1
|
Vergara-Diaz O, Velasco-Serrano E, Invernón-Garrido A, Katamadze A, Yoldi-Achalandabaso A, Serret MD, Vicente R. Quinoa panicles contribute to carbon assimilation and are more tolerant to salt stress than leaves. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154161. [PMID: 38142485 DOI: 10.1016/j.jplph.2023.154161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Contribution of inflorescences to seed filling have attracted great attention given the resilience of this photosynthetic organ to stressful conditions. However, studies have been almost exclusively focused to small grain cereals. In this study, we aimed to explore these responses in quinoa, as a climate resilient seed crop of elevated economic and nutritious potential. We compared the physiological and metabolic performance of panicles and leaves of two quinoa cultivars growing under contrasting salinity levels. Plant growth, photosynthetic and transpiratory gas exchange and chlorophyll fluorescence were monitored in inflorescences and leaves throughout the experiment. At flowering stage, young and mature leaves and panicles were sampled for key metabolic markers related to carbon, nitrogen and secondary metabolisms. When subjected to salt stress, panicles showed attenuated declines on photosynthesis, water use, pigments, amino acids, and protein levels as compared to leaves. In fact, the assimilation rates, together with a high hexose content evidenced an active photosynthetic role of the panicle under optimal and salt stress conditions. Moreover, we also found significant genotypic variability for physiological and metabolic traits of panicles and leaves, which emphasizes the study of genotype-dependent stress responses at the whole plant level. We conclude that quinoa panicles are less affected by salt stress than leaves, which encourages further research and exploitation of this organ for crop improvement and stress resilience considering the high natural diversity.
Collapse
Affiliation(s)
- Omar Vergara-Diaz
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| | - Elena Velasco-Serrano
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; AGROTECNIO-CERCA Center, 25198, Lleida, Spain.
| | - Alicia Invernón-Garrido
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; AGROTECNIO-CERCA Center, 25198, Lleida, Spain.
| | - Artūrs Katamadze
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| | - Ander Yoldi-Achalandabaso
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal; FisioClimaCO(2) Group, Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain.
| | - Maria Dolores Serret
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; AGROTECNIO-CERCA Center, 25198, Lleida, Spain.
| | - Rubén Vicente
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| |
Collapse
|
2
|
Abuelsoud W, Saleh AM, Mohammed AE, Alotaibi MO, AbdElgawad H. Chitosan nanoparticles upregulate C and N metabolism in soybean plants grown under elevated levels of atmospheric carbon dioxide. Int J Biol Macromol 2023; 252:126434. [PMID: 37604417 DOI: 10.1016/j.ijbiomac.2023.126434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Despite the wide utilization of chitosan nanoparticles (CSNPs) as a promising approach for sustainable agriculture, their efficiency under elevated CO2 (eCO2), has not been evaluated. The interactive effects of CSNPs and eCO2 were evaluated on the growth and C and N metabolism of soybean plants. Plants were treated with CSNPs and grown under ambient CO2 (410 ppm, aCO2) or eCO2 (645 ppm). Regardless of CO2 level, CSNPs improved the net photosynthetic rate. CSNPs aggravated the effect of eCO2 treatment on the levels of non-structural carbohydrates (i.e., glucose, fructose, sucrose, and starch), especially in shoots, which was inconsistence with the upregulation of carbohydrates metabolizing enzymes. Being the most pivotal energetic and signaling organic compounds in higher plants, the synergistic action of CSNPs and eCO2 on the accumulation of soluble sugars upregulated the N metabolism as indicated by induced activities of nitrate reductase, arginase, glutamate dehydrogenase, glutamine synthetase, and glutamine oxoglutarate aminotransferase which was manifested finally as increased shoot and root total nitrogen content as well as proline and aspartate in roots. At the hormonal level, the coexistence of eCO2 with CSNPs further supports their positive impact on the contents of IAA and, to a lesser extent, GAs. The present data prove that the biofertilization capacity of CSNPs is even more potent under futuristic eCO2 levels and could even further improve the growth and resilience of plants.
