1
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Lim SW, Kansedo J, Tan IS, Nandong J, Tan YH, Lam MK, Ongkudon CM. One-pot polyhydroxyalkanoate (PHA) production from Cerbera odollam (sea mango) oil using Pseudomonas resinovorans: Optimal fermentation design and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124394. [PMID: 39921954 DOI: 10.1016/j.jenvman.2025.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
With growing environmental concerns over plastic pollution, polyhydroxyalkanoates (PHAs) have recently gained significant attention as promising biodegradable polymers to substitute petroleum-based plastics. In this work, non-edible Cerbera odollam oil was employed as a renewable carbon source for PHA production to improve the economic competitiveness and environmental sustainability of the process. The optimization and mechanism of PHA production from C. odollam oil using Pseudomonas resinovorans DSM 21078 were presented. Through response surface methodology, the optimal condition for PHA production was 0.3 g/L urea concentration, 17.52 g/L oil concentration, and 10.46% (v/v) inoculum size. Results showed that a maximum PHA concentration of 0.50 g/L (with a polymer content of 26.0%) was attained at this optimal condition. The product was composed of 1.3% 3-hydroxybutyrate (3HB), 9.2% 3-hydroxyhexanoate (3HHx), 43.3% 3-hydroxyoctanoate (3HO), 32.0% 3-hydroxydecanoate (3HD), 11.9% 3-hydroxydodecanoate (3HDD), and 2.2% 3-hydroxytetradecanoate (3HTD). The PHA polymers exhibited adhesive, soft, and amorphous properties at room temperature, with high thermal stability, making them desirable for polymer processing. From the mechanism proposed, it was inferred that P. resinovorans DSM 21078 produces longer-chain PHA monomers mainly through the direct β-oxidation of long-chain fatty acids and shorter-chain monomers via the de novo fatty acid synthesis pathway when oil-based substrates are utilized. The findings from this work could pave the way for new paradigms that significantly enhance future research in the development of highly efficient oil resource valorization technologies to produce PHAs with intriguing properties, thereby contributing to the commercial success of sustainable bioplastics as an effective environmental management solution.
Collapse
Affiliation(s)
- Sook Wei Lim
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Jibrail Kansedo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Jobrun Nandong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
| | - Clarence M Ongkudon
- Bioprocess Engineering Research Group, Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
3
|
Xu S, Han R, Tao L, Zhang Z, Gao J, Wang X, Zhao W, Zhang X, Huang Z. Newly isolated halotolerant Gordonia terrae S-LD serves as a microbial cell factory for the bioconversion of used soybean oil into polyhydroxybutyrate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:15. [PMID: 39920822 PMCID: PMC11806602 DOI: 10.1186/s13068-025-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Polyhydroxybutyrate (PHB) is a class of biodegradable polymers generally used by prokaryotes as carbon sources and for energy storage. This study explored the feasibility of repurposing used soybean oil (USO) as a cost-effective carbon substrate for the production of PHB by the strain Gordonia terrae S-LD, marking the first report on PHB biosynthesis by this rare actinomycete species. This strain can grow under a broad range of temperatures (25-40 ℃), initial pH values (4-10), and salt concentrations (0-7%). The findings indicate that this strain can synthesize PHB at a level of 2.63 ± 0.6 g/L in a waste-containing medium containing 3% NaCl within a 3 L triangular flask, accounting for 66.97% of the cell dry weight. Furthermore, 1H NMR, 13C NMR, and GC-MS results confirmed that the polymer was PHB. The thermal properties of PHB, including its melting (Tm) and crystallization (Tc) temperatures of 176.34 °C and 56.12 °C respectively, were determined via differential scanning calorimetry analysis. The produced PHB was characterized by a weight-average molecular weight (Mw) of 5.43 × 105 g/mol, a number-average molecular weight (Mn) of 4.00 × 105 g/mol, and a polydispersity index (PDI) of 1.36. In addition, the whole genome was sequenced, and the PHB biosynthetic pathway and quantitative expression of key genes were delineated in the novel isolated strain. In conclusion, this research introduces the first instance of polyhydroxyalkanoate (PHA) production by Gordonia terrae using used soybean oil as the exclusive carbon source, which will enrich strain resources for future PHB biosynthesis.
Collapse
Affiliation(s)
- Song Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ruiqin Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300000, China
| | - Lidan Tao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhipeng Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- School of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Junfei Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xinyuan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Wei Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoxia Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
4
|
Ridella F, Marcet I, Rendueles M, Díaz M. Long-chain fatty acids as sole carbon source in polyhydroxyalkanoates production by Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2025; 417:131846. [PMID: 39566693 DOI: 10.1016/j.biortech.2024.131846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Polyhydroxyalkanoates (PHA) are promising eco-friendly alternatives to petrochemical plastics. This study investigated the impact of the main fatty acids present in waste and fresh oils -palmitic, stearic, oleic, and linoleic acid-on PHA production using Cupriavidus necator H16, focusing on production yield, polymer composition, thermal properties, and microbial viability. Experiments were conducted with low (5 g/L) and high (15 g/L) carbon content for 168 h. Oleic acid was the most effective carbon source, yielding higher PHA production rates, especially noticeable at higher concentrations. The monomer composition and thermal properties of PHAs varied with the type and concentration of fatty acid used. Stearic acid produced PHAs with more 3-hydroxyvalerate and medium-chain length monomers. Microbial viability was consistent across all conditions, except for linoleic acid, which had a detrimental effect. These findings provide key insights into optimizing fatty acid selection to enhance PHA production and tailor polymer properties for industrial applications.
Collapse
Affiliation(s)
- Florencia Ridella
- University of Oviedo, Department of Chemical Engineering and Environmental Technology. Julián Clavería 8, Faculty of Chemistry, Oviedo, Spain.
| | - Ismael Marcet
- University of Oviedo, Department of Chemical Engineering and Environmental Technology. Julián Clavería 8, Faculty of Chemistry, Oviedo, Spain.
| | - Manuel Rendueles
- University of Oviedo, Department of Chemical Engineering and Environmental Technology. Julián Clavería 8, Faculty of Chemistry, Oviedo, Spain.
| | - Mario Díaz
- University of Oviedo, Department of Chemical Engineering and Environmental Technology. Julián Clavería 8, Faculty of Chemistry, Oviedo, Spain.
| |
Collapse
|
5
|
Corti Monzón G, Bertola G, Herrera Seitz MK, Murialdo SE. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation 2024; 35:519-538. [PMID: 38310580 DOI: 10.1007/s10532-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Environmental pollution caused by petrochemical hydrocarbons (HC) and plastic waste is a pressing global challenge. However, there is a promising solution in the form of bacteria that possess the ability to degrade HC, making them valuable tools for remediating contaminated environments and effluents. Moreover, some of these bacteria offer far-reaching potential beyond bioremediation, as they can also be utilized to produce polyhydroxyalkanoates (PHAs), a common type of bioplastics. The accumulation of PHAs in bacterial cells is facilitated in environments with high C/N or C/P ratio, which are often found in HC-contaminated environments and effluents. Consequently, some HC-degrading bacteria can be employed to simultaneously produce PHAs and conduct biodegradation processes. Although bacterial bioplastic production has been thoroughly studied, production costs are still too high compared to petroleum-derived plastics. This article aims to provide a comprehensive review of recent scientific advancements concerning the capacity of HC-degrading bacteria to produce PHAs. It will delve into the microbial strains involved and the types of bioplastics generated, as well as the primary pathways for HC biodegradation and PHAs production. In essence, we propose the potential utilization of HC-degrading bacteria as a versatile tool to tackle two major environmental challenges: HC pollution and the accumulation of plastic waste. Through a comprehensive analysis of strengths and weaknesses in this aspect, this review aims to pave the way for future research in this area, with the goal of facilitating and promoting investigation in a field where obtaining PHAs from HC remains a costly and challenging process.
