1
|
Lafargue A, Wang H, Chettiar ST, Gajula RP, Shetty AC, Song Y, Simons BW, Khan MA, Nguyen T, Tseng HW, Chang J, Waters DN, Chan A, Lam C, Carrieri FA, Smack C, Connis N, Chowdhury DD, Nugent K, Siddiqui I, Taparra K, Rezaee M, Zachara N, Morris ZS, McFarland C, Abdulkadir SA, Hann CL, Tran PT. Twist1-induced suppression of oncogene-induced senescence in non-small cell lung cancer requires the transactivation domain of Twist1. Neoplasia 2025; 66:101179. [PMID: 40409044 DOI: 10.1016/j.neo.2025.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
Non-small cell lung carcinoma (NSCLC) is a major cause of cancer mortality. High expression of the epithelial-to-mesenchymal transition transcription factor (EMT-TF) Twist1 is strongly associated with metastatic cancers and with treatment resistance. Twist1 can also upregulate O-GlcNAcylation to suppress fail-safe programs such as KrasG12D oncogene-induced senescence (OIS) that accelerates NSCLC tumorigenesis. We wanted to decipher the critical domains and transcriptional targets required for Twist1 acceleration of lung tumorigenicity. We created a novel genetically-engineered mouse model for autochthonous lung cancer through lung epithelial expression of KrasG12D oncogene (CR) concomitantly with Twist1wt (CRT) or a Twist1F191G transactivation-deficient mutant (CRF191G). Compared to CR and CRF191G, CRT mice had shorter tumor-free survival and more aggressive tumors histologically. CRT lung tumors also showed higher proliferation and lower cell-cycle arrest suggesting that the Twist1 transactivation-domain is important for OIS suppression. Supporting these data, we observed in non-cancer human bronchial epithelial cells (HBECs) that the co-expression of human TWIST1wt enhanced tumorigenic/invasive programs and could suppress HRasG12V-induced senescence while co-expressing TWIST1F187G transactivation-deficient mutant could not. TWIST1wt co-expression with HRasG12V in HBECs differentially modulated MYC downstream transcriptional programs. Finally, OIS induction in HBECHRasG12V-TWIST1wt was rescued by O-GlcNAcylation inhibition or by treatment with a novel MYC inhibitor MYCi975 or by MYC knockdown. Altogether, these results indicate that the Twist1 transactivation domain is required for Twist1-dependent acceleration of lung tumorigenesis via MYC and nominate MYCi975 as a means to activate latent OIS programs. MYC targeting strategies could limit pro-tumorigenic programs and serve as a therapeutic for TWIST1-overexpressing NSCLCs.
Collapse
Affiliation(s)
- Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA.
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; GenoImmune Therapeutics, Wuhan, China
| | - Sivarajan T Chettiar
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Rajendra P Gajula
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Amol C Shetty
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA; Institute of Genome Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Yang Song
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA; Institute of Genome Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Brian W Simons
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Muhammad Ajmal Khan
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Triet Nguyen
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Hwai-Wei Tseng
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Jinhee Chang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Danielle N Waters
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Aaron Chan
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Christine Lam
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Francesca A Carrieri
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Caleb Smack
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nick Connis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Dipanwita Dutta Chowdhury
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ismaeel Siddiqui
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Natasha Zachara
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christopher McFarland
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Sarki Abba Abdulkadir
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, and Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christine L Hann