Collapse
Affiliation(s)
- Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Martínez-Peña R, Vergara-Díaz O, Schlereth A, Höhne M, Morcuende R, Nieto-Taladriz MT, Araus JL, Aparicio N, Vicente R. Analysis of durum wheat photosynthetic organs during grain filling reveals the ear as a water stress-tolerant organ and the peduncle as the largest pool of primary metabolites. PLANTA 2023; 257:81. [PMID: 36917306 PMCID: PMC10014764 DOI: 10.1007/s00425-023-04115-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
MAIN CONCLUSION The pool of carbon- and nitrogen-rich metabolites is quantitatively relevant in non-foliar photosynthetic organs during grain filling, which have a better response to water limitation than flag leaves. The response of durum wheat to contrasting water regimes has been extensively studied at leaf and agronomic level in previous studies, but the water stress effects on source-sink dynamics, particularly non-foliar photosynthetic organs, is more limited. Our study aims to investigate the response of different photosynthetic organs to water stress and to quantify the pool of carbon and nitrogen metabolites available for grain filling. Five durum wheat varieties were grown in field trials in the Spanish region of Castile and León under irrigated and rainfed conditions. Water stress led to a significant decrease in yield, biomass, and carbon and nitrogen assimilation, improved water use efficiency, and modified grain quality traits in the five varieties. The pool of carbon (glucose, glucose-6-phosphate, fructose, sucrose, starch, and malate) and nitrogen (glutamate, amino acids, proteins and chlorophylls) metabolites in leaf blades and sheaths, peduncles, awns, glumes and lemmas were also analysed. The results showed that the metabolism of the blades and peduncles was the most susceptible to water stress, while ear metabolism showed higher stability, particularly at mid-grain filling. Interestingly, the total metabolite content per organ highlighted that a large source of nutrients, which may be directly involved in grain filling, are found outside the blades, with the peduncles being quantitatively the most relevant. We conclude that yield improvements in our Mediterranean agro-ecosystem are highly linked to the success of shoots in producing ears and a higher number of grains, while grain filling is highly dependent on the capacity of non-foliar organs to fix CO2 and N. The ear organs show higher stress resilience than other organs, which deserves our attention in future breeding programmes.
Collapse
Affiliation(s)
- Raquel Martínez-Peña
- Cereals Group, Section of Herbaceous, Agro-Technological Institute of Castile and León, Junta de Castile and León, Valladolid, Spain
| | - Omar Vergara-Díaz
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - María Teresa Nieto-Taladriz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Barcelona, and AGROTECNIO-CERCA Center, Lleida, Spain
| | - Nieves Aparicio
- Cereals Group, Section of Herbaceous, Agro-Technological Institute of Castile and León, Junta de Castile and León, Valladolid, Spain
| | - Rubén Vicente
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal.
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
4
|
Liu X, Wang Y, Liu H, Huang X, Qian L, Yang B, Xu Y, Chen F. Enhanced β-glucosidase in Western flower thrips affects its interaction with the redox-based strategies of kidney beans under elevated CO 2. PLANT, CELL & ENVIRONMENT 2023; 46:918-930. [PMID: 36597190 DOI: 10.1111/pce.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
β-Glucosidase is validated as an elicitor for early immune responses in plants and it was detected in the salivary glands of Frankliniella occidentalis in previous research. Seven differentially expressed genes encoding β-glucosidase were obtained by comparing the transcriptomes of F. occidentalis adults grown under two different CO2 concentrations (800 vs. 400 ppm), which might be associated with the differences in the interaction between F. occidentalis adults and its host plant, Phaseolus vulgaris under different CO2 levels. To verify this speculation, changes in defense responses based on the production and elimination of reactive oxygen species (ROS) in P. vulgaris leaves treated with three levels of β-glucosidase activity under ambient CO2 (aCO2 ) and elevated CO2 (eCO2 ) were measured in this study. According to the results, significantly higher levels of ROS were noticed under eCO2 compared to aCO2 , which was caused by the increased β-glucosidase activity in thrips due to increased cellulose content in P. vulgaris leaves under eCO2 . Together with the lower activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in injured leaves under eCO2 , P. vulgaris leaves would be negatively affected on redox-based defense by eCO2 , thus facilitating thrips damage under climate change.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yanhui Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Huang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lei Qian
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baoqing Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujing Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
The Influence of Farming Systems, Genotype and Their Interaction on Bioactive Compound, Protein and Starch Content of Bread and Spelt Wheat. Foods 2022; 11:foods11244028. [PMID: 36553770 PMCID: PMC9778307 DOI: 10.3390/foods11244028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
An increase in the production and consumption of spelt products can be associated with positive effects on human health, which are attributed to bioactive compounds present in the grain. The basic success of spelt wheat in organic farming might be explained by the fact that spelt wheat belongs to the group of hulled wheat where the presence of a husk protects the seed from abiotic and biotic stress factors, thus demanding less chemical protection. The goal of this study was to investigate the variations in the bioactive compound (alkylresorcinol, arabinoxylan, β-glucan), protein, starch and fructan content of bread and spelt wheat under different farming systems (conventional and organic). The results showed higher protein and alkylresorcinol but lower fructan content in spelt wheat. Organic spelt had significantly higher starch, fiber and alkylresorcinol content but lower β-glucan and protein content than conventionally grown spelt. The spelt variety 'Oberkulmer-Rotkorn' was characterized by the highest values for the majority of analyzed traits under both farming systems. Overall, the environmental conditions (Hungary and Serbia), farming systems (conventional and organic) and wheat species (bread and spelt) contributed to the variations of the compositional traits in different manners.