Collapse
Affiliation(s)
- G Corti Monzón
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.
| | - G Bertola
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - M K Herrera Seitz
- Instituto de Investigaciones Biológicas, IIB, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - S E Murialdo
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CIC, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Melendez-Rodriguez B, Prieto C, Pardo-Figuerez M, Angulo I, Bourbon AI, Amado IR, Cerqueira MA, Pastrana LM, Hilliou LHG, Vicente AA, Cabedo L, Lagaron JM. Multilayer Film Comprising Polybutylene Adipate Terephthalate and Cellulose Nanocrystals with High Barrier and Compostable Properties. Polymers (Basel) 2024; 16:2095. [PMID: 39125122 PMCID: PMC11314578 DOI: 10.3390/polym16152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
In the present study, a multilayer, high-barrier, thin blown film based on a polybutylene adipate terephthalate (PBAT) blend with polyhydroxyalkanoate (PHA), and composed of four layers including a cellulose nanocrystal (CNC) barrier layer and an electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) hot-tack layer, was characterized in terms of the surface roughness, surface tension, migration, mechanical and peel performance, barrier properties, and disintegration rate. The results showed that the film exhibited a smooth surface. The overall migration tests showed that the material is suitable to be used as a food contact layer. The addition of the CNC interlayer had a significant effect on the mechanical properties of the system, drastically reducing the elongation at break and, thus, the flexibility of the material. The film containing CNCs and electrospun PHBV hot-tack interlayers exhibited firm but not strong adhesion. However, the multilayer was a good barrier to water vapor (2.4 ± 0.1 × 10-12 kg·m-2·s-1·Pa-1), and especially to oxygen (0.5 ± 0.3 × 10-15 m3·m-2·s-1·Pa-1), the permeance of which was reduced by up to 90% when the CNC layer was added. The multilayer system disintegrated completely in 60 days. All in all, the multilayer system developed resulted in a fully compostable structure with significant potential for use in high-barrier food packaging applications.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
- Bioinicia R&D, Bioinicia S.L., Calle Algepser 65, Nave 3, 46980 Paterna, Spain
| | - Inmaculada Angulo
- Gaiker Technological Centre, Department of Plastics and Composites, Parque Tecnológico Edificio 202, 48170 Zamudio, Spain;
| | - Ana I. Bourbon
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Isabel R. Amado
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | | | - António A. Vicente
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| |
Collapse
|
7
|
Ansari SA, Kumar T, Sawarkar R, Gobade M, Khan D, Singh L. Valorization of food waste: A comprehensive review of individual technologies for producing bio-based products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121439. [PMID: 38870792 DOI: 10.1016/j.jenvman.2024.121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The escalating global concerns about food waste and the imperative need for sustainable practices have fuelled a burgeoning interest in the valorization of food waste. This comprehensive review delves into various technologies employed for converting food waste into valuable bio-based products. The article surveys individual technologies, ranging from traditional to cutting-edge methods, highlighting their respective mechanisms, advantages, and challenges. SCOPE AND APPROACH The exploration encompasses enzymatic processes, microbial fermentation, anaerobic digestion, and emerging technologies such as pyrolysis and hydrothermal processing. Each technology's efficacy in transforming food waste into bio-based products such as biofuels, enzymes, organic acids, prebiotics, and biopolymers is critically assessed. The review also considers the environmental and economic implications of these technologies, shedding light on their sustainability and scalability. The article discusses the role of technological integration and synergies in creating holistic approaches for maximizing the valorization potential of food waste. Key finding and conclusion: This review consolidates current knowledge on the valorization of food waste, offering a comprehensive understanding of individual technologies and their contributions to the sustainable production of bio-based products. The synthesis of information presented here aims to guide researchers, policymakers, and industry stakeholders in making informed decisions to address the global challenge of food waste while fostering a circular and eco-friendly economy.
Collapse
Affiliation(s)
- Suhel A Ansari
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Tinku Kumar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Riya Sawarkar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Mahendra Gobade
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Debishree Khan
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Lal Singh
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| |
Collapse
|
8
|
Azizi N, Eslami R, Goudarzi S, Younesi H, Zarrin H. A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications. Biomacromolecules 2024; 25:2679-2700. [PMID: 38656151 DOI: 10.1021/acs.biomac.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Using petroleum-derived plastics has contributed significantly to environmental issues, such as greenhouse gas emissions and the accumulation of plastic waste in ecosystems. Researchers have focused on developing ecofriendly polymers as alternatives to traditional plastics to address these concerns. This review provides a comprehensive overview of medium-chain-length polyhydroxyalkanoates (mcl-PHAs), biodegradable biopolymers produced by microorganisms that show promise in replacing conventional plastics. The review discusses the classification, properties, and potential substrates of less studied mcl-PHAs, highlighting their greater ductility and flexibility compared to poly(3-hydroxybutyrate), a well-known but brittle PHA. The authors summarize existing research to emphasize the potential applications of mcl-PHAs in biomedicine, packaging, biocomposites, water treatment, and energy. Future research should focus on improving production techniques, ensuring economic viability, and addressing challenges associated with industrial implementation. Investigating the biodegradability, stability, mechanical properties, durability, and cost-effectiveness of mcl-PHA-based products compared to petroleum-based counterparts is crucial. The future of mcl-PHAs looks promising, with continued research expected to optimize production techniques, enhance material properties, and expand applications. Interdisciplinary collaborations among microbiologists, engineers, chemists, and materials scientists will drive progress in this field. In conclusion, this review serves as a valuable resource to understand mcl-PHAs as sustainable alternatives to conventional plastics. However, further research is needed to optimize production methods, evaluate long-term ecological impacts, and assess the feasibility and viability in various industries.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University (TMU), Nour 64414-356, Iran
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| |
Collapse
|
9
|
Kacanski M, Stelzer F, Walsh M, Kenny S, O'Connor K, Neureiter M. Pilot-scale production of mcl-PHA by Pseudomonas citronellolis using acetic acid as the sole carbon source. N Biotechnol 2023; 78:68-75. [PMID: 37827242 DOI: 10.1016/j.nbt.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biobased materials with promising properties for environmentally friendly applications. Due to high production costs, which are related to the cost of the carbon sources combined with conversion insufficiencies, currently only small quantities are produced. This results in a lack of reliable data on properties and application potential for the variety of polymers from different types of production strains. This study investigated the potential for the production of mcl-PHA from volatile fatty acids (VFA) at a larger scale, given their potential as low-cost and sustainable raw material within a carboxylate-platform based biorefinery. Pseudomonas citronellolis (DSMZ 50332) was chosen as the production strain, and acetic acid was selected as the main carbon and energy source. Nitrogen was limited to trigger polymer production, and a fed-batch process using a pH-stat feeding regime with concentrated acid was established. We report successful production, extraction, and characterization of mcl PHA, obtaining a total of 1.76 kg from two 500-litre scale fermentations. The produced polymer was identified as a copolymer of 3-hydroxydecanoate (60.7%), 3-hydroxyoctanoate (37.3%), and 3-hydroxyhexanoate (2.0%) with a weight average molecular weight (Mw) of 536 kDa. NMR analysis indicates the presence of unsaturated side chains, which may offer additional possibilities for modification. The results confirm that there is a potential to produce significant amounts of mcl-PHA with interesting rubber-like properties from waste-derived VFA.
Collapse
Affiliation(s)
- Milos Kacanski
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria
| | - Franz Stelzer
- Graz University of Technology, Institute for Chemistry and Technology of Materials, Graz, Austria
| | | | | | | | - Markus Neureiter
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria.
| |
Collapse
|
10
|
Altamira-Algarra B, Rueda E, Lage A, San León D, Martínez-Blanch JF, Nogales J, García J, Gonzalez-Flo E. New strategy for bioplastic and exopolysaccharides production: Enrichment of field microbiomes with cyanobacteria. N Biotechnol 2023; 78:141-149. [PMID: 37852438 DOI: 10.1016/j.nbt.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Seven photosynthethic microbiomes were collected from field environmental samples to test their potential in polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) production, both alternatives to chemical-based polymers. Microscope observations together with microbial sequence analysis revealed the microbiome enrichment in cyanobacteria after culture growth under phosphorus limitation. PHB and EPS production were studied under three culture factors (phototrophy, mixotrophy and heterotrophy) by evaluating and optimizing the effect of three parameters (organic and inorganic carbon and days under light:dark cycles) by Box-Behnken design. Results showed that optimal conditions for both biopolymers synthesis were microbiome-dependent; however, the addition of organic carbon boosted PHB production in all the tested microbiomes, producing up to 14 %dcw PHB with the addition of 1.2 g acetate·L-1 and seven days under light:dark photoperiods. The highest EPS production was 59 mg·L-1 with the addition of 1.2 g acetate·L-1 and four days under light:dark photoperiods. The methodology used is suitable for enriching microbiomes in cyanobacteria, and for testing the best conditions for bioproduct synthesis for further scale up.
