1
|
Alokpa K, El-Yagoubi Y, Cabana H. Development and optimization of a silica-bound laccase biocatalyst and its application in hospital wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5399-5418. [PMID: 39924601 DOI: 10.1007/s11356-025-36028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Laccase from Trametes hirsuta was immobilized on amino-functionalized silica by adsorption and covalent binding using glutaraldehyde (GLA) and glyoxal (GLX) as cross-linkers. The immobilization process was optimized applying the Box-Behnken methodology. The immobilized biocatalysts were characterized using scanning electron microscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda pore size analyses, and elemental analysis. Covalent immobilization proved to be better than adsorption based on the specific activity, immobilization yield, and stability in hospital wastewater (HWW) of the biocatalysts. The biocatalyst prepared using GLA under optimized conditions (laccase loading: 10 kU/L, pH 5, temperature: 5 °C, immobilization time: 8 h, and GLA amount: 100 mM) demonstrated better stability to pH, temperature, and other denaturants, compared to free laccase. It exhibited good catalytic potential to remove phenolic compound acetaminophen (83%) and other trace organic contaminants (TrOCs) such as mefenamic acid (86%), indomethacin (73%), carbamazepine (62%), ibuprofen (43%), naproxen (37%), and ketoprofen (27%), in a mixture from a real non-treated hospital effluent spiked with 1 µg/L of each of the above compounds. In addition, the measured catalytic parameters (Km, kcat and kcat/Km) of acetaminophen (free laccase vs. immobilized laccase (AFHMS-GLA-Lac)) are relatively similar. This is one of the first evaluative studies on different immobilization strategies using the Box-Behnken optimization method to develop efficient and stable laccase biocatalysts by immobilization on amino-functionalized silica for real hospital wastewater treatment.
Collapse
Affiliation(s)
- Komla Alokpa
- Université de Sherbrooke Water Research Group (GREAUS), 2500 Boul. de L'Université, Sherbrooke, QC, J1K 2R1, Canada
- Department of Civil and Building Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Younes El-Yagoubi
- Université de Sherbrooke Water Research Group (GREAUS), 2500 Boul. de L'Université, Sherbrooke, QC, J1K 2R1, Canada
- Department of Chemistry, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group (GREAUS), 2500 Boul. de L'Université, Sherbrooke, QC, J1K 2R1, Canada.
- Department of Civil and Building Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
2
|
Backes E, Alnoch RC, Contato AG, Castoldi R, de Souza CGM, Kato CG, Peralta RA, Peralta Muniz Moreira RDF, Polizeli MDLTM, Bracht A, Peralta RM. Properties and kinetic behavior of free and immobilized laccase from Oudemansiella canarii: Emphasis on the effects of NaCl and Na 2SO 4 on catalytic activities. Int J Biol Macromol 2024; 281:136565. [PMID: 39406328 DOI: 10.1016/j.ijbiomac.2024.136565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Studies have highlighted the great potential of Oudemansiella canarii laccase in degrading synthetic dyes for reducing their toxicity. Immobilization of enzymes improves usability in degradation processes and the present work succeeded in immobilizing this laccase onto MANAE-agarose. Immobilization improved pH, thermal, and storage stabilities. Both, free and immobilized enzymes presented Michaelis-Menten kinetics with the substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with Km values of 0.056 ± 0.003 and 0.195 ± 0.022 mM, respectively. Immobilization increased Vmax 1.27-fold. NaCl caused incomplete (hyperbolic) inhibition, which was satisfactorily described by the one-substrate one-modifier mechanism. Immobilization reduced the maximal inhibition by NaCl from 80.2 to 55.7 %. The effect of Na2SO4 was predominantly stimulation, but inhibition of the free enzyme occurred at high substrate concentrations. Stimulation of the immobilized enzyme by Na2SO4 was much more pronounced. It strongly depended on the substrate concentration and was much stronger (up to 300 %) at low substrate concentrations. The combined effects of substrate and sulfate on the immobilized laccase could be satisfactorily described by the one-substrate one-modifier mechanism. The modified response of the immobilized O. canarii laccase to NaCl and Na2SO4 considerably favors its use as a tool in bioremediation processes because environmental contamination by salts frequently represents a strong operational challenge.