Collapse
|
6
|
Elevated CO2 Altered Rice VOCs Aggravate Population Occurrence of Brown Planthoppers by Improving Host Selection Ability. BIOLOGY 2022; 11:biology11060882. [PMID: 35741403 PMCID: PMC9219841 DOI: 10.3390/biology11060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In recent years, the atmospheric CO2 concentration was increasing continuously, which has led to the change in the photosynthesis and chemical composition of rice plants. The growth and development of brown planthopper (BPH) Nilaparvata lugens are further affected. Plants release volatile organic compounds (VOCs) to mediate intra- and inter-specific interactions with other organisms in the surrounding environment. Therefore, here we aim to explore the effect of rice VOCs on the host selection ability of BPH under elevated CO2. Among the identified thirty-six rice VOCs, the contents of heptadecane, linalool and limonene from rice plants were significantly decreased under elevated CO2. Moreover, we found that the VOCs of rice damaged by BPH were also changed. Undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants, which might lead to enhancement of the host selection ability of BPH, eventually aggravating the damage caused by BPH. However, the role of these VOCs in host selection ability of BPH is not clear, and more experiments are needed to verify their function. Abstract It is predicted that plant volatile organic compounds (VOCs) are affected by the atmospheric CO2 levels rising globally, which further affects the interaction between plants and herbivorous insects, especially the host selection behavior of herbivorous insects. In this study, the effects of elevated CO2 on the host-selection behavior of the brown planthopper (BPH) Nilaparvata lugens, and the emission of VOCs from the healthy and BPH-damaged rice plants were studied simultaneously to make clear the population occurrence of BPH under global climate change. Compared with ambient CO2, elevated CO2 significantly increased the host selection percent of BPH for the healthy (CK) and BPH-damaged rice plants, and the host selection percent of BPH for the BPH-damaged rice plants was significantly higher than that for the healthy rice plants under elevated CO2, which might be regulated by the transcription levels of OBP1, OBP2 and CSP8 in BPH due to the upregulated transcriptional levels of these three genes of BPH under elevated CO2. In addition, we analyzed and quantified the emission of VOCs in rice plants grown under ambient CO2 and elevated CO2 by GS-MS. A total of 36 VOCs from rice plants were identified into eight categories, including alkanes, alkenes, alcohols, aldehydes, ketones, esters, phenols and aromatic hydrocarbons. Elevated CO2 significantly decreased the contents of heptadecane, linalool and limonene from rice plants compared with ambient CO2. Besides, the contents of linalool, phytol, decanal, 1-methyldecalin and 2,6-diphenylphenol from BPH-damaged rice plants under ambient CO2, and undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants. The percentage composition of phenols was positively correlated with the host selection rate of BPH. Our study indicates that elevated CO2 is beneficial to promote the host selection ability of BPH for rice plants damaged by BPHs due to the changed plant VOCs.