Collapse
Affiliation(s)
- Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Estel Rueda
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Artai Lage
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Juan F Martínez-Blanch
- Department of preventive medicine, public health, food sciences, toxicology and forensic medicine, Universitat de Valencia, Valencia, Spain; Biopolis S.L., ADM, Parc Cientifc Universidad De Valencia, Edif. 2, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain.
| |
Collapse
|
11
|
Peterson EC, Siao R, Chua GG, Busran CT, Pavlovic R, Thong A, Hermansen C, Sofeo N, Kanagasundaram Y, Weingarten M, Lindley N. Single cell protein and oil production from solid cocoa fatty acid distillates co-fed ethanol. BIORESOURCE TECHNOLOGY 2023; 387:129630. [PMID: 37544531 DOI: 10.1016/j.biortech.2023.129630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The use of solid lipid sidestreams have been overlooked as a feedstock for the production of microbial biomass for food and feed applications and little to no recent work has examined the utilization of solid fatty acid distillates (FADs), which are a significant residue from vegetable oil processing. Yarrowia lipolytica and Rhodosporidium toruloides cultivated on cocoa fatty acid distillates (CFAD) generated final cell dry weight values > 40 g/L, with strong productivity (3.3 g/L·h) and rich protein (>45%) and lipid content (>25%). Interestingly, microbial oils were > 65% unsaturated fatty acids, compared < 20% unsaturated content in FAD. Importantly, to overcome mass-transfer limitations associated with bioconversion of solid lipid residues, ethanol was applied as a co-substrate to solubilize FAD residues. Here, FAD residues from cocoa deodorization have been demonstrated to be high energy feedstocks that represent an attractive substrate for the production of both single cell protein and oil (SCPO).
Collapse
Affiliation(s)
- Eric Charles Peterson
- Institut National de la Recherche Scientifique - Eau Terre Environnement (INRS-ETE), 490 Rue de la Couronne, Quebec City, QC G1K 9A9, Canada; Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore.
| | - Rowanne Siao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Gi Gi Chua
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Coleen Toledo Busran
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Renata Pavlovic
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Aaron Thong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Christian Hermansen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Naazneen Sofeo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| | - Nic Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos, Singapore 138669, Republic of Singapore
| |
Collapse
|
12
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
13
|
Alaux E, Marie B, Couvreur M, Bounouba M, Hernandez-Raquet G. Impact of phosphorus limitation on medium-chain-length polyhydroxyalkanoate production by activated sludge. Appl Microbiol Biotechnol 2023; 107:3509-3522. [PMID: 37133798 DOI: 10.1007/s00253-023-12528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
For a sustainable economy, biodegradable biopolymers polyhydroxyalkanoates (PHA) are desirable substitutes to petroleum-based plastics that contaminate our environment. Medium-chain-length (MCL) PHA bioplastics are particularly interesting due to their thermoplastic properties. To hamper the high cost associated to PHA production, the use of bacterial mixed cultures cultivated in open systems and using cheap resources is a promising strategy. Here, we studied the operating conditions favouring direct MCL accumulation by activated sludge, using oleic acid as a model substrate and phosphorus limitation in fed-batch bioreactors. Our results confirm the presence of PHA-accumulating organisms (PHAAO) in activated sludge able to accumulate MCL from oleic acid. A positive correlation between phosphorus (P) limitation and PHA accumulation was demonstrated, allowing up to 26% PHA/total biomass accumulation, and highlighted its negative impact on the MCL/PHA fraction in the polymer. Diversity analysis through 16S rRNA amplicon sequencing revealed a differential selection of PHAAO according to the P-limitation level. A differential behaviour for the orders Pseudomonadales and Burkholderiales at increasing P-limitation levels was revealed, with a higher abundance of the latter at high levels of P-limitation. The PHA accumulation observed in activated sludge open new perspectives for MCL-PHA production system based on P-limitation strategy applied to mixed microbial communities. KEY POINTS: • Direct accumulation of MCL-PHA in activated sludge was demonstrated. • MCL-PHA content is negatively correlated with P-limitation. • Burkholderiales members discriminate the highest P-limitation levels.
Collapse
Affiliation(s)
- Emilie Alaux
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Bastien Marie
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Marion Couvreur
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Mansour Bounouba
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France
| | - Guillermina Hernandez-Raquet
- Toulouse Biotechnology Institute - TBI, Université de Toulouse, UMR5504, UMR792, CNRS, INRAE, INSA, 135 avenue de Rangueil, 31077 cedex 04, Toulouse, France.
| |
Collapse
|
14
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
15
|
Ene N, Savoiu VG, Spiridon M, Paraschiv CI, Vamanu E. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Curr Pharm Des 2023; 29:3089-3102. [PMID: 38099526 DOI: 10.2174/0113816128263175231102061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
Collapse
Affiliation(s)
- Nicoleta Ene
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
- Department of Pharmacology, National Institute for Chemical Pharmaceutical Research and Development- ICCF, Vitan Avenue 112, Bucharest 031299, Romania
| | - Valeria Gabriela Savoiu
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Maria Spiridon
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Catalina Ileana Paraschiv
- Department of Chemistry, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
16
|
Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5. Polymers (Basel) 2022; 15:polym15010097. [PMID: 36616449 PMCID: PMC9824233 DOI: 10.3390/polym15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In this research, the utilisation of used transformer oil (UTO) as carbon feedstock for the production of polyhydroxyalkanoate (PHA) was targeted; with a view to reducing the environmental challenges associated with the disposal of the used oil and provision of an alternative to non-biodegradable synthetic plastic. Acinetobacter sp. strain AAAID-1.5 is a PHA-producing bacterium recently isolated from a soil sample collected in Penang, Malaysia. The PHA-producing capability of this bacterium was assessed through laboratory experiments in a shake flask biosynthesis under controlled culture conditions. The effect of some biosynthesis factors on growth and polyhydroxyalkanoate (PHA) accumulation was also investigated, the structural composition of the PHA produced by the organism was established, and the characteristics of the polymer were determined using standard analytical methods. The results indicated that the bacteria could effectively utilise UTO and produce PHA up to 34% of its cell dry weight. Analysis of the effect of some biosynthesis factors revealed that the concentration of carbon substrate, incubation time, the concentration of yeast extract and utilisation of additional carbon substrates could influence the growth and polymer accumulation in the test organism. Manipulation of culture conditions resulted in an enhanced accumulation of the PHA. The data obtained from GC-MS and NMR analyses indicated that the PHA produced might have been composed of 3-hydroxyoctadecanoate and 3-hydroxyhexadecanoate as the major monomers. The physicochemical analysis of a sample of the polymer revealed an amorphous elastomer with average molecular weight and polydispersity index (PDI) of 110 kDa and 2.01, respectively. The melting and thermal degradation temperatures were 88 °C and 268 °C, respectively. The findings of this work indicated that used transformer oil could be used as an alternative carbon substrate for PHA biosynthesis. Also, Acinetobacter sp. strain AAAID-1.5 could serve as an effective agent in the bioconversion of waste oils, especially UTO, to produce biodegradable plastics. These may undoubtedly provide a foundation for further exploration of UTO as an alternative carbon substrate in the biosynthesis of specific polyhydroxyalkanoates.
