects of M2 microglia on alleviating cognitive impairment based on evidence from cellular experiments and animal studies. Furthermore, since microglial-secreted sEV can be found in cerebrospinal fluid or cross the BBB into plasma circulation, they play a crucial role in diagnosing cognitive impairment. However, using sEV as biomarkers is still at an experimental stage and requires further clinical validation. Future research should aim to explore the mechanisms underlying microglial involvement in various nervous system disorders to identify novel targets for clinical interventions.
Collapse
Affiliation(s)
- Lilin Chen
- Pulmonary and Critical Care Medicine, Heping District, Shenyang City, Liaoning Province, China
| | - Wei Wang
- Pulmonary and Critical Care Medicine, Heping District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
5
|
Lu D, Sun H, Fan H, Li N, Li Y, Yin X, Fan Y, Sun H, Wang S, Xin T. Regulation of nerve cells and therapeutic potential in central nervous system injury using microglia-derived exosomes. Neuroscience 2024; 563:84-92. [PMID: 39521323 DOI: 10.1016/j.neuroscience.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The intercellular communication within the central nervous system (CNS) is of great importance for in maintaining brain function, homeostasis, and CNS regulation. When the equilibrium of CNS is disrupted or injured, microglia are immediately activated and respond to CNS injury. Microglia-derived exosomes are capable of participating in intercellular communication within the CNS by transporting various bioactive substances, including nucleic acids, proteins, lipids, amino acids, and metabolites. Nevertheless, microglia activation is a double-edged sword. Activated microglia can coordinate the neural repair process and, conversely, can amplify tissue injury and impede CNS repair. This work reviewed the roles of exosomes derived from microglia stimulated by different environments (mainly lipopolysaccharide, interleukin-4, and other specific preconditioning) in CNS injury and their possible therapeutic potentials. This work focuses on the regulation of exosomes derived from microglia stimulated by different environments on nerve cells. Meanwhile, we summarized the molecular mechanisms by which the relevant exosomes exert regulatory effects. Exosomes, derived from microglia stimulated by different environments, regulate other nerve cells during the repair of CNS injury, having beneficial or detrimental effects on CNS repair. A comprehensive understanding of the molecular mechanisms underlying their role can provide a robust foundation for the clinical treatment of CNS injury.
Collapse
Affiliation(s)
- Dongxiao Lu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Hao Fan
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China; Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250021, China
| | - Nianlu Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Hao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China; Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
6
|
Zhang Y, He Z, Hu Q, Liu H, Wen R, Ru N, Yu J, Lv S, Tao R. MiR-3571 modulates traumatic brain injury by regulating the PI3K/AKT signaling pathway via Fbxo31. Cell Biochem Biophys 2024; 82:3629-3643. [PMID: 39080190 DOI: 10.1007/s12013-024-01452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
To investigate the effect of miR-3571 on traumatic brain injury (TBI) via the regulation of neuronal apoptosis through F-box-only protein 31/phosphoinositide 3-kinase/protein kinase B (Fbxo31/PI3K/AKT). We established TBI rat and cell models. Hematoxylin‒eosin (HE) and Nissl staining were used to observe brain injury and the number of Nissl bodies, respectively. Cell proliferation and apoptosis were assessed by 5-ethynyl-2'-deoxyuridine (EdU), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and flow cytometry. Gene and protein expression was measured via reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). In this study, miR-3571 was highly expressed in TBI models. Inhibition of miR-3571 expression can suppress autophagy, reduce the expression of proinflammatory cytokines, and reduce neuronal apoptosis, thus alleviating the pathological conditions of tissue congestion, edema and structural damage after TBI. These experiments demonstrated that miR-3571 could target and regulate the level of Fbxo31. Knockdown of Fbxo31 weakened the remission effect of the miR-3571 inhibitor on TBI and promoted neurological damage; moreover, overexpression of Fbxo31 enhanced the protective effect on neural function, whereas the PI3K/AKT pathway inhibitor LY294002 increased the damage caused by miR-3571 on neural function and weakened the protective effect of Fbxo31. In conclusion, miR-3571 regulates the PI3K/AKT signaling pathway by reducing Fbxo31 expression, promotes neuronal apoptosis and exacerbates TBI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Zongying He
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Qiongfang Hu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Huali Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rongai Wen
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Na Ru
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Jinghua Yu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Shaokun Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rui Tao
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China.