Collapse
|
7
|
Liu X, Liu H, Wang Y, Qian L, Chen F. Elevated CO 2 aggravates invasive thrip damage by altering its host plant nutrient and secondary metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118736. [PMID: 34953953 DOI: 10.1016/j.envpol.2021.118736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
As atmospheric CO2 concentration continues to increase, plants using CO2 as raw materials for photosynthesis will inevitably be affected, which in turn affects the life history and behavior of herbivorous insects. Our previous research has shown increased food intake and aggravated damage of western flower thrips, Frankliniella occidentalis to kidney bean (Phaseolus vulgaris) caused by elevated CO2 (eCO2), however the molecular mechanism of this phenomenon is unclear. In this study, the comparative transcriptome analysis combined with corresponding phenotypic changes were studied to reveal the molecular mechanism of interaction between F. occidentalis and P. vulgaris under eCO2. Inferred from the results, eCO2 had different degrees of inhibition to the defense responses caused by thrips infestation in P. vulgaris leaf sap based on nutrients, plant hormones and secondary metabolites, making P. vulgaris leaves less resistant to thrips under eCO2 compared to ambient CO2 (aCO2). Besides, the contents of glucose, trehalose, triglycerides and free fatty acids in F. occidentalis adults increased significantly after feeding on the P. vulgaris leaf sap with significantly increased soluble sugars content under eCO2, which might lead to glucolipid metabolic disorders and increased food intake of F. occidentalis adults. The results indicated that decreased plant defense of P. vulgaris and increased food intake of F. occidentalis adults were combined to aggravate the thrips damage under eCO2, providing a theoretical basis for future occurrence trend of thrips under eCO2.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanhui Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Qian
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Martínez-Peña R, Schlereth A, Höhne M, Encke B, Morcuende R, Nieto-Taladriz MT, Araus JL, Aparicio N, Vicente R. Source-Sink Dynamics in Field-Grown Durum Wheat Under Contrasting Nitrogen Supplies: Key Role of Non-Foliar Organs During Grain Filling. FRONTIERS IN PLANT SCIENCE 2022; 13:869680. [PMID: 35574116 PMCID: PMC9100808 DOI: 10.3389/fpls.2022.869680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/31/2022] [Indexed: 05/08/2023]
Abstract
The integration of high-throughput phenotyping and metabolic approaches is a suitable strategy to study the genotype-by-environment interaction and identify novel traits for crop improvement from canopy to an organ level. Our aims were to study the phenotypic and metabolic traits that are related to grain yield and quality at canopy and organ levels, with a special focus on source-sink coordination under contrasting N supplies. Four modern durum wheat varieties with contrasting grain yield were grown in field conditions under two N fertilization levels in north-eastern Spain. We evaluated canopy vegetation indices taken throughout the growing season, physiological and metabolic traits in different photosynthetic organs (flag leaf blade, sheath, peduncle, awn, glume, and lemma) at anthesis and mid-grain filling stages, and agronomic and grain quality traits at harvest. Low N supply triggered an imbalance of C and N coordination at the whole plant level, leading to a reduction of grain yield and nutrient composition. The activities of key enzymes in C and N metabolism as well as the levels of photoassimilates showed that each organ plays an important role during grain filling, some with a higher photosynthetic capacity, others for nutrient storage for later stages of grain filling, or N assimilation and recycling. Interestingly, the enzyme activities and sucrose content of the ear organs were positively associated with grain yield and quality, suggesting, together with the regression models using isotope signatures, the potential contribution of these organs during grain filling. This study highlights the use of holistic approaches to the identification of novel targets to improve grain yield and quality in C3 cereals and the key role of non-foliar organs at late-growth stages.
Collapse
Affiliation(s)
- Raquel Martínez-Peña
- Group of Cereals, Section of Herbaceous, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, Valladolid, Spain
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - José Luis Araus
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Nieves Aparicio
- Group of Cereals, Section of Herbaceous, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, Valladolid, Spain
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Plant Ecophysiology and Metabolism Group, Oeiras, Portugal
- *Correspondence: Rubén Vicente
| |
Collapse
|
9
|
Agüera E, de la Haba P. Climate Change Impacts on Sunflower ( Helianthus annus L.) Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2646. [PMID: 34961117 PMCID: PMC8705722 DOI: 10.3390/plants10122646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The biochemical, biological, and morphogenetic processes of plants are affected by ongoing climate change, causing alterations in crop development, growth, and productivity. Climate change is currently producing ecosystem modifications, making it essential to study plants with an improved adaptive capacity in the face of environmental modifications. This work examines the physiological and metabolic changes taking place during the development of sunflower plants due to environmental modifications resulting from climate change: elevated concentrations of atmospheric carbon dioxide (CO2) and increased temperatures. Variations in growth, and carbon and nitrogen metabolism, as well as their effect on the plant's oxidative state in sunflower (Helianthus annus L.) plants, are studied. An understanding of the effect of these interacting factors (elevated CO2 and elevated temperatures) on plant development and stress response is imperative to understand the impact of climate change on plant productivity.