Collapse
|
17
|
Thomas CM, Kumar D, Scheel RA, Ramarao B, Nomura CT. Production of Medium Chain Length polyhydroxyalkanoate copolymers from agro-industrial waste streams. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Lad BC, Coleman SM, Alper HS. Microbial valorization of underutilized and nonconventional waste streams. J Ind Microbiol Biotechnol 2022; 49:kuab056. [PMID: 34529075 PMCID: PMC9118980 DOI: 10.1093/jimb/kuab056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
The growing burden of waste disposal coupled with natural resource scarcity has renewed interest in the remediation, valorization, and/or repurposing of waste. Traditional approaches such as composting, anaerobic digestion, use in fertilizers or animal feed, or incineration for energy production extract very little value out of these waste streams. In contrast, waste valorization into fuels and other biochemicals via microbial fermentation is an area of growing interest. In this review, we discuss microbial valorization of nonconventional, aqueous waste streams such as food processing effluents, wastewater streams, and other industrial wastes. We categorize these waste streams as carbohydrate-rich food wastes, lipid-rich wastes, and other industrial wastes. Recent advances in microbial valorization of these nonconventional waste streams are highlighted, along with a discussion of the specific challenges and opportunities associated with impurities, nitrogen content, toxicity, and low productivity.
Collapse
Affiliation(s)
- Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, Texas 78712, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, USA
| |
Collapse
|
19
|
Acedos MG, Moreno-Cid J, Verdú F, González JA, Tena S, López JC. Exploring the potential of slaughterhouse waste valorization: Development and scale-up of a new bioprocess for medium-chain length polyhydroxyalkanoates production. CHEMOSPHERE 2022; 287:132401. [PMID: 34600930 DOI: 10.1016/j.chemosphere.2021.132401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The progressive increase of slaughterhouse waste production requires actions for both addressing an environmental issue and creating additional value within a biorefinery concept. In this regard, some of these animal by-products exhibit a significant content of fatty acids that could be efficiently converted into bioplastics such as polyhydroxyalkanoates (PHAs) by adequately performing substrate screening with producing bacterial strains and applying affordable pretreatments. One of the main challenges also relies on the difficulty to emulsify these fat-rich substrates within culture broth and make the fatty acids accessible for the producing bacteria. In this work, the potential of two fat-rich animal by-products, grease trap waste (GTW) and tallow-based jelly (TBJ), as inexpensive carbon sources for microbial growth and PHA production was evaluated for the first time. Upon substrate screening, using different pseudomonadal strains (P. resinovorans, P. putida GPo1, P. putida KT2440) and pretreatment conditions (autoclave-based, thermally-treated or saponified substrates), the highest growth and mcl-PHA production performance was obtained for P. resinovorans, thus producing up to 47% w/w mcl-PHA simply using hygienized GTW. The novel bioprocess described in this study was successfully scaled up to 5 and 15 L, resulting in CDW concentrations of 5.9-12.8 g L-1, mcl-PHA contents of 33-62% w/w and PHA yields of 0.1-0.4 gPHA g-1fatty acids, greatly depending on the substrate dosing strategy used and depending on culture conditions. Moreover, process robustness was confirmed along Test Series by the roughly stable monomeric composition of the biopolymer produced, mainly formed by 3-hydroxyoctanoate and 3-hydroxydecanoate. The research here conducted is crucial for the cost-effectiveness of mcl-PHA production along this new slaughterhouse waste-based biorefinery concept.
Collapse
Affiliation(s)
- Miguel G Acedos
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Moreno-Cid
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Fuensanta Verdú
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - José Antonio González
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Sara Tena
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Carlos López
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
20
|
Sustainability Challenges and Future Perspectives of Biopolymer. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Tamang P, Nogueira R. Valorisation of waste cooking oil using mixed culture into short- and medium-chain length polyhydroxyalkanoates: Effect of concentration, temperature and ammonium. J Biotechnol 2021; 342:92-101. [PMID: 34688787 DOI: 10.1016/j.jbiotec.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
The production of polyhydroxyalkanoates (PHAs) from waste cooking oil (WCO) by a mixed culture was investigated in the present study at increasing WCO concentrations, temperature and ammonium availability. The PHA production was done in two steps: in the first step, a mixed culture was enriched in PHA-accumulating bacteria from activated sludge in a sequencing batch reactor operated in a feast-famine mode and in the second step the PHA accumulation by the enriched mixed culture was assessed in a batch reactor. In the enrichment step, two substrates, WCO and nonanoic acid were used for enrichment and in the PHA accumulation step only WCO was used. It was not possible to enrich a mixed culture in PHA-accumulating bacteria using WCO as substrate due to the development of filamentous bacteria causing foam formation and bulking in the reactor. However, our results showed that the mixed culture continuously fed with nonanoic acid was enriched in PHA-accumulating bacteria. This enriched culture accumulated both scl- and mcl-PHA using WCO as substrate. The maximum PHA accumulation capacity of this mixed culture from WCO was 38.2% cdw. Increasing the temperature (30-40 ℃) or WCO concentrations (5-20 g/l) increased the PHA accumulation capacity of the mixed culture and the ratios of scl-PHA to mcl-PHA. The presence of ammonium increased PHA accumulation (21.9% cdw) compared to the complete absence of ammonium (5.8% cdw). The thermal characterization of the PHA exhibited the advantageous properties of both scl- and mcl-PHA, i.e., higher melting temperature (152-172 ℃) similar to scl-PHA and a lower degree of crystallinity (12%) similar to mcl-PHA. This is the first study to report the potential of open mixed culture to produce scl- and mcl-PHA from WCO and thus contributing to the understanding of sustainable polymer production.
Collapse
Affiliation(s)
- Pravesh Tamang
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| | - Regina Nogueira
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| |
Collapse
|
22
|
Wang J, Liu S, Huang J, Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. BIORESOURCE TECHNOLOGY 2021; 342:126008. [PMID: 34592618 DOI: 10.1016/j.biortech.2021.126008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoates are biopolymers produced by microbial fermentation. They have excellent biodegradability and biocompatibility, which are regarded as promising substitutes for traditional plastics in various production and application fields. This review details the research progress in PHA production from lignocellulosic crop residues, lipid-type agricultural wastes, and other agro-industrial wastes such as molasses and whey. The effective use of agricultural waste can further reduce the cost of PHA production while avoiding competition between industrial production and food. The latest information on fermentation parameter optimization, fermentation strategies, kinetic studies, and circular approach has also been discussed. This review aims to analyze the crucial process of the PHA production from agricultural wastes to provide support and reference for further scale-up and industrial production.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy NY12180, United States
| | - Zixuan Qu
- School of Engineering, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
23
|
Valorization of waste frying oil to lipopeptide biosurfactant by indigenous Bacillus licheniformis through co-utilization in mixed substrate fermentation. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life (Basel) 2021; 11:life11080853. [PMID: 34440597 PMCID: PMC8401924 DOI: 10.3390/life11080853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
The large production of non-degradable petrol-based plastics has become a major global issue due to its environmental pollution. Biopolymers produced by microorganisms such as polyhydroxyalkanoates (PHAs) are gaining potential as a sustainable alternative, but the high cost associated with their industrial production has been a limiting factor. Post-transcriptional regulation is a key step to control gene expression in changing environments and has been reported to play a major role in numerous cellular processes. However, limited reports are available concerning the regulation of PHA accumulation in bacteria, and many essential regulatory factors still need to be identified. Here, we review studies where the synthesis of PHA has been reported to be regulated at the post-transcriptional level, and we analyze the RNA-mediated networks involved. Finally, we discuss the forthcoming research on riboregulation, synthetic, and metabolic engineering which could lead to improved strategies for PHAs synthesis in industrial production, thereby reducing the costs currently associated with this procedure.