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA; Department of Urology, James Buchanan Urological Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sutera P, Song Y, Shetty AC, English K, Van der Eecken K, Guler OC, Wang J, Cao Y, Bazyar S, Verbeke S, Van Dorpe J, Fonteyne V, De Laere B, Mishra M, Rana Z, Molitoris J, Ferris M, Kiess A, Song DY, DeWeese T, Pienta KJ, Barbieri C, Marchionni L, Ren L, Sawant A, Simone N, Berlin A, Onal C, Tran PT, Ost P, Deek MP. Genomic Determinants Associated with Modes of Progression and Patterns of Failure in Metachronous Oligometastatic Castration-sensitive Prostate Cancer. Eur Urol Oncol 2025; 8:111-118. [PMID: 38862340 DOI: 10.1016/j.euo.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Oligometastatic castration-sensitive prostate cancer (omCSPC) represents an early state in the progression of metastatic disease for which patients experience better outcomes in comparison to those with higher disease burden. Despite the generally more indolent nature, there is still much heterogeneity, with some patients experiencing a more aggressive clinical course unexplained by clinical features alone. Our aim was to investigate correlation of tumor genomics with the mode of progression (MOP) and pattern of failure (POF) following first treatment (metastasis-directed and/or systemic therapy) for omCSPC. METHODS We performed an international multi-institutional retrospective study of men treated for metachronous omCSPC who underwent tumor next-generation sequencing with at least 1 yr of follow-up after their first treatment. Descriptive MOP and POF results are reported with respect to the presence of genomic alterations in pathways of interest. MOP was defined as class I, long-term control (LTC; no radiographic progression at last follow-up), class II, oligoprogression (1-3 lesions), or class III, polyprogression (≥4 lesions). POF included the location of lesions at first failure. Genomic pathways of interest included TP53, ATM, RB1, BRCA1/2, SPOP, and WNT (APC, CTNNB1, RNF43). Genomic associations with MOP/POF were compared using χ2 tests. Exploratory analyses revealed that the COSMIC mutational signature and differential gene expression were also correlated with MOP/POF. Overall survival (OS) was calculated via the Kaplan-Meier method from the time of first failure. KEY FINDINGS AND CLINICAL IMPLICATIONS We included 267 patients in our analysis; the majority had either one (47%) or two (30%) metastatic lesions at oligometastasis. The 3-yr OS rate was significantly associated with MOP (71% for polyprogression vs 91% for oligoprogression; p = 0.005). TP53 mutation was associated with a significantly lower LTC rate (27.6% vs 42.3%; p = 0.04) and RB1 mutation was associated with a high rate of polyprogression (50% vs 19.9%; p = 0.022). Regarding POF, bone failure was significantly more common with tumors harboring TP53 mutations (44.8% vs25.9%; p = 0.005) and less common with SPOP mutations (7.1% vs 31.4%; p = 0.007). Visceral failure was more common with tumors harboring either WNT pathway mutations (17.2% vs 6.8%, p = 0.05) or SPOP mutations (17.9% vs 6.3%; p = 0.04). Finally, visceral and bone failures were associated with distinct gene-expression profiles. CONCLUSIONS AND CLINICAL IMPLICATIONS Tumor genomics provides novel insight into MOP and POF following treatment for metachronous omCSPC. Patients with TP53 and RB1 mutations have a higher likelihood of progression, and TP53, SPOP, and WNT pathway mutations may have a role in metastatic organotropism. PATIENT SUMMARY We evaluated cancer progression after a first treatment for metastatic prostate cancer with up to five metastases. We found that mutations in certain genes were associated with the location and extent of further metastasis in these patients.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keara English
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kim Van der Eecken
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Ozan Cem Guler
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| | - Jarey Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Cao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Soha Bazyar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Bram De Laere
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium; Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
| | - Mark Mishra
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Zaker Rana
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Jason Molitoris
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Matthew Ferris
- Department of Pathology and Human Structure and Repair, University of Ghent, Ghent, Belgium
| | - Ana Kiess
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christopher Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Cem Onal
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana Dr. Turgut Noyan Research and Treatment Center, Adana, Turkey
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piet Ost