Collapse
Affiliation(s)
- Emanueli Backes
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Alex Graça Contato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Castoldi
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | - Camila Gabriel Kato
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Rosely Aparecida Peralta
- Post-Graduate Program in Chemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Adelar Bracht
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Rosane Marina Peralta
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil; School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Cruz IDA, Cruz-Magalhães V, Loguercio LL, Dos Santos LBPR, Uetanabaro APT, Costa AMD. A systematic study on the characteristics and applications of laccases produced by fungi: insights on their potential for biotechnologies. Prep Biochem Biotechnol 2024; 54:896-909. [PMID: 38170449 DOI: 10.1080/10826068.2023.2297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Laccases are polyphenol oxidase enzymes and form the enzyme complex known for their role in wood decomposition and lignin degradation. The present study aimed to systematically review the state-of-the-art trends in scientific publications on laccase enzymes of the last 10 years. The main aspects checked included the laccase-producing fungal genera, the conditions of fungal growth and laccase production, the methods of immobilization, and potential applications of laccase. After applying the systematic search method 177 articles were selected to compound the final database. Although various fungi produce laccase, most studies were Trametes and Pleurotus genera. The submerged fermentation (SmF) has been the most used, however, the use of solid-state fermentation (SSF) appeared as a promising technique to produce laccase when using agro-industrial residues as substrates. Studies on laccase immobilization showed the covalent bonding and entrapment methods were the most used, showing greater efficiency of immobilization and a high number of enzyme reuses. The main use of the laccase was in bioremediation, especially in the discoloration of dyes from the textile industry and the degradation of pharmaceutical waste. Implications and consequences of all these findings in biotechnology and environment, as well as the trends and gaps of laccase research were discussed.
Collapse
Affiliation(s)
- Ian David Araújo Cruz
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Leandro Lopes Loguercio
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Andréa Miura da Costa
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
4
|
Alvarado-Ramírez L, Rostro-Alanis MDJ, Rodríguez-Rodríguez J, Hernández Luna CE, Castillo-Zacarías C, Iqbal HMN, Parra-Saldívar R. Biotransformation of 2,4,6-Trinitrotoluene by a cocktail of native laccases from Pycnoporus sanguineus CS43 under oxygenic and non-oxygenic atmospheres. CHEMOSPHERE 2024; 352:141406. [PMID: 38367881 DOI: 10.1016/j.chemosphere.2024.141406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
2,4,6-Trinitrotoluene (TNT) is a highly toxic nitroaromatic explosive known for its environmental consequences, contaminating soil and groundwater throughout its life cycle, from production to disposal. Therefore, the urgency of developing innovative and ecological strategies to remedy the affected areas is recognized. This study reports, for the first time, the enzymatic biotransformation of TNT by a cocktail of native laccases from Pycnoporus sanguineus CS43. The laccases displayed efficient TNT conversion under both oxygenic and non-oxygenic conditions, achieving biotransformation rates of 80% and 87% within 48 h at a temperature of 60 °C and pH 7. Preliminary kinetic constants were calculated with the laccase cocktail, being a Vmax of 1.133 μM min-1 and 0.2984 μM min-1, and the Km values were 1586 μM and 458 μM, in an oxygenic and non-oxygenic atmosphere, respectively. High-performance liquid chromatography-mass spectrometry (HPLC/MS) confirmed the formation of amino dinitrotoluene isomers and hydroxylamine isomers as biotransformation products. In summary, this study suggests the potential application of laccases for the direct biotransformation of recalcitrant compounds like TNT, offering an environmentally friendly approach to address contamination issues.
Collapse
Affiliation(s)
| | | | | | - Carlos Eduardo Hernández Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico.
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico.