Collapse
|
25
|
Ene N, Vladu MG, Lupescu I, Ionescu AD, Vamanu E. The Production and Analysis of Biodegradable Polymers of Type of Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA) by Pseudomonas putida Strain for the Biomedical Engineering. Curr Pharm Biotechnol 2021; 23:1109-1117. [PMID: 34375190 DOI: 10.2174/1389201022666210810114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are bacteria-synthetized biopolymers under unbalanced growth conditions. These biopolymers are considered potential biomaterials for future applications for their biocompatibility and biodegradable features and potential biomaterials for future applications for their biocompatibility and biodegradable characteristics and their ability to be quickly produced and functionalize with strong mechanical resistance. This article is intended to perform microbial fermentation using Pseudomonas putida strain to show the amount of biopolymers of the type polyhydroxyalkanoates with medium-chain-length (mcl-PHA) obtained depending on the type and quantity of added precursors (glucose and fatty acids). METHODS It is important to understand the microbial interaction and mechanism involved in PHA biosynthetis.For these, several methods were used, such as: obtaining microbial biomass by using a Pseudomonas putida strain able of PHA-producing, analysis of biopolymer production by acetone extraction following the Soxhlet method, purification of biopolymer by methanol-ethanol treatment, followed by the estimation of biomass by spectrophotometric analysis and the measurement of the dry weight of cells and the quantification of the amount of biopolymer produced following the gas chromatographic method (GC). RESULTS The highest PHA yield was obtained using octanoic (17 mL in 2000 mL medium) and hexanoic acids (14 mL in 2000 mL medium) as precursors. Consequently, octanoic acid - octanoic acid, heptanoic acid - nonanoic acid, and octanoic acid - hexanoic acid were the mix of precursors that supported the amount of PHA obtained. CONCLUSION Of the 4 types of structurally related substrate, the strain Pseudomonas putida ICCF 319 prefers the C8 sublayer for an elastomeric PHA's biosynthesis with a composition in which the C8 monomer predominates over C6 and C10.
Collapse
Affiliation(s)
- Nicoleta Ene
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Mariana-Gratiela Vladu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Irina Lupescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Ana-Despina Ionescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Emanuel Vamanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| |
Collapse
|
26
|
Li D, Ma X, Yin F, Qiu Y, Yan X. Creating biotransformation of volatile fatty acids and octanoate as co-substrate to high yield medium-chain-length polyhydroxyalkanoate. BIORESOURCE TECHNOLOGY 2021; 331:125031. [PMID: 33798859 DOI: 10.1016/j.biortech.2021.125031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Using mixed microbial consortium (MMC) to accumulate polyhydroxyalkanoate (PHA) is an effective strategy to solve high production cost and reduce the amount of excess sludge. In this study, a process for the production of short-chain-length and medium-chain-length PHA using volatile fatty acids (VFAs) from pretreated wood hydrolysate synergistic with octanoate as co-substrate was proposed. The effects of co-substrate ratios on PHA accumulation ability and physical properties were investigated. The incorporation of co-substrate accelerated the time of PHA and 3-hydroxyoctanoate reaching the maximum production (1834 and 280 mg COD/L). The highest PHA content was 53.0% (w/w), which was equivalent to that reported previously. The biopolymer films possessed high tensile strength, Young's modulus, and could be used in the field of water vapor barrier requirements. The accumulation strategy applied for converting fermentation products VFAs and octanoate co-substrate into high value and yield PHA could potentially demonstrate the valuable for low-cost large-scale production.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China.
| | - Fen Yin
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| |
Collapse
|
27
|
Liang D, Xiao C, Song F, Li H, Liu R, Gao J. Complete Genome Sequence and Function Gene Identify of Prometryne-Degrading Strain Pseudomonas sp. DY-1. Microorganisms 2021; 9:microorganisms9061261. [PMID: 34200754 PMCID: PMC8230428 DOI: 10.3390/microorganisms9061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
The genus Pseudomonas is widely recognized for its potential for environmental remediation and plant growth promotion. Pseudomonas sp. DY-1 was isolated from the agricultural soil contaminated five years by prometryne, it manifested an outstanding prometryne degradation efficiency and an untapped potential for plant resistance improvement. Thus, it is meaningful to comprehend the genetic background for strain DY-1. The whole genome sequence of this strain revealed a series of environment adaptive and plant beneficial genes which involved in environmental stress response, heavy metal or metalloid resistance, nitrate dissimilatory reduction, riboflavin synthesis, and iron acquisition. Detailed analyses presented the potential of strain DY-1 for degrading various organic compounds via a homogenized pathway or the protocatechuate and catechol branches of the β-ketoadipate pathway. In addition, heterologous expression, and high efficiency liquid chromatography (HPLC) confirmed that prometryne could be oxidized by a Baeyer-Villiger monooxygenase (BVMO) encoded by a gene in the chromosome of strain DY-1. The result of gene knock-out suggested that the sulfate starvation-induced (SSI) genes in this strain might also involve in the process of prometryne degradation. These results would provide the molecular basis for the application of strain DY-1 in various fields and would contribute to the study of prometryne biodegradation mechanism as well.
Collapse
Affiliation(s)
- Dong Liang
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Changyixin Xiao
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Haitao Li
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Rongmei Liu
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
- Correspondence: (R.L.); (J.G.); Tel.: +86-133-5999-0992 (J.G.)
| | - Jiguo Gao
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
- Correspondence: (R.L.); (J.G.); Tel.: +86-133-5999-0992 (J.G.)
| |
Collapse
|
28
|
Melendez-Rodriguez B, Torres-Giner S, Angulo I, Pardo-Figuerez M, Hilliou L, Escuin JM, Cabedo L, Nevo Y, Prieto C, Lagaron JM. High-Oxygen-Barrier Multilayer Films Based on Polyhydroxyalkanoates and Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1443. [PMID: 34070946 PMCID: PMC8226675 DOI: 10.3390/nano11061443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
This study reports on the development and characterization of organic recyclable high-oxygen-barrier multilayer films based on different commercial polyhydroxyalkanoate (PHA) materials, including a blend with commercial poly(butylene adipate-co-terephthalate) (PBAT), which contained an inner layer of cellulose nanocrystals (CNCs) and an electrospun hot-tack adhesive layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey (CW). As a result, the full multilayer structures were made from bio-based and/or compostable materials. A characterization of the produced films was carried out in terms of morphological, optical, mechanical, and barrier properties with respect to water vapor, limonene, and oxygen. Results indicate that the multilayer films exhibited a good interlayer adhesion and contact transparency. The stiffness of the multilayers was generally improved upon incorporation of the CNC interlayer, whereas the enhanced elasticity of the blend was reduced to some extent in the multilayer with CNCs, but this was still much higher than for the neat PHAs. In terms of barrier properties, it was found that 1 µm of the CNC interlayer was able to reduce the oxygen permeance between 71% and 86%, while retaining the moisture and aroma barrier of the control materials.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| | - Inmaculada Angulo
- Gaiker Technology Centre, Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, edificio 202, 48170 Zamudio, Bizkaia, Spain;
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
- Bioinicia R&D, Bioinicia S.L., 46980 Valencia, Spain
| | - Loïc Hilliou
- IPC/I3N, Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, 4800-058 Braga, Portugal;
| | - Jose Manuel Escuin
- Tecnopackaging S.L., Poligono Industrial Empresarium, 50720 Zaragoza, Spain;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), 12071 Castellón, Spain;
| | - Yuval Nevo
- Melodea Bio-Based Solutions, Faculty of Agriculture-Hebrew University, Rehovot 76100, Israel;
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| | - Jose Maria Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (M.P.-F.); (C.P.)