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Sutera P, Deek MP, Van der Eecken K, Shetty AC, Chang JH, Hodges T, Song Y, Verbeke S, Van Dorpe J, Fonteyne V, De Laere B, Mishra M, Rana Z, Molitoris J, Ferris M, Ross A, Schaeffer E, Roberts N, Song DY, DeWeese T, Pienta KJ, Antonarakis ES, Ost P, Tran PT. WNT Pathway Mutations in Metachronous Oligometastatic Castration-Sensitive Prostate Cancer. Int J Radiat Oncol Biol Phys 2023; 115:1095-1101. [PMID: 36708787 PMCID: PMC10443895 DOI: 10.1016/j.ijrobp.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE WNT signaling is a cellular pathway that has been implicated in the development and progression of prostate cancer. Oligometastatic castration-sensitive prostate cancer (omCSPC) represents a unique state of disease in which metastasis-directed therapy (MDT) has demonstrated improvement in progression-free survival. Herein, we investigate the clinical implications of genomic alterations in the WNT signaling cascade in men with omCSPC. METHODS AND MATERIALS We performed an international multi-institutional retrospective study of 277 men with metachronous omCSPC who underwent targeted DNA sequencing of their primary/metastatic tumor. Patients were classified by presence or absence of pathogenic WNT pathway mutations (in the genes APC, RNF43, and CTNNB1). Pearson χ2 and Mann-Whitney U tests were used to determine differences in clinical factors between genomic strata. Kaplan-Meier survival curves were generated for radiographic progression-free survival and overall survival, stratified according to WNT pathway mutation status. RESULTS A pathogenic WNT pathway mutation was detected in 11.2% of patients. Patients with WNT pathway mutations were more likely to have visceral metastases (22.6% vs 2.8%; P < .01) and less likely to have regional lymph node metastases (29.0% vs 50.4%; P = .02). At time of oligometastasis, these patients were treated with MDT alone (33.9%), MDT + limited course of systemic therapy (20.6%), systemic therapy alone (22.4%), or observation (defined as no treatment for ≥6 months after metastatic diagnosis). Multivariable cox regression demonstrated WNT pathway mutations associated with significantly worse overall survival (hazard ratio, 3.87; 95% confidence interval, 1.25-12.00). CONCLUSIONS Somatic WNT pathway alterations are present in approximately 11% of patients with omCSPC and are associated with an increased likelihood of visceral metastases. Although these patients have a worse natural history, they may benefit from MDT.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Kim Van der Eecken
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jin Hee Chang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Theresa Hodges
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sofie Verbeke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Medical Epidemiology, Biostatistics Karolinska Institute, Stockholm, Sweden
| | - Mark Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zaker Rana
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley Ross
- Department of Urology, Northwestern University, Chicago, Illinois
| | - Edward Schaeffer
- Department of Urology, Northwestern University, Chicago, Illinois
| | - Nicholas Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Iridium Network, Antwerp, Belgium.
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Khot M, Sreekumar D, Jahagirdar S, Kulkarni A, Hari K, Faseela EE, Sabarinathan R, Jolly MK, Sengupta K. Twist1 induces chromosomal instability (CIN) in colorectal cancer cells. Hum Mol Genet 2020; 29:1673-1688. [PMID: 32337580 PMCID: PMC7322571 DOI: 10.1093/hmg/ddaa076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor, essential during early development in mammals. While Twist1 induces epithelial-to-mesenchymal transition (EMT), here we show that Twist1 overexpression enhances nuclear and mitotic aberrations. This is accompanied by an increase in whole chromosomal copy number gains and losses, underscoring the role of Twist1 in inducing chromosomal instability (CIN) in colorectal cancer cells. Array comparative genomic hybridization (array CGH) analysis further shows sub-chromosomal deletions, consistent with an increased frequency of DNA double strand breaks (DSBs). Remarkably, Twist1 overexpression downmodulates key cell cycle checkpoint factors-Bub1, BubR1, Mad1 and Mad2-that regulate CIN. Mathematical simulations using the RACIPE tool show a negative correlation of Twist1 with E-cadherin and BubR1. Data analyses of gene expression profiles of patient samples from The Cancer Genome Atlas (TCGA) reveal a positive correlation between Twist1 and mesenchymal genes across cancers, whereas the correlation of TWIST1 with CIN and DSB genes is cancer subtype-specific. Taken together, these studies highlight the mechanistic involvement of Twist1 in the deregulation of factors that maintain genome stability during EMT in colorectal cancer cells. Twist1 overexpression enhances genome instability in the context of EMT that further contributes to cellular heterogeneity. In addition, these studies imply that Twist1 downmodulates nuclear lamins that further alter spatiotemporal organization of the cancer genome and epigenome. Notwithstanding their genetic background, colorectal cancer cells nevertheless maintain their overall ploidy, while the downstream effects of Twist1 enhance CIN and DNA damage enriching for sub-populations of aggressive cancer cells.