| |
Collapse
|
7
|
Zhang K, Wen R, Ma W, Ji H, He X, Yang Z, Liu D, Li X. P2Y12-targeted modulation of microglial phenotypes: A novel therapeutic strategy for enhanced axonal regeneration post-spinal cord injury. Life Sci 2024; 357:123057. [PMID: 39277132 DOI: 10.1016/j.lfs.2024.123057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
AIMS Microglia activation after spinal cord injury (SCI) is a double-edged sword, modulation of the activated microglia populations toward pro-regenerative phenotypes highlights the potential therapeutic implications. P2Y12, a microglia-specific marker, remains underexplored in its capacity to polarize microglial activation populations in SCI repair. We aimed to explore the effects of modulating P2Y12 on microglia function after spinal cord injury, and further on axonal regeneration and motor recovery after spinal cord injury. MATERIALS AND METHODS The study employed both in vitro and in vivo models, using BV2 cells and a mouse model of SCI, respectively. Ticagrelor, a P2Y12 antagonist, was administered via a collagen scaffold to ensure stable and sustained release. Transcriptome sequencing analysis, immunofluorescence staining, and Basso Mouse Scale (BMS) scores were used to assess microglial activation, axonal regeneration, and functional recovery. KEY FINDINGS Herein, we observed P2Y12+ microglia localized predominantly at the lesion periphery within 3 days post injury (dpi), manifesting a pro-inflammatory phenotype, but not anti-inflammatory phenotype. In vitro investigations revealed that P2Y12 inhibition of the activated microglia curtailed pro-inflammatory differentiation while augmenting anti-inflammatory differentiation. SIGNIFICANCE Leveraging this insight, we engineered a collagen scaffold-based delivery system for sustained release of the P2Y12 antagonist, ticagrelor, at the injury site in a mouse complete SCI model. Notably, P2Y12 suppression markedly enhanced axonal regeneration within the injured site and ameliorated lower limb motor functions in SCI mice. Collectively, our findings illuminate P2Y12-targeted microglial modulation as a promising therapeutic approach for SCI.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Runlin Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Wanrong Ma
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China
| | - Huaqing Ji
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China.
| |
Collapse
|
8
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
9
|
Ryu Y, Wague A, Liu X, Feeley BT, Ferguson AR, Morioka K. Cellular signaling pathways in the nervous system activated by various mechanical and electromagnetic stimuli. Front Mol Neurosci 2024; 17:1427070. [PMID: 39430293 PMCID: PMC11486767 DOI: 10.3389/fnmol.2024.1427070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Mechanical stimuli, such as stretch, shear stress, or compression, activate a range of biomolecular responses through cellular mechanotransduction. In the nervous system, studies on mechanical stress have highlighted key pathophysiological mechanisms underlying traumatic injury and neurodegenerative diseases. However, the biomolecular pathways triggered by mechanical stimuli in the nervous system has not been fully explored, especially compared to other body systems. This gap in knowledge may be due to the wide variety of methods and definitions used in research. Additionally, as mechanical stimulation techniques such as ultrasound and electromagnetic stimulation are increasingly utilized in psychological and neurorehabilitation treatments, it is vital to understand the underlying biological mechanisms in order to develop accurate pathophysiological models and enhance therapeutic interventions. This review aims to summarize the cellular signaling pathways activated by various mechanical and electromagnetic stimuli with a particular focus on the mammalian nervous system. Furthermore, we briefly discuss potential cellular mechanosensors involved in these processes.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Zuckerberg San Francisco General Hospital and Trauma CenterOrthopaedic Trauma Institute, , San Francisco, CA, United States
| |
Collapse
|
10
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. Sci Rep 2024; 14:21369. [PMID: 39266604 PMCID: PMC11392954 DOI: 10.1038/s41598-024-71312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury (DAI) and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal swellings, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals with confirmed DAI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
Affiliation(s)