| |
Collapse
|
29
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
30
|
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Su Kim D, Mulla SI, Seung Shin H. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. BIORESOURCE TECHNOLOGY 2021; 325:124685. [PMID: 33508681 DOI: 10.1016/j.biortech.2021.124685] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are appealing as an important alternative to replace synthetic plastics owing to its comparable physicochemical properties to that of synthetic plastics, and biodegradable and biocompatible nature. This review gives an inclusive overview of the current research activities dealing with PHA production by utilizing different waste fluxes generated from food, milk and sugar processing industries. Valorization of these waste fluxes makes the process cost effective and practically applicable. Recent advances in the approaches adopted for waste treatment, fermentation strategies, and genetic engineering can give insights to the researchers for future direction of waste to bioplastics production. Lastly, synthesis and application of PHA-nanocomposites, research and development challenges, future perspectives for sustainable and cost-effective PHB production are also discussed. In addition, the review addresses the useful information about the opportunities and confines associated with the sustainable PHA production using different waste streams and their evaluation for commercial implementation within a biorefinery.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| |
Collapse
|
31
|
Fernandes M, Salvador A, Alves MM, Vicente AA. Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 Biotech 2020; 10:549. [PMID: 33269183 DOI: 10.1007/s13205-020-02550-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) is the most promising solution to major ecological problem of plastic accumulation. The biodegradable and biocompatible properties of PHA make it highly demanding in the biomedical and agricultural field. The limited market share of PHA industries despite having tremendous demand as concerned with environment has led to knock the doors of scientific research for finding ways for the economic production of PHA. Therefore, new methods of its production have been applied such as using a wide variety of feedstock like organic wastes and modifying PHA synthesizing enzyme at molecular level. Modifying metabolic pathways for PHA production using new emerging techniques like CRISPR/Cas9 technology has simplified the process spending less amount of time. Using green solvents under pressurized conditions, ionic liquids, supercritical solvents, hypotonic cell disintegration for release of PHA granules, switchable anionic surfactants and even digestion of non-PHA biomass by animals are some novel strategies for PHA recovery which play an important role in sustainable production of PHA. Hence, this review provides a view of recent applications, significance of PHA and new methods used for its production which are missing in the available literature.
Collapse
|
33
|
Figueroa-Lopez KJ, Torres-Giner S, Angulo I, Pardo-Figuerez M, Escuin JM, Bourbon AI, Cabedo L, Nevo Y, Cerqueira MA, Lagaron JM. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2356. [PMID: 33260904 PMCID: PMC7761208 DOI: 10.3390/nano10122356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
Active multilayer films based on polyhydroxyalkanoates (PHAs) with and without high barrier coatings of cellulose nanocrystals (CNCs) were herein successfully developed. To this end, an electrospun antimicrobial hot-tack layer made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey, a by-product from the dairy industry, was deposited on a previously manufactured blown film of commercial food contact PHA-based resin. A hybrid combination of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were incorporated during the electrospinning process into the PHBV nanofibers at 2.5 and 2.25 wt%, respectively, in order to provide antimicrobial properties. A barrier CNC coating was also applied by casting from an aqueous solution of nanocellulose at 2 wt% using a rod at 1m/min. The whole multilayer structure was thereafter assembled in a pilot roll-to-roll laminating system, where the blown PHA-based film was located as the outer layers while the electrospun antimicrobial hot-tack PHBV layer and the barrier CNC coating were placed as interlayers. The resultant multilayer films, having a final thickness in the 130-150 µm range, were characterized to ascertain their potential in biodegradable food packaging. The multilayers showed contact transparency, interlayer adhesion, improved barrier to water and limonene vapors, and intermediate mechanical performance. Moreover, the films presented high antimicrobial and antioxidant activities in both open and closed systems for up to 15 days. Finally, the food safety of the multilayers was assessed by migration and cytotoxicity tests, demonstrating that the films are safe to use in both alcoholic and acid food simulants and they are also not cytotoxic for Caco-2 cells.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| | - Inmaculada Angulo
- Gaiker Technological Centre, Department of Plastics and Composites, Parque Tecnológico Edificio 202, 48170 Zamudio, Spain;
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
- Bioinicia R&D, Bioinicia S.L., Calle Algepser 65, Nave 3, 46980 Paterna, Valencia, Spain
| | - Jose Manuel Escuin
- Tecnopackaging S.L., Poligono Industrial Empresarium, Calle Romero 12, 50720 Zaragoza, Spain;
| | - Ana Isabel Bourbon
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Yuval Nevo
- Melodea Bio-Based Solutions, Faculty of Agriculture-Hebrew University, Rehovot 76100, Israel;
| | - Miguel A. Cerqueira
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.A.C.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), CSIC, Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (K.J.F.-L.); (S.T.-G.); (M.P.-F.)
| |
Collapse
|
34
|
Pereira JR, Araújo D, Freitas P, Marques AC, Alves VD, Sevrin C, Grandfils C, Fortunato E, Reis MAM, Freitas F. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. Int J Biol Macromol 2020; 167:85-92. [PMID: 33249156 DOI: 10.1016/j.ijbiomac.2020.11.162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Pseudomonas chlororaphis subsp. aurantiaca DSM 19603 was cultivated on apple pulp, a glucose- and fructose-rich waste generated during juice production, to produce medium-chain length polyhydroxyalkanoates. A cell dry mass of 8.74 ± 0.20 g/L, with a polymer content of 49.25 ± 4.08% were attained. The produced biopolymer was composed of 42.7 ± 0.1 mol% 3-hydroxydecanoate, 17.9 ± 1.0 mol% 3-hydroxyoctanoate, 14.5 ± 1.1 mol% 3-hydroxybutyrate, 11.1 ± 0.6 mol% 3-hydroxytetradecanoate, 10.1 ± 0.5 mol% 3-hydroxydodecanoate and 3.7 ± 0.2 mol% 3-hydroxyhexanoate. It presented low glass transition and melting temperatures (-40.9 ± 0.7 °C and 42.0 ± 0.1 °C, respectively), and a degradation temperature of 300.0 ± 0.1 °C, coupled to a low crystallinity index (12.7 ± 2.7%), a molecular weight (Mw) of 1.34 × 105 ± 0.18 × 105 Da and a polydispersity index of 2.70 ± 0.03. The biopolymer's films were dense and had a smooth surface, as demonstrated by Scanning Electron Microscopy. They presented a tension at break of 5.21 ± 1.09 MPa, together with an elongation of 400.5 ± 55.8% and an associated Young modulus of 4.86 ± 1.49 MPa, under tensile tests. These attractive filming properties of this biopolymer could potentially be valorised in several areas such as the fine chemicals industry, biomedicine, pharmaceuticals, or food packaging.
Collapse
Affiliation(s)
- João R Pereira
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diana Araújo
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Patrícia Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana C Marques
- i3N
- CENIMAT, Department of Materials Science, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Caparica, Portugal
| | - Vítor D Alves
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia/Universidade de Lisboa, Lisboa, Portugal
| | - Chantal Sevrin
- CEIB - Interfaculty Research Centre of Biomaterials, University of Liège, Liège, Belgium
| | - Christian Grandfils
- CEIB - Interfaculty Research Centre of Biomaterials, University of Liège, Liège, Belgium
| | - Elvira Fortunato
- i3N
- CENIMAT, Department of Materials Science, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
35
|
Ranganathan S, Dutta S, Moses JA, Anandharamakrishnan C. Utilization of food waste streams for the production of biopolymers. Heliyon 2020; 6:e04891. [PMID: 32995604 PMCID: PMC7502569 DOI: 10.1016/j.heliyon.2020.e04891] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/07/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023] Open
Abstract
Uncontrolled decomposition of agro-industrial waste leads to extensive contamination of water, land, and air. There is a tremendous amount of waste from various sources which causes serious environmental problems. The concern in the disposal problems has stimulated research interest in the valorization of waste streams. Valorization of the wastes not only reduces the volume of waste but also reduces the contamination to the environment. Waste from food industries has great potential as primary or secondary feedstocks for biopolymer production by extraction or fermentation with pre-treatment or without pre-treatment by solid-state fermentation to obtain fermentable sugars. Various types of waste can be used as substrates for the production of biomaterials but recently more focus has been observed on the agro-industrial wastes which have a high rate of production worldwide. This review collates in detail the different food wastes used for biopolymer, technologies for the production and characterization of the biopolymers, and their economic/technical viability.