Collapse
Affiliation(s)
- Eloísa Agüera
- Department of Botany, Ecology and Plant Physiology, Faculty of Science, University of Córdoba, 14071 Córdoba, Spain;
| | | |
Collapse
|
10
|
Wang X, Wei X, Wu G, Chen S. Ammonium application mitigates the effects of elevated carbon dioxide on the carbon/nitrogen balance of Phoebe bournei seedlings. TREE PHYSIOLOGY 2021; 41:1658-1668. [PMID: 33580964 DOI: 10.1093/treephys/tpab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The study of plant responses to increases in atmospheric carbon dioxide (CO2) concentration is crucial to understand and to predict the effect of future global climate change on plant adaptation and evolution. Increasing amount of nitrogen (N) can promote the positive effect of CO2, while how N forms would modify the degree of CO2 effect is rarely studied. The aim of this study was to determine whether the amount and form of nitrogen (N) could mitigate the effects of elevated CO2 (eCO2) on enzyme activities related to carbon (C) and N metabolism, the C/N ratio, and growth of Phoebe bournei (Hemsl.) Y.C. Yang. One-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) (350 ± 70 μmol•mol-1) or an eCO2 (700 ± 10 μmol•mol-1) concentration and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. In seedlings treated with a moderate level of nitrate, the activities of key enzymes involved in C and N metabolism (i.e., Rubisco, Rubisco activase and glutamine synthetase) were lower under eCO2 than under aCO2. By contrast, key enzyme activities (except GS) in seedlings treated with high nitrate or ammonium were not significantly different between aCO2 and eCO2 or higher under eCO2 than under aCO2. The C/N ratio of seedlings treated with moderate or high nitrate under eCO2was significantly changed compared with the seedlings grown under aCO2, whereas the C/N ratio of seedlings treated with ammonium was not significantly different between aCO2 and eCO2. Therefore, under eCO2, application of ammonium can be beneficial C and N metabolism and mitigate effects on the C/N ratio.
Collapse
Affiliation(s)
- Xiao Wang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xiaoli Wei
- College of Forestry, Guizhou University, Guiyang 550025, China
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Gaoyin Wu
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengqun Chen
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Roy S, Mathur P. Delineating the mechanisms of elevated CO 2 mediated growth, stress tolerance and phytohormonal regulation in plants. PLANT CELL REPORTS 2021; 40:1345-1365. [PMID: 34169360 DOI: 10.1007/s00299-021-02738-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Global climate change has drastically affected natural ecosystems and crop productivity. Among several factors of global climate change, CO2 is considered to be the dynamic parameter that will regulate the responses of all biological system on earth in the coming decade. A number of experimental studies in the past have demonstrated the positive effects of elevated CO2 on photosynthesis, growth and biomass, biochemical and physiological processes such as increased C:N ratio, secondary metabolite production, as well as phytohormone concentrations. On the other hand, elevated CO2 imparts an adverse effect on the nutritional quality of crop plants and seed quality. Investigations have also revealed effects of elevated CO2 both at cellular and molecular level altering expression of various genes involved in various metabolic processes and stress signaling pathways. Elevated CO2 is known to have mitigating effect on plants in presence of abiotic stresses such as drought, salinity, temperature etc., while contrasting effects in the presence of different biotic agents i.e. phytopathogens, insects and herbivores. However, a well-defined crosstalk is incited by elevated CO2 both under abiotic and biotic stresses in terms of phytohormones concentration and secondary metabolites production. With this background, the present review attempts to shed light on the major effects of elevated CO2 on plant growth, physiological and molecular responses and will highlight the interactive effects of elevated CO2 with other abiotic and biotic factors. The article will also provide deep insights into the phytohormones modulation under elevated CO2.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
12
|
Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:882. [PMID: 32733499 PMCID: PMC7357547 DOI: 10.3389/fpls.2020.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO2 in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO2 assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, Université Paris Diderot, Paris, France
| | - Eckart Priesack
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthew T. Herritt
- USDA-ARS Plant Physiology and Genetics Research, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB-CSIC), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
13
|
Vergara-Diaz O, Vatter T, Vicente R, Obata T, Nieto-Taladriz MT, Aparicio N, Carlisle Kefauver S, Fernie A, Araus JL. Metabolome Profiling Supports the Key Role of the Spike in Wheat Yield Performance. Cells 2020; 9:E1025. [PMID: 32326207 PMCID: PMC7226616 DOI: 10.3390/cells9041025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022] Open
Abstract
Although the relevance of spike bracts in stress acclimation and contribution to wheat yield was recently revealed, the metabolome of this organ and its response to water stress is still unknown. The metabolite profiles of flag leaves, glumes and lemmas were characterized under contrasting field water regimes in five durum wheat cultivars. Water conditions during growth were characterized through spectral vegetation indices, canopy temperature and isotope composition. Spike bracts exhibited better coordination of carbon and nitrogen metabolisms than the flag leaves in terms of photorespiration, nitrogen assimilation and respiration paths. This coordination facilitated an accumulation of organic and amino acids in spike bracts, especially under water stress. The metabolomic response to water stress also involved an accumulation of antioxidant and drought tolerance related sugars, particularly in the spikes. Furthermore, certain cell wall, respiratory and protective metabolites were associated with genotypic outperformance and yield stability. In addition, grain yield was strongly predicted by leaf and spike bracts metabolomes independently. This study supports the role of the spike as a key organ during wheat grain filling, particularly under stress conditions and provides relevant information to explore new ways to improve wheat productivity including potential biomarkers for yield prediction.
Collapse
Affiliation(s)
- Omar Vergara-Diaz
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (O.V.-D.); (T.V.); (R.V.); (S.C.K.)
- AGROTECNIO (Center of Research in Agrotechnology), 25198 Lleida, Spain
| | - Thomas Vatter
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (O.V.-D.); (T.V.); (R.V.); (S.C.K.)
- AGROTECNIO (Center of Research in Agrotechnology), 25198 Lleida, Spain
| | - Rubén Vicente
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (O.V.-D.); (T.V.); (R.V.); (S.C.K.)
- AGROTECNIO (Center of Research in Agrotechnology), 25198 Lleida, Spain
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (T.O.); (A.F.)
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (T.O.); (A.F.)
| | - Maria Teresa Nieto-Taladriz
- National Institute for Agricultural and Food Research and Technology (INIA), Ctra de la Coruña 7.5, 28040 Madrid, Spain;
| | - Nieves Aparicio
- Technological and Agrarian Institute of Castilla y León (ITACyL), Agricultural Research. Ctra Burgos km 119, 47041 Valladolid, Spain;
| | - Shawn Carlisle Kefauver
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (O.V.-D.); (T.V.); (R.V.); (S.C.K.)
- AGROTECNIO (Center of Research in Agrotechnology), 25198 Lleida, Spain
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (T.O.); (A.F.)
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (O.V.-D.); (T.V.); (R.V.); (S.C.K.)
- AGROTECNIO (Center of Research in Agrotechnology), 25198 Lleida, Spain
| |
Collapse
|
14
|
Gray SB, Rodriguez‐Medina J, Rusoff S, Toal TW, Kajala K, Runcie DE, Brady SM. Translational regulation contributes to the elevated CO 2 response in two Solanum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:383-397. [PMID: 31797460 PMCID: PMC7216843 DOI: 10.1111/tpj.14632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Understanding the impact of elevated CO2 (eCO2 ) in global agriculture is important given climate change projections. Breeding climate-resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2 is poorly understood, especially in crop species. We describe the different ways in which Solanum lycopersicum and its wild relative S. pennellii respond to eCO2 , from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2 .