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
6
|
Mohammadi SA, Najafi H, Zolgharnian S, Sharifian S, Asasian-Kolur N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157026. [PMID: 35772531 DOI: 10.1016/j.scitotenv.2022.157026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Enzyme-based bioremediation is a simple, cost-effective, and environmentally friendly method for isolating and removing a wide range of environmental pollutants. This study is a comprehensive review of recent studies on the oxidation of pollutants by biological oxidation methods, performed individually or in combination with other methods. The main bio-oxidants capable of removing all types of pollutants, such as organic and inorganic molecules, from fungi, bacteria, algae, and plants, and different types of enzymes, as well as the removal mechanisms, were investigated. The use of mediators and modification methods to improve the performance of microorganisms and their resistance under harsh real wastewater conditions was discussed, and numerous case studies were presented and compared. The advantages and disadvantages of conventional and novel immobilization methods, and the development of enzyme engineering to adjust the content and properties of the desired enzymes, were also explained. The optimal operating parameters such as temperature and pH, which usually lead to the best performance, were presented. A detailed overview of the different combination processes was also given, including bio-oxidation in coincident or consecutive combination with adsorption, advanced oxidation processes, and membrane separation. One of the most important issues that this study has addressed is the removal of both organic and inorganic contaminants, taking into account the actual wastewaters and the economic aspect.
Collapse
Affiliation(s)
- Seyed Amin Mohammadi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Hanieh Najafi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Sheida Zolgharnian
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran.
| |
Collapse
|
7
|
The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates. Catalysts 2022. [DOI: 10.3390/catal12080853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipase Amano A from Aspergillus niger (AA-ANL) is among the most commonly applied enzymes in biocatalysis processes, making it a significant scientific subject in the pharmaceutical and medical disciplines. In this study, we investigated the lipolytic activity of AA-ANL immobilized onto polyacrylic support IB-150A in 23 oils of natural origin containing various amounts of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs). The created systems were expressed as an ‘ESS catalytic triangle’. A distinct ‘jump’ (up to 2400%) of lipolytic activity of immobilized AA-ANL compared to free lipase and hyperactivation in mostly tested substrates was observed. There was a ‘cutoff limit’ in a quantitative mutual ratio of ω-PUFAs/MUFAs, for which there was an increase or decrease in the activity of the immobilized AA-ANL. In addition, we observed the beneficial effect of immobilization using three polyacrylic supports (IB-150A, IB-D152, and IB-EC1) characterized by different intramolecular interactions. The developed substrate systems demonstrated considerable hyperactivation of immobilized AA-ANL. Moreover, a ‘lipolytic jump’ in the full range of tested temperature and pH was also observed. The considerable activity of AA-ANL-IB-150A after four reuse cycles was demonstrated. On the other hand, we observed an essential decrease in stability of immobilized lipase after 168 h of storage in a climate chamber. The tested kinetic profile of immobilized AA-ANL confirmed the increased affinity to the substrate relative to lipase in the free form.
Collapse
|
8
|
Purification and biochemical characterization of a new thermostable laccase from Enterococcus faecium A2 by a three-phase partitioning method and investigation of its decolorization potential. Arch Microbiol 2022; 204:533. [PMID: 35906438 DOI: 10.1007/s00203-022-03054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Three-phase partitioning (TPP) is a simple, fast, cost-effective, and highly efficient process that can be used in the purification of laccases. In this study, microorganisms with laccase activity were isolated from water samples collected from the Agri-Diyadin hot spring. The isolate with the highest laccase activity was found to be the A2 strain. As a result of molecular (16S rRNA sequence) and conventional (morphological, biochemical, and physiological) analyses, it was determined that the A2 isolate was 99% similar to Enterococcus faecium (Genbank number: MH424896). The laccase was purified to 4.9-fold with 110% recovery using the TPP. The molecular mass of the enzyme was found by SDS-PAGE to be 50.11 kDa. Optimum pH 6.0 and optimum temperature for laccase were determined as 80 °C. The laccase exhibited pH stability over a wide range (pH 3.0-9.0) and a high thermostability, retaining over 90% of its activity after 1 h of incubation at 20-90 °C. The laccase exhibited high thermostability, with a heat inactivation half-life of approximately 24 h at 80 °C. The enzyme remained highly stable in the presence of surfactants and increased its activity in the presence of organic solvents, Cr2+, Cu2+, and Ag+ metal ions. The Km, Vmax, kcat, and kcat/Km values of laccase for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate were 0.68 mM, 5.29 μmol mL-1 min-1, 110.2 s-1, and 162.1 s-1 mM-1, respectively.