Collapse
Affiliation(s)
- Saranya Ranganathan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| |
Collapse
|
36
|
Talan A, Kaur R, Tyagi RD, Drogui P. Bioconversion of oily waste to polyhydroxyalkanoates: Sustainable technology with circular bioeconomy approach and multidimensional impacts. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|
38
|
Preparation and Characterization of Films Based on a Natural P(3HB)/mcl-PHA Blend Obtained through the Co-culture of Cupriavidus Necator and Pseudomonas Citronellolis in Apple Pulp Waste. Bioengineering (Basel) 2020; 7:bioengineering7020034. [PMID: 32260526 PMCID: PMC7356164 DOI: 10.3390/bioengineering7020034] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
The co-culture of Cupriavidus necator DSM 428 and Pseudomonas citronellolis NRRL B-2504 was performed using apple pulp waste from the fruit processing industry as the sole carbon source to produce poly(3-hydroxybutyrate), P(3HB) and medium-chain length PHA, mcl-PHA, respectively. The polymers accumulated by both strains were extracted from the co-culture's biomass, resulting in a natural blend that was composed of around 48 wt% P(3HB) and 52 wt% mcl-PHA, with an average molecular weight of 4.3 × 105 Da and a polydispersity index of 2.2. Two melting temperatures (Tm) were observed for the blend, 52 and 174 °C, which correspond to the Tm of the mcl-PHA and P(3HB), respectively. P(3HB)/mcl-PHA blend films prepared by the solvent evaporation method had permeabilities to oxygen and carbon dioxide of 2.6 and 32 Barrer, respectively. The films were flexible and easily deformed, as demonstrated by their tensile strength at break of 1.47 ± 0.07 MPa, with a deformation of 338 ± 19% until breaking, associated with a Young modulus of 5.42 ± 1.02 MPa. This study demonstrates for the first time the feasibility of using the co-culture of C. necator and P. citronellolis strains to obtain a natural blend of P(3HB)/mcl-PHA that can be processed into films suitable for applications ranging from commodity packaging products to high-value biomaterials.
Collapse
|
39
|
Yañez L, Conejeros R, Vergara-Fernández A, Scott F. Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion. Front Bioeng Biotechnol 2020; 8:248. [PMID: 32318553 PMCID: PMC7147478 DOI: 10.3389/fbioe.2020.00248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are ubiquitous prokaryotic storage compounds of carbon and energy, acting as sinks for reducing power during periods of surplus of carbon source relative to other nutrients. With close to 150 different hydroxyalkanoate monomers identified, the structure and properties of these polyesters can be adjusted to serve applications ranging from food packaging to biomedical uses. Despite its versatility and the intensive research in the area over the last three decades, the market share of PHAs is still low. While considerable rich literature has accumulated concerning biochemical, physiological, and genetic aspects of PHAs intracellular accumulation, the costs of substrates and processing costs, including the extraction of the polymer accumulated in intracellular granules, still hampers a more widespread use of this family of polymers. This review presents a comprehensive survey and critical analysis of the process engineering and metabolic engineering strategies reported in literature aimed at the production of chiral (R)-hydroxycarboxylic acids (RHAs), either from the accumulated polymer or by bypassing the accumulation of PHAs using metabolically engineered bacteria, and the strategies developed to recover the accumulated polymer without using conventional downstream separations processes. Each of these topics, that have received less attention compared to PHAs accumulation, could potentially improve the economy of PHAs production and use. (R)-hydroxycarboxylic acids can be used as chiral precursors, thanks to its easily modifiable functional groups, and can be either produced de-novo or be obtained from recycled PHA products. On the other hand, efficient mechanisms of PHAs release from bacterial cells, including controlled cell lysis and PHA excretion, could reduce downstream costs and simplify the polymer recovery process.
Collapse
Affiliation(s)
- Luz Yañez
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alberto Vergara-Fernández
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Felipe Scott
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
40
|
Thomas T, Sudesh K, Bazire A, Elain A, Tan HT, Lim H, Bruzaud S. PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003. Bioengineering (Basel) 2020; 7:bioengineering7010029. [PMID: 32244900 PMCID: PMC7175313 DOI: 10.3390/bioengineering7010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Among the different tools which can be studied and managed to tailor-make polyhydroxyalkanoates (PHAs) and enhance their production, bacterial strain and carbon substrates are essential. The assimilation of carbon sources is dependent on bacterial strain’s metabolism and consequently cannot be dissociated. Both must wisely be studied and well selected to ensure the highest production yield of PHAs. Halomonas sp. SF2003 is a marine bacterium already identified as a PHA-producing strain and especially of poly-3-hydroxybutyrate (P-3HB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P-3HB-co-3HV). Previous studies have identified different genes potentially involved in PHA production by Halomonas sp. SF2003, including two phaC genes with atypical characteristics, phaC1 and phaC2. At the same time, an interesting adaptability of the strain in front of various growth conditions was highlighted, making it a good candidate for biotechnological applications. To continue the characterization of Halomonas sp. SF2003, the screening of carbon substrates exploitable for PHA production was performed as well as production tests. Additionally, the functionality of both PHA synthases PhaC1 and PhaC2 was investigated, with an in silico study and the production of transformant strains, in order to confirm and to understand the role of each one on PHA production. The results of this study confirm the adaptability of the strain and its ability to exploit various carbon substrates, in pure or mixed form, for PHA production. Individual expression of PhaC1 and PhaC2 synthases in a non-PHA-producing strain, Cupriavidus necator H16 PHB¯4 (DSM 541), allows obtaining PHA production, demonstrating at the same time, functionality and differences between both PHA synthases. All the results of this study confirm the biotechnological interest in Halomonas sp. SF2003.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
- Correspondence: ; Tel.: +33-661-730-222
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), IUEM, Université de Bretagne-Sud (UBS), EA 3884 Lorient, France;
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
| | - Hua Tiang Tan
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Hui Lim
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
| |
Collapse
|
41
|
Sohail R, Jamil N, Ali I, Munir S. Animal fat and glycerol bioconversion to polyhydroxyalkanoate by produced water bacteria. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractOil reservoirs contain large amounts of hydrocarbon rich produced water, trapped in underground channels. Focus of this study was isolation of PHA producers from produced water concomitant with optimization of production using animal fat and glycerol as carbon source. Bacterial strains were identified as Bacillus subtilis (PWA), Pseudomonas aeruginosa (PWC), Bacillus tequilensis (PWF), and Bacillus safensis (PWG) based on 16S rRNA gene sequencing. Similar amounts of PHA were obtained using animal fat and glycerol in comparison to glucose. After 24 h, high PHA production on glycerol and animal fat was shown by strain PWC (5.2 g/ L, 6.9 g/ L) and strain PWF (12.4 g/ L, 14.2 g/ L) among all test strains. FTIR analysis of PHA showed 3-hydroxybutyrate units. The capability to produce PHA in the strains was corroborated by PhaC synthase gene sequencing. Focus of future studies can be the use of lipids and glycerol on industrial scale.
Collapse
Affiliation(s)
- Rafeya Sohail
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore54590, Punjab, Pakistan
| | - Nazia Jamil
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore54590, Punjab, Pakistan
| | - Iftikhar Ali
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore54590, Punjab, Pakistan
| | - Sajida Munir
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore54590, Punjab, Pakistan
| |
Collapse
|
42
|
de Meneses L, Pereira JR, Sevrin C, Grandfils C, Paiva A, Reis MA, Freitas F. Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines. N Biotechnol 2020; 55:84-90. [DOI: 10.1016/j.nbt.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022]
|
43
|
Vastano M, Corrado I, Sannia G, Solaiman DKY, Pezzella C. Conversion of no/low value waste frying oils into biodiesel and polyhydroxyalkanoates. Sci Rep 2019; 9:13751. [PMID: 31551527 PMCID: PMC6760196 DOI: 10.1038/s41598-019-50278-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022] Open
Abstract
A sustainable bioprocess was developed for the valorization of a no/low value substrate, i.e. waste frying oils (WFOs) with high content of free fatty acids (FFAs), otherwise unsuitable for biodiesel production. The bioprocess was verified using both recombinant (Escherichia coli) and native (Pseudomonas resinovorans) polyhydroxyalkanoates (PHAs) producing cell factories. Microbial fermentation of WFOs provided a 2-fold advantage: i) the reduction of FFAs content resulting into an upgrading of the "exhausted waste oils" and ii) the production of a bio-based microbial polymer. Proper strain designing and process optimization allowed to achieve up to 1.5 g L-1 of medium chain length, mcl-PHAs, together with an efficient conversion (80% yield) of the treated WFO into biodiesel.