| | - Karen M Gorse
- Virginia Commonwealth University, BOX 980709, Richmond, VA, 23298, USA
| | | |
Collapse
|
11
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
12
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. RESEARCH SQUARE 2024:rs.3.rs-4713316. [PMID: 39149456 PMCID: PMC11326398 DOI: 10.21203/rs.3.rs-4713316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons following brain injury in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal segments, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals that sustained a TBI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
|
13
|
Tang X, Ren Y, Zeng W, Feng X, He M, Lv Y, Li Y, He Y. MicroRNA-based interventions in aberrant cell cycle diseases: Therapeutic strategies for cancers, central nervous system disorders and comorbidities. Biomed Pharmacother 2024; 177:116979. [PMID: 38906026 DOI: 10.1016/j.biopha.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Malignant tumors and central nervous system (CNS) disorders are intricately linked to a process known as "aberrant cell cycle re-entry," which plays a critical role in the progression of these diseases. Addressing the dysregulation in cell cycles offers a promising therapeutic approach for cancers and CNS disorders. MicroRNAs (miRNAs) play a crucial role as regulators of gene expression in cell cycle transitions, presenting a promising therapeutic avenue for treating these disorders and their comorbidities. This review consolidates the progress made in the last three years regarding miRNA-based treatments for diseases associated with aberrant cell cycle re-entry. It encompasses exploring fundamental mechanisms and signaling pathways influenced by miRNAs in cancers and CNS disorders, particularly focusing on the therapeutic effects of exosome-derived miRNAs. The review also identifies specific miRNAs implicated in comorbidity of cancers and CNS disorders, discusses the future potential of miRNA reagents in managing cell cycle-related diseases.
Collapse
Affiliation(s)
- Xiaojuan Tang
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China; School of Biomedical Sciences Hunan University, Hunan University, Changsha, Hunan 410012, China.
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaoting Feng
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Min He
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuan Lv
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Yongmin Li
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Yongheng He
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
14
|
He L, Li M, Zhang Y, Li Q, Fang S, Chen G, Xu X. Neuroinflammation Plays a Potential Role in the Medulla Oblongata After Moderate Traumatic Brain Injury in Mice as Revealed by Nontargeted Metabonomics Analysis. J Neurotrauma 2024; 41:e2026-e2038. [PMID: 38695184 DOI: 10.1089/neu.2023.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Moderate traumatic brain injury (mTBI) involves a series of complex pathophysiological processes in not only the area in direct contact with mechanical violence but also in other brain regions far from the injury site, which may be important factors influencing subsequent neurological dysfunction or death. The medulla oblongata (MO) is a key area for the maintenance of basic respiratory and circulatory functions, whereas the pathophysiological processes after mTBI have rarely drawn the attention of researchers. In this study, we established a closed-head cortical contusion injury model, identified 6 different time points that covered the acute, subacute, and chronic phases, and then used nontargeted metabolomics to identify and analyze the changes in differential metabolites (DMs) and metabolic pathways in the MO region. Our results showed that the metabolic profile of the MO region underwent specific changes over time: harmaline, riboflavin, and dephospho-coenzyme A were identified as the key DMs and play important roles in reducing inflammation, enhancing antioxidation, and maintaining homeostasis. Choline and glycerophospholipid metabolism was identified as the key pathway related to the changes in MO metabolism at different phases. In addition, we confirmed increases in the levels of inflammatory factors and the activation of astrocytes and microglia by Western blot and immunofluorescence staining, and these findings were consistent with the nontargeted metabolomic results. These findings suggest that neuroinflammation plays a central role in MO neuropathology after mTBI and provide new insights into the complex pathophysiologic mechanisms involved after mTBI.