Collapse
|
9
|
Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Zofair SFF, Ahmad S, Hashmi MA, Khan SH, Khan MA, Younus H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114676. [PMID: 35151142 DOI: 10.1016/j.jenvman.2022.114676] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
We are facing a high risk of exposure to emerging contaminants and increasing environmental pollution with the concomitant growth of industries. Persistence of these pollutants is a major concern to the ecosystem. Laccases, also known as "green catalysts" are multi-copper oxidases which offers an eco-friendly solution for the degradation of these hazardous pollutants to less or non-toxic compounds. Although various other biological methods exist for the treatment of pollutants, the fact that laccases catalyze the oxidation of broad range of substrates in the presence of molecular oxygen without any additional cofactor and releases water as the by-product makes them exceptional. They have a good possibility of utilization in various industries, especially for the purpose of bioremediation. Besides this, they have also been used in medical/health care, food industry, bio-bleaching, wine stabilization, organic synthesis and biosensors. This review covers the catalytic behaviour of laccases, their immobilization strategies, potential applications in bioremediation of recalcitrant environmental pollutants and their engineering. It provides a comprehensive summary of most factors to consider while working with laccases in an industrial setting. It compares the benefits and drawbacks of the current techniques. Immobilization and mediators, two of the most significant aspects in working with laccases, have been meticulously discussed.
Collapse
Affiliation(s)
- Syeda Fauzia Farheen Zofair
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Sumbul Ahmad
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shaheer Hasan Khan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
11
|
Assalin MR, Rosa MA, Durán N. Trametes versicolour laccase immobilization by covalent binding and its application in Kraft E 1 effluent pre-treated with ozone. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2051495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Nelson Durán
- Urogenital Carcinogenesis and Immunotherapy Laboratory, Structural and Functional Biology Department, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
12
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
13
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Castillo-Zacarías C, Sosa-Hernández JE, Barceló D, Iqbal HMN, Parra-Saldívar R. Exploring current tendencies in techniques and materials for immobilization of laccases - A review. Int J Biol Macromol 2021; 181:683-696. [PMID: 33798577 DOI: 10.1016/j.ijbiomac.2021.03.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology has transformed the science behind many biotechnological sectors, and applied bio-catalysis is not the exception. In 2017, the enzyme industry was valued at more than 7 billion USD and projected to 10.5 billion by 2024. The laccase enzyme is an oxidoreductase capable of oxidizing phenolic and non-phenolic compounds that have been considered an essential tool in the fields currently known as white biotechnology and green chemistry. Laccase is one of the most robust biocatalysts due to its wide applications in different environmental processes such as detecting and treating chemical pollutants and dyes and pharmaceutical removal. However, these biocatalytic processes are usually limited by the lack of stability of the enzyme, the half-life time, and the application feasibility at an industrial scale. Physical or chemical approaches have performed different laccase's immobilization methods to improve its catalytic properties and reuse. Emerging technologies have been proven to reduce the manufacturing process cost and increase application feasibility while looking for ecological and economical materials that can be used as support. Therefore, this review discusses the trends of enzyme immobilization recently studied, analyzing biomaterials and agro-industrial waste used for that intention, their advantages, and disadvantages. Finally, the work also highlights the performance obtained with these materials and current challenges and potential alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
14
|
Maryskova M, Linhartova L, Novotny V, Rysova M, Cajthaml T, Sevcu A. Laccase and horseradish peroxidase for green treatment of phenolic micropollutants in real drinking water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31566-31574. [PMID: 33606164 DOI: 10.1007/s11356-021-12910-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Biologically active micropollutants that contain diverse phenolic/aromatic structures are regularly present in wastewater effluents and are even found in drinking water. Advanced green technologies utilizing immobilized laccase and/or peroxidase, which target these micropollutants directly, may provide a reasonable alternative to standard treatments. Nevertheless, the use of these enzymes is associated with several issues that may prevent their application, such as the low activity of laccase at neutral and basic pH or the necessity of hydrogen peroxide addition as a co-substrate for peroxidases. In this study, the activity of laccase from Trametes versicolor and horseradish peroxidase was evaluated across a range of commonly used substrates (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, and guaiacol). Moreover, conditions for their optimal performance were explored along with an assessment of whether these conditions accurately reflect the effectivity of both enzymes in the degradation of a mixture of bisphenol A, 17α-ethinylestradiol, triclosan, and diclofenac in tap drinking water and secondary wastewater effluent. Laccase and horseradish peroxidase showed optimal activity at strongly acidic pH if ABTS was used as a substrate. Correspondingly, the activities of both enzymes detected using ABTS in real waters were significantly enhanced by adding approximately 2.5% (v/v) of McIlvaine's buffer. Degradation of a mixture of micropollutants in wastewater with 2.5% McIlvaine's buffer (pH 7) resulted in a substantial decrease in estrogenic activity. Low degradation efficiency of micropollutants by laccase was observed in pure McIlvaine's buffer of pH 3 and 7, compared with efficient degradation in tap water of pH 7.5 without buffer. This study clearly shows that enzyme activity needs to be evaluated on micropollutants in real waters as the assessment of optimal conditions based on commonly used substrates in pure buffer or deionized water can be misleading.