Collapse
Affiliation(s)
- Sharon B. Gray
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Joel Rodriguez‐Medina
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Samuel Rusoff
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Ted W. Toal
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
- Present address:
Plant EcophysiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Daniel E. Runcie
- Department of Plant SciencesUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Siobhan M. Brady
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| |
Collapse
|
15
|
Vicente R, Vergara-Díaz O, Kerfal S, López A, Melichar J, Bort J, Serret MD, Araus JL, Kefauver SC. Identification of traits associated with barley yield performance using contrasting nitrogen fertilizations and genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 282:83-94. [PMID: 31003614 DOI: 10.1016/j.plantsci.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 05/08/2023]
Abstract
Much attention has been paid to understanding the traits associated with crop performance and the associated underlying physiological mechanisms, with less effort done towards combining different plant scales, levels of observation, or including hybrids of autogamous species. We aim to identify mechanisms at canopy, leaf and transcript levels contributing to crop performance under contrasting nitrogen supplies in three barley genotypes, two hybrids and one commercial line. High nitrogen fertilization did not affect photosynthetic capacity on a leaf area basis and lowered nitrogen partial factor productivity past a certain point, but increased leaf area and biomass accumulation, parameters that were closely tracked using various different high throughput remote sensing based phenotyping techniques. These aspects, together with a larger catabolism of leaf nitrogen compounds amenable to sink translocation, contributed to higher crop production. Better crop yield and growth in hybrids compared to the line was linked to a nitrogen-saving strategy in source leaves to the detriment of larger sink size, as indicated by the lower leaf nitrogen content and downregulation of nitrogen metabolism and aquaporin genes. While these changes did not reduce photosynthesis capacity on an area basis, they were related with better nitrogen use in the hybrids compared with the line.
Collapse
Affiliation(s)
- Rubén Vicente
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Omar Vergara-Díaz
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Samir Kerfal
- Syngenta España, S.A.U., Calle de la Ribera del Loira 8-10, 28042 Madrid, Spain.
| | - Antonio López
- Syngenta España, S.A.U., Calle de la Ribera del Loira 8-10, 28042 Madrid, Spain.
| | - James Melichar
- Syngenta U.K., Hill Farm Road, Whittlesford, Cambridge, CB22 4QT, United Kingdom.
| | - Jordi Bort
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - María Dolores Serret
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - José Luis Araus
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Shawn C Kefauver
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
16
|
Torralbo F, Vicente R, Morcuende R, González-Murua C, Aranjuelo I. C and N metabolism in barley leaves and peduncles modulates responsiveness to changing CO2. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:599-611. [PMID: 30476207 PMCID: PMC6322569 DOI: 10.1093/jxb/ery380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
Balancing of leaf carbohydrates is a key process for maximising crop performance in elevated CO2 environments. With the aim of testing the role of the carbon sink-source relationship under different CO2 conditions, we performed two experiments with two barley genotypes (Harrington and RCSL-89) exposed to changing CO2. In Experiment 1, the genotypes were exposed to 400 and 700 ppm CO2. Elevated CO2 induced photosynthetic acclimation in Harrington that was linked with the depletion of Rubisco protein. In contrast, a higher peduncle carbohydrate-storage capacity in RSCL-89 was associated with a better balance of leaf carbohydrates that could help to maximize the photosynthetic capacity under elevated CO2. In Experiment 2, plants that were grown at 400 ppm or 700 ppm CO2 for 5 weeks were switched to 700 ppm or 400 ppm CO2, respectively. Raising CO2 to 700 ppm increased photosynthetic rates with a reduction in leaf carbohydrate content and an improvement in N assimilation. The increase in nitrate content was associated with up-regulation of genes of protein transcripts of photosynthesis and N assimilation that favoured plant performance under elevated CO2. Finally, decreasing the CO2 from 700 ppm to 400 ppm revealed that both stomatal closure and inhibited expression of light-harvesting proteins negatively affected photosynthetic performance and plant growth.
Collapse
Affiliation(s)
- Fernando Torralbo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Instituto de Agrobiotecnología (IdAB)-CSIC, Avenida de Pamplona, Mutilva Baja, Spain
| | - Rubén Vicente
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Rosa Morcuende
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Iker Aranjuelo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Instituto de Agrobiotecnología (IdAB)-CSIC, Avenida de Pamplona, Mutilva Baja, Spain
| |
Collapse
|