Collapse
Affiliation(s)
- Maithilee Khot
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Dyuthi Sreekumar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanika Jahagirdar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Apoorva Kulkarni
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Kundan Sengupta
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
- To whom correspondence should be addressed at: B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India. Tel: +91 20 25908071; Fax: +91-20-20251566;
| |
Collapse
|
6
|
TWIST1 Heterodimerization with E12 Requires Coordinated Protein Phosphorylation to Regulate Periostin Expression. Cancers (Basel) 2019; 11:cancers11091392. [PMID: 31540485 PMCID: PMC6770789 DOI: 10.3390/cancers11091392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022] Open
Abstract
Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin (POSTN) promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, POSTN expression, and invasion in glioma cells. Compared with wild-type TW, the hypophosphorylation mutant, TW(S68A), impaired TW heterodimerization with the E12 bHLH transcription factor and cell invasion in vitro but had no effect on TW homodimerization. Overexpression of TW:E12 forced dimerization constructs (FDCs) increased glioma cell invasion and upregulated pro-invasive proteins, including POSTN, in concert with cytoskeletal reorganization. By contrast, TW:TW homodimer FDCs inhibited POSTN expression and cell invasion in vitro. Further, phosphorylation of analogous PXSP phosphorylation sites in TW:E12 FDCs (TW S68 and E12 S139) coordinately regulated POSTN and PDGFRa mRNA expression. These results suggested that TW regulates pro-invasive phenotypes in part through coordinated phosphorylation events in TW and E12 that promote heterodimer formation and regulate downstream targets. This new mechanistic understanding provides potential therapeutic strategies to inhibit TW-POSTN signaling in GBM and other cancers.
Collapse
|
7
|
Liu X, Li C, Yang Y, Liu X, Li R, Zhang M, Yin Y, Qu Y. Synaptotagmin 7 in twist-related protein 1-mediated epithelial - Mesenchymal transition of non-small cell lung cancer. EBioMedicine 2019; 46:42-53. [PMID: 31395502 PMCID: PMC6711891 DOI: 10.1016/j.ebiom.2019.07.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Twist-related protein 1 (TWIST1) plays an essential role in the carcinogenesis and metastasis of NSCLC. Our aims were to identify the molecule at the downstream of TWIST1 and to evaluate its potential as a diagnostic and a prognostic marker in NSCLC. Methods The functional genes at the downstream of TWIST1 were obtained via microarray gene expression analyses in the NSCLC cell line. The expression levels of synaptotagmin 7 (SYT7) in a cohort of patients with NSCLC (n = 154) were examined using immunohistochemistry staining and assessed by Kaplan-Meier survival analysis and Cox regression analysis. The effects of SYT7 on the tumorigenesis and metastasis of NSCLC were measured in NSCLC cells. In vivo xenograft lung cancer models were used to study the tumorigenesis role of SYT7. Findings We discovered that SYT7 is significantly altered by TWIST1 expression. We further confirmed that SYT7 protein was significantly higher in NSCLC than that in the adjacent normal lung tissue, and higher SYT7 expression was associated with poor survival of NSCLC patients. The protein level of SYT7 was positively correlated with TWIST1 in NSCLC tissue. Functional experiments indicated that SYT7 promoted proliferation, invasion, and metastasis and inhibited cell apoptosis of NSCLC cells in vitro. In vivo experiments showed that shSYT7 inhibited the xenograft tumor growth of NSCLC cells. Knocking down of SYT7 increased the expression of E-cadherin and decreased the level of N-cadherin and Vimentin in cultured cells. Interpretation Our data indicate that SYT7 is an important promoter for EMT and tumor progression in NSCLC. Fund This project was supported by grants from the Major Scientific and Technological Innovation Project of Shandong Province (2018CXGC1212), Science and Technology Foundation of Shandong Province (2014GSF118084, 2016GSF121043), Medical and Health Technology Innovation Plan of Jinan City (201805002) and the National Natural Science Foundation of China (81372333).