Collapse
Affiliation(s)
- Milena Maryskova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 461 17, Liberec, Czech Republic.
| | - Lucie Linhartova
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vit Novotny
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic
| | - Miroslava Rysova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic
| | - Tomas Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 128 01, Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 461 17, Liberec, Czech Republic.
| |
Collapse
|
15
|
Kovaliov M, Zhang B, Konkolewicz D, Szcześniak K, Jurga S, Averick S. Polymer grafting from a metallo‐centered enzyme improves activity in non‐native environments. POLYM INT 2020. [DOI: 10.1002/pi.6127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marina Kovaliov
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| | - Borui Zhang
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| | | | | | - Stefa Jurga
- NanoBioMedical Centre, Adam Mickiewicz University Poznań Poland
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab Allegheny Health Network Research Institute, Allegheny General Hospital Pittsburgh PA USA
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital Pittsburgh PA USA
| |
Collapse
|
16
|
Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla Flores P, de Jesús Rostro-Alanis M, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol 2020; 161:1099-1116. [PMID: 32526298 DOI: 10.1016/j.ijbiomac.2020.06.047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Lignocellulosic material has drawn significant attention among the scientific community due to its year-round availability as a renewable resource for industrial consumption. Being an economic substrate alternative, various industries are reevaluating processes to incorporate derived compounds from these materials. Varieties of fungi and bacteria have the ability to depolymerize lignocellulosic biomass by synthesizing degrading enzymes. Owing to catalytic activity stability and high yields of conversion, lignocellulolytic enzymes derived from fungi currently have a high spectrum of industrial applications. Moreover, these materials are cost effective, eco-friendly and nontoxic while having a low energy input. Techno-economic analysis for current enzyme production technologies indicates that synthetic production is not commercially viable. Instead, the economic projection of the use of naturally-produced ligninolytic enzymes is promising. This approach may improve the economic feasibility of the process by lowering substrate expenses and increasing lignocellulosic by-product's added value. The present review will discuss the classification and enzymatic degradation pathways of lignocellulolytic biomass as well as the potential and current industrial applications of the involved fungal enzymes.
Collapse
Affiliation(s)
- Sara Saldarriaga-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Carolina Velasco-Ayala
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Paulina Leal-Isla Flores
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P. 45138, Jalisco, Mexico.
| |
Collapse
|
17
|
Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020. [DOI: 10.3390/catal10080876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immobilized enzymatic catalysts are widely used in the chemical and pharmaceutical industries. As Candida antarctica lipase B (CALB) is one of the more commonly used biocatalysts, we attempted to design an optimal lipase-catalytic system. In order to do that, we investigated the enantioselectivity and lipolytic activity of CALB immobilized on 12 different supports. Immobilization of lipase on IB-D152 allowed us to achieve hyperactivation (178%) in lipolytic activity tests. Moreover, the conversion in enantioselective esterification increased 43-fold, when proceeding with lipase-immobilized on IB-S861. The immobilized form exhibited a constant high catalytic activity in the temperature range of 25 to 55 °C. Additionally, the lipase immobilized on IB-D152 exhibited a higher lipolytic activity in the pH range of 6 to 9 compared with the native form. Interestingly, our investigations showed that IB-S500 and IB-S60S offered a possibility of application in catalysis in both organic and aqueous solvents. A significant link between the reaction media, the substrates, the supports and the lipase was confirmed. In our enzymatic investigations, high-performance liquid chromatography (HPLC) and the titrimetric method, as well as the Bradford method were employed.