Collapse
Affiliation(s)
- Liangchao He
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Mingming Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Yonghao Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Shiyong Fang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Guang Chen
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
15
|
Feng S, Wu Z, Zheng X, Shao Z, Lin Q, Sun S. Abnormal levels of expression of microRNAs in peripheral blood of patients with traumatic brain injury are induced by microglial activation and correlated with severity of injury. Eur J Med Res 2024; 29:188. [PMID: 38504296 PMCID: PMC10953077 DOI: 10.1186/s40001-024-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Microglia play a crucial role in regulating the progression of traumatic brain injury (TBI). In specific, microglia can self-activate and secrete various substances that exacerbate or alleviate the neuroimmune response to TBI. In addition, microRNAs (miRNAs) are involved in the functional regulation of microglia. However, molecular markers that reflect the dynamics of TBI have not yet been found in peripheral tissues. METHODS Paired samples of peripheral blood were collected from patients with TBI before and after treatment. Next-generation sequencing and bioinformatics analysis were used to identify the main pathways and biological functions of TBI-related miRNAs in the samples. Moreover, lipopolysaccharide-treated human microglia were used to construct a cellular immune-activation model. This was combined with analysis of peripheral blood samples to screen for highly expressed miRNAs derived from activated microglia after TBI treatment. Quantitative reverse-transcriptase polymerase chain reaction was used to determine the expression levels of these miRNAs, allowing their relationship with the severity of TBI to be examined. Receiver operating characteristic (ROC) curves were constructed to analyse the clinical utility of these miRNAs for determining the extent of TBI. RESULTS Sequencing results showed that 37 miRNAs were differentially expressed in peripheral blood samples from patients with TBI before and after treatment, with 17 miRNAs being upregulated and 20 miRNAs being downregulated after treatment. The expression profiles of these miRNAs were verified in microglial inflammation models and in the abovementioned peripheral blood samples. The results showed that hsa-miR-122-5p and hsa-miR-193b-3p were highly expressed in the peripheral blood of patients with TBI after treatment and that the expression levels of these miRNAs were correlated with the patients' scores on the Glasgow Coma Scale. ROC curve analysis revealed that abnormally high levels of expression of hsa-miR-122-5p and hsa-miR-193b-3p in peripheral blood have some clinical utility for distinguishing different extents of TBI and thus could serve as biomarkers of TBI. CONCLUSION Abnormally high levels of expression of hsa-miR-122-5p and hsa-miR-193b-3p in the peripheral blood of patients with TBI were due to the activation of microglia and correlated with the severity of TBI. This discovery may help to increase understanding of the molecular pathology of TBI and guide the development of new strategies for TBI therapy based on microglial function.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Neurosurgery, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Zhangying Wu
- Department of Cardiology, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Xianping Zheng
- Intensive Care Unit, Zibo Central Hospital, Zibo, 255024, China
| | - Zhiwei Shao
- Intensive Care Unit, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Qiang Lin
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zhangdian District, Zibo, 255024, China.
| |
Collapse
|
16
|
Zhao Y, Liu J, Liu S, Yang P, Liang Y, Ma J, Mao S, Sun C, Yang Y. Fibroblast exosomal TFAP2C induced by chitosan oligosaccharides promotes peripheral axon regeneration via the miR-132-5p/CAMKK1 axis. Bioact Mater 2023; 26:249-263. [PMID: 36936807 PMCID: PMC10020534 DOI: 10.1016/j.bioactmat.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Chitosan and its degradation product, oligosaccharides, have been shown to facilitate peripheral nerve regeneration. However, the underlying mechanisms are not well understood. In this study, we analyzed the protein expression profiles in sciatic nerves after injury using proteomics. A group of proteins related to exosome packaging and transport is up-regulated by chitosan oligosaccharides (COS), implying that exosomes are involved in COS-induced peripheral nerve regeneration. In fact, exosomes derived from fibroblasts (f-EXOs) treated with COS significantly promoted axon extension and regeneration. Exosomal protein identification and functional studies, revealed that TFAP2C is a key factor in neurite outgrowth induced by COS-f-EXOs. Furthermore, we showed that TFAP2C targets the pri-miRNA-132 gene and represses miR-132-5p expression in dorsal root ganglion neurons. Camkk1 is a downstream substrate of miR-132-5p that positively affects axon extension. In rats, miR-132-5p antagomir stimulates CAMKK1 expression and improves axon regeneration and functional recovery in sciatic nerves after injury. Our data reveal the mechanism for COS in axon regeneration, that is COS induce fibroblasts to produce TFAP2C-enriched EXOs, which are then transferred into axons to promote axon regeneration via miR-132-5p/CAMKK1. Moreover, these results show a new facet of fibroblasts in axon regeneration in peripheral nerves.
Collapse
Affiliation(s)
- Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Jina Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Sha Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Panpan Yang
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Yunyun Liang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| |
Collapse
|