Collapse
Affiliation(s)
- Marco Vastano
- Dipartimento di Scienze Chimiche, Università Federico II, VIa Cinthia, Napoli, 48126, Italy
| | - Iolanda Corrado
- Dipartimento di Scienze Chimiche, Università Federico II, VIa Cinthia, Napoli, 48126, Italy
| | - Giovanni Sannia
- Dipartimento di Scienze Chimiche, Università Federico II, VIa Cinthia, Napoli, 48126, Italy
| | - Daniel K Y Solaiman
- Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Cinzia Pezzella
- Dipartimento di Agraria, Università Federico II, Via Università, 100, Portici (Na), Italy.
| |
Collapse
|
44
|
Marella ER, Dahlin J, Dam MI, Ter Horst J, Christensen HB, Sudarsan S, Wang G, Holkenbrink C, Borodina I. A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids. Metab Eng 2019; 61:427-436. [PMID: 31404648 DOI: 10.1016/j.ymben.2019.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 01/17/2023]
Abstract
Lactone flavors with fruity, milky, coconut, and other aromas are widely used in the food and fragrance industries. Lactones are produced by chemical synthesis or by biotransformation of plant-sourced hydroxy fatty acids. We established a novel method to produce flavor lactones from abundant non-hydroxylated fatty acids using yeast cell factories. Oleaginous yeast Yarrowia lipolytica was engineered to perform hydroxylation of fatty acids and chain-shortening via β-oxidation to preferentially twelve or ten carbons. The strains could produce γ-dodecalactone from oleic acid and δ-decalactone from linoleic acid. Through metabolic engineering, the titer was improved 4-fold, and the final strain produced 282 mg/L γ-dodecalactone in a fed-batch bioreactor. The study paves the way for the production of lactones by fermentation of abundant fatty feedstocks.
Collapse
Affiliation(s)
- Eko Roy Marella
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Marie Inger Dam
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Jolanda Ter Horst
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Hanne Bjerre Christensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Suresh Sudarsan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Carina Holkenbrink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark.
| |
Collapse
|
45
|
Bustamante D, Segarra S, Tortajada M, Ramón D, del Cerro C, Auxiliadora Prieto M, Iglesias JR, Rojas A. In silico prospection of microorganisms to produce polyhydroxyalkanoate from whey: Caulobacter segnis DSM 29236 as a suitable industrial strain. Microb Biotechnol 2019; 12:487-501. [PMID: 30702206 PMCID: PMC6465232 DOI: 10.1111/1751-7915.13371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters of microbial origin that can be synthesized by prokaryotes from noble sugars or lipids and from complex renewable substrates. They are an attractive alternative to conventional plastics because they are biodegradable and can be produced from renewable resources, such as the surplus of whey from dairy companies. After an in silico screening to search for ß-galactosidase and PHA polymerase genes, several bacteria were identified as potential PHA producers from whey based on their ability to hydrolyse lactose. Among them, Caulobacter segnis DSM 29236 was selected as a suitable strain to develop a process for whey surplus valorization. This microorganism accumulated 31.5% of cell dry weight (CDW) of poly(3-hydroxybutyrate) (PHB) with a titre of 1.5 g l-1 in batch assays. Moreover, the strain accumulated 37% of CDW of PHB and 9.3 g l-1 in fed-batch mode of operation. This study reveals this species as a PHA producer and experimentally validates the in silico bioprospecting strategy for selecting microorganisms for waste re-valorization.
Collapse
Affiliation(s)
- Daniel Bustamante
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Silvia Segarra
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Marta Tortajada
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Daniel Ramón
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Carlos del Cerro
- Microbial and Plant Biotechnology DepartmentCentro de Investigaciones BiológicasMadridSpain
- Present address:
National Renewable Energy Laboratory (NREL)15013 Denver West ParkwayGoldenCO80401USA
| | | | - José Ramón Iglesias
- Corporación Alimentaria Peñasanta (CAPSA) Polígono Industrial0, 33199Granda, AsturiasSpain
| | - Antonia Rojas
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| |
Collapse
|
46
|
Pereira JR, Araújo D, Marques AC, Neves LA, Grandfils C, Sevrin C, Alves VD, Fortunato E, Reis MA, Freitas F. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int J Biol Macromol 2019; 122:1144-1151. [DOI: 10.1016/j.ijbiomac.2018.09.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
47
|
Enhanced synthesis of medium-chain-length poly(3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
A Process Engineering Approach to Improve Production of P(3HB) byCupriavidus necatorfrom Used Cooking Oil. INT J POLYM SCI 2019. [DOI: 10.1155/2019/2191650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Different feeding strategies, namely, exponential feeding and DO-stat mode, were implemented for the production of poly(3-hydroxybutyrate), P(3HB), byCupriavidus necatorDSM 428 with used cooking oil (UCO) as the sole carbon source. With the exponential feeding strategy, a cell dry mass of 21.3 ± 0.9 g L−1was obtained, with a polymer content of 84.0 ± 4.5 wt.%, giving an overall volumetric productivity of 4.5 ± 0.2 g L−1 day−1. However, the highest P(3HB) volumetric productivity, 12.6 ± 0.8 g L−1 day−1, was obtained when the DO-stat mode was implemented together with the use of ammonium hydroxide for pH control, which served as an additional nitrogen source and allowed to reach higher cell dry mass (7.8 ± 0.6 g L−1). The P(3HB) obtained in all experiments had a high molecular mass, ranging from 0.6 × 105to 2.6 × 105 g mol−1, with low polydispersity indexes of 1.2-1.6. Melting and glass transition temperatures were also similar for the polymer produced with both cultivation strategy, 174°C and 3.0-4.0°C, respectively. The polymer exhibited a crystallinity ranging from 52 to 65%. The DO-stat strategy to feed oil containing substrates as the sole carbon sources was reported for the first time in this study, and the preliminary results obtained show that it is a promising strategy to improve P(3HB) production. Nevertheless, the process requires further optimization in order to make it economically viable.
Collapse
|
49
|
Teixeira MR, Nogueira R, Nunes LM. Quantitative assessment of the valorisation of used cooking oils in 23 countries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:611-620. [PMID: 32559952 DOI: 10.1016/j.wasman.2018.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 06/11/2023]
Abstract
The article quantifies, in a set of 23 countries, the amounts consumed of vegetable oils, the amounts of used oils produced after cooking, the amounts available for valorisation, and finally the quantities being valorised. The management practices adopted are also reviewed. Based on data collected, a production factor, relating vegetable oil consumption with used cooking oil production, of 0.32 is proposed. The valorisation factor, which quantifies the fraction of UCO being valorised, is higher in better performing countries (0.749) and worst in the remaining (0.232). Three consumption-valorisation factors, relating consumption with valorisation, were obtained: for high performing countries (0.274); intermediate performing (0.105); and under-performing (0.078). The management systems adopted by the different countries are based on either second-generation economic instruments (USA and Brazil), or on third-generation economic instruments (EU, Argentina, Japan). The former has allowed countries to attain better valorisation rates.
Collapse
Affiliation(s)
- Margarida Ribau Teixeira
- CENSE, Center for Environmental and Sustainability Research, and Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ricardo Nogueira
- Hidrognosis, Ambiente e Recursos Hídricos, Avenida da República, 54, 8000-079 Faro, Portugal
| | - Luís Miguel Nunes
- CERIS, Civil Engineering Research and Innovation For Sustainability, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
50
|
Alloul A, Ganigué R, Spiller M, Meerburg F, Cagnetta C, Rabaey K, Vlaeminck SE. Capture-Ferment-Upgrade: A Three-Step Approach for the Valorization of Sewage Organics as Commodities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6729-6742. [PMID: 29772177 DOI: 10.1021/acs.est.7b05712] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three-step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent-1 day-1 in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent-1 day-1. Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.
Collapse
Affiliation(s)
- Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerpen , Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Marc Spiller
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerpen , Belgium
| | - Francis Meerburg
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Cristina Cagnetta
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerpen , Belgium
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| |
Collapse
|