Collapse
|
18
|
Harguindeguy M, Antonelli C, Belleville M, Sanchez‐Marcano J, Pochat‐Bohatier C. Gelatin supports with immobilized laccase as sustainable biocatalysts for water treatment. J Appl Polym Sci 2020. [DOI: 10.1002/app.49669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Marine Harguindeguy
- Institut Européen des Membranes, IEM UMR 5635 Univ Montpellier, CNRS, ENSCM Montpellier France
| | - Claire Antonelli
- Institut Européen des Membranes, IEM UMR 5635 Univ Montpellier, CNRS, ENSCM Montpellier France
| | - Marie‐Pierre Belleville
- Institut Européen des Membranes, IEM UMR 5635 Univ Montpellier, CNRS, ENSCM Montpellier France
| | - José Sanchez‐Marcano
- Institut Européen des Membranes, IEM UMR 5635 Univ Montpellier, CNRS, ENSCM Montpellier France
| | - Céline Pochat‐Bohatier
- Institut Européen des Membranes, IEM UMR 5635 Univ Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
19
|
Designing and investigation of photo-active gellan gum for the efficient immobilization of catalase by entrapment. Int J Biol Macromol 2020; 161:539-549. [PMID: 32544585 DOI: 10.1016/j.ijbiomac.2020.06.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
A photo-active gellan gum (Gel) derivative was developed by amide bond combination with trans-4-[p-(amino)styryl]pyridine (SP). The SP-Gel was cross-linked by UV curing via the intermolecular 2π + 2π cycloaddition of the inserted SP-CH=CH- moieties. The chemical structure of the obtained photo-crosslinkable biopolymer was investigated before and after the UV curing and the progress of the performed 2π + 2π cycloaddition-based cross-linking was detected via UV-visible light spectra. SP-Gel was evaluated as a polymeric matrix for the immobilization of catalase via entrapment technique. The synthesized biopolymer was mixed with the catalase and molded in the form of membranes that were UV cured to encapsulate the enzyme. The membranes were able to entrap 0.75 mg/cm2 with retained activity reached above 95%. The immobilized catalase displayed higher thermal stability and higher resistance toward the environmental pH disturbances compared to the free enzyme. Also, despite the observed lower catalase-H2O2 affinity upon the entrapment that was indicated from the performed kinetic studies, the reusability and storage stability experiments revealed the economic value of the entire process by preserving around 95% and 83% of the initial catalase activity after the fifth and tenth operation cycles, respectively.
Collapse
|
20
|
Vera M, Nyanhongo GS, Guebitz GM, Rivas BL. Polymeric microspheres as support to co-immobilized Agaricus bisporus and Trametes versicolor laccases and their application in diazinon degradation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
21
|
Urbano BF, Bustamante S, Palacio DA, Vera M, Rivas BL. Polymer supports for the removal and degradation of hazardous organic pollutants: an overview. POLYM INT 2020. [DOI: 10.1002/pi.5961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Saúl Bustamante
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| |
Collapse
|
22
|
Huang Y, Li J, Yang Y, Yuan H, Wei Q, Liu X, Zhao Y, Ni C. Characterization of enzyme-immobilized catalytic support and its exploitation for the degradation of methoxychlor in simulated polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28328-28340. [PMID: 31372950 DOI: 10.1007/s11356-019-05937-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Chiral mesoporous silica (SiO2) with helical structure was synthesized by using anionic surfactants as template. Pre-prepared graphene oxide (GO) was then loaded onto SiO2 to synthesize composite carrier chial-meso-SiO2@GO for the immobilization of laccase. The enzyme activity, thermostability, acid stability, and repeatability of the immobilized enzyme were significantly improved after immobilization. The chial-meso-SiO2@GO-immobilized laccase was then used for the degradation of MXC in aqueous phase. The degradation conditions, including temperature, time, pH, MXC concentration, and the dose of immobilized enzyme for cellulosic hydrolysis, were optimized. The optimum conditions for degradation of methoxychlor were selected as pH 4.5, MXC concentration 30 mg/L, immobilized enzyme dose 0.1 g, the maximum MXC removal of over 85% and the maximum degradation rate of 50.75% were achieved after degradation time of six h at temperature of 45 °C. In addition, the immobilized cellulase was added into the immobilized laccase system to form chial-meso-SiO2@GO-immobilized compound enzyme with the maximum MXC degradation rate of 59.58%, higher than that of 50.75% by immobilized laccase. An assessment was made for the effect of chial-meso-SiO2@GO-immobilized compound enzyme on the degradation of MXC in soil phase. For three contaminated soils with MXC concentration of 25 mg/kg, 50 mg/kg, and 100 mg/kg, the MXC removals were 93.0%, 85.8%, and 65.1%, respectively. According to the GC-MS analyses, it was inferred that chial-meso-SiO2@GO-immobilized compound enzyme had a different degradation route with that of chial-meso-SiO2@GO-immobilized laccase. The hydrolysis by immobilized cellulase might attack at a weak location of the MXC molecule with its free radical OH and ultimately removed three chlorine atoms from MXC molecule, leading to generating small molecular amount of degradation product.
Collapse
Affiliation(s)
- Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jie Li
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qinmei Wei
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, China
| | - Yi Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
23
|
Bayramoglu G, Salih B, Akbulut A, Arica MY. Biodegradation of Cibacron Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using MALDI-ToF-MS: Toxicity assessment studies by Daphnia magna and Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:453-460. [PMID: 30553923 DOI: 10.1016/j.ecoenv.2018.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The presented paper describes a detailed study on the use of immobilized laccase for effective degradation of Cibacron Blue 3GA dye. The amount of laccase loading on the cyclic carbonate groups containing poly(hydroxyethyl methacrylate-co-vinylene carbonate), p(HEMA-co-VC), microbeads was 27.8 mg g-1, and the retained immobilized enzyme activity was 73% compared to free enzyme. The toxicity of the dye and its byproducts were studied using Daphnia magna as test organism. The micro-algal growth inhibition was also studied using a green micro algae "Chlorella vulgaris". MALDI-ToF-MS was used to verify dye degradation byproducts. After 60 min of incubation period, Cibacron Blue 3GA (CB3GA) and its byproducts disappeared from the medium. After 60-min enzymatic treatment, the non-toxic nature of medium was confirmed by toxicity studies. On the other hand, the initial byproducts of the dye seemed to be more toxic than the later formed dye products. It should be noted that the information obtained from this study can be beneficial for understanding the initial degradation byproducts toxicities of the enzymatically treated dyes to provide information about environmental protection.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Aydin Akbulut
- Department of Biology Education, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|
24
|
Kucharzyk KH, Benotti M, Darlington R, Lalgudi R. Enhanced biodegradation of sediment-bound heavily weathered crude oil with ligninolytic enzymes encapsulated in calcium-alginate beads. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:498-505. [PMID: 30008382 DOI: 10.1016/j.jhazmat.2018.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
The degradation of crude and weathered crude oil following the application of crude and calcium-alginate encapsulated ligninolytic enzymes was studied using in situ microcosms. Changes in the chemical composition of the oil were monitored in crude enzyme extracts, as well as a sediment matrix, for as long as 70 days. Compound-specific effects of ligninolytic enzymes applied to the sediments were observed over time through changes in concentration of total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs) and fractions of saturates, aromatics, resins and asphaltenes (SARA). As the oil weathered, most TPH and PAH fractions showed a rapid decrease in concentration. As sediment oil concentrations decreased following treatment with ligninolytic enzymes, the microbial population was enriched with hydrocarbon-degrading species. This trend demonstrates that the oil fractions initially not bioavailable for microbial degradation, were subsequently released to the sediment via catalytic conversion with laccase and manganese peroxidase, and the oil continues to be biodegraded by microbial populations.
Collapse
Affiliation(s)
| | - Mark Benotti
- Newfields Environmental, Rockland MA, 02371, United States
| | - Ramona Darlington
- Battelle Memorial Institute, 505 King Ave, Columbus OH, 43212, United States
| | - Ramanathan Lalgudi
- Battelle Memorial Institute, 505 King Ave, Columbus OH, 43212, United States
| |
Collapse
|
25
|
Gennari A, Mobayed FH, da Silva Rafael R, Rodrigues RC, Sperotto RA, Volpato G, Volken de Souza CF. Modification of Immobead 150 support for protein immobilization: Effects on the properties of immobilizedAspergillus oryzaeβ-galactosidase. Biotechnol Prog 2018; 34:934-943. [DOI: 10.1002/btpr.2652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/21/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Francielle H. Mobayed
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Ruan da Silva Rafael
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group; Institute of Food Science and Technology, Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Raul A. Sperotto
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| | - Giandra Volpato
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre; Porto Alegre RS Brazil
| | - Claucia F. Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates; Lajeado RS Brazil
| |
Collapse
|
26
|
Monier M, Youssef I, Abdel-Latif D. Synthesis of photo-responsive chitosan-cinnamate for efficient entrapment of β-galactosidase enzyme. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Barrios-Estrada C, Rostro-Alanis MDJ, Parra AL, Belleville MP, Sanchez-Marcano J, Iqbal HMN, Parra-Saldívar R. Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. Int J Biol Macromol 2018; 108:837-844. [PMID: 29101049 DOI: 10.1016/j.ijbiomac.2017.10.177] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023]
Abstract
Herein, we report the development of immobilized laccase based membrane bioreactor as a novel bio-catalytic system for the degradation of emerging endocrine disruptor i.e., Bisphenol A. Two laccase forms i.e. (1) in-house isolated and purified from an indigenous white-rot fungi Pycnoporus sanguineus (CS43) and (2) Trametes versicolor (commercial laccase from Sigma-Aldrich®) were immobilized on a multi-channel ceramic membrane (1.4μm in diameter) using 4% glutaraldehyde as a cross-linking agent. The immobilization yield and bisphenol A degradation activities of immobilized laccases were recorded at various pH levels. The surface topographies of immobilized-laccase membranes were accessed by scanning electron microscopy. In this study, 100% degradation of bisphenol A (20mg/L) was achieved in less than 24h in the presence of laccase from P. sanguineus (CS43) (620.55±14.85U/L) and T. versicolor (620.55±14.85U/L). The enzymes showed an optimal activity at pH 5 and 5.4 with a degradation rate of 204.8±1.8 and 79.0±0.1μmol/min/U for P. sanguineus (CS43) and T. versicolor, respectively. In conclusion, the highest immobilization of unit per square centimeter and efficient degradation potentiality strongly recommend the newly developed immobilized laccase based membrane bioreactor as a novel tool to tackle emerging contaminants degradation issues.
Collapse
Affiliation(s)
- Carlos Barrios-Estrada
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Ana Luisa Parra
- Insitut Européen des Membranes (IEM), UMR 5635 (CNRS-ENSCM-UM"), Université de Montpellier, Place Eugène Battaillon, 34095 Montpellier, France
| | - Marie-Pierre Belleville
- Insitut Européen des Membranes (IEM), UMR 5635 (CNRS-ENSCM-UM"), Université de Montpellier, Place Eugène Battaillon, 34095 Montpellier, France
| | - Jose Sanchez-Marcano
- Insitut Européen des Membranes (IEM), UMR 5635 (CNRS-ENSCM-UM"), Université de Montpellier, Place Eugène Battaillon, 34095 Montpellier, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| |
Collapse
|
28
|
Singh J, Saharan V, Kumar S, Gulati P, Kapoor RK. Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology. Crit Rev Biotechnol 2017; 38:883-901. [DOI: 10.1080/07388551.2017.1417234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jagdeep Singh
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vicky Saharan
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja Gulati
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rajeev Kumar Kapoor
- Enzyme Biotechnology and Waste-water Treatment Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
29
|
Salazar-López M, Rostro-Alanis MDJ, Castillo-Zacarías C, Parra-Guardado AL, Hernández-Luna C, Iqbal HMN, Parra-Saldivar R. Induced Degradation of Anthraquinone-Based Dye by Laccase Produced from Pycnoporus sanguineus (CS43). WATER, AIR, & SOIL POLLUTION 2017; 228:469. [DOI: 10.1007/s11270-017-3644-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|