Collapse
Affiliation(s)
- Xiao Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chunyu Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yie Yang
- Department of Clinical Laboratory, Qianfoshan Hospital of Shandong Province, Jinan 250012, China
| | - Xiaoxia Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Rui Li
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mengyu Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yunhong Yin
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yiqing Qu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
8
|
Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2019; 2019:5810465. [PMID: 31275381 PMCID: PMC6582791 DOI: 10.1155/2019/5810465] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is the first step in the development of the invasive and migratory properties of cancer metastasis. Since the transcriptional reprogramming of a number of genes occurs in EMT, the regulation of EMT transcription factors has been intensively investigated. EMT transcriptional factors are commonly classified by the direct or indirect repression of E-cadherin because one of hallmarks of EMT is the loss of E-cadherin. This facilitates the expression of genes for EMT, tumor invasion, and metastasis. The posttranslational modification of EMT transcriptional factors, such as Snail and Slug, directly regulates their functions, including their stability, nuclear localization, protein-protein interaction, and ubiquitination for the promotion or termination of EMT at the specific points. Here, we discuss how posttranslational modifications regulate gene expression in a dynamic and reversible manner by modifying upstream signaling pathways, focusing in particular on the posttranslational modifications of Snail, Slug, ZEB1, ZEB2, and TWIST1. This review demonstrates that EMT transcription factors regulate metastasis through their posttranslational modifications and that the flexibility and reversibility of EMT can be modified by phosphorylation.
Collapse
|
9
|
Tedja R, Roberts CM, Alvero AB, Cardenas C, Yang-Hartwich Y, Spadinger S, Pitruzzello M, Yin G, Glackin CA, Mor G. Protein kinase Cα-mediated phosphorylation of Twist1 at Ser-144 prevents Twist1 ubiquitination and stabilizes it. J Biol Chem 2019; 294:5082-5093. [PMID: 30733340 DOI: 10.1074/jbc.ra118.005921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor that plays a key role in embryonic development, and its expression is down-regulated in adult cells. However, Twist1 is highly expressed during cancer development, conferring a proliferative, migratory, and invasive phenotype to malignant cells. Twist1 expression can be regulated post-translationally by phosphorylation or ubiquitination events. We report in this study a previously unknown and relevant Twist1 phosphorylation site that controls its stability. To identify candidate phosphorylation sites in Twist1, we first conducted an in silico analysis of the Twist1 protein, which yielded several potential sites. Because most of these sites were predicted to be phosphorylated by protein kinase C (PKC), we overexpressed PKCα in several cell lines and found that it phosphorylates Twist1 on Ser-144. Using a combination of immunoblotting, immunoprecipitation, protein overexpression, and CRISPR/Cas9-mediated PKCα knockout experiments, we observed that PKCα-mediated Twist1 phosphorylation at Ser-144 inhibits Twist1 ubiquitination and consequently stabilizes it. These results provide evidence for a direct association between PKCα and Twist1 and yield critical insights into the PKCα/Twist1 signaling axis that governs cancer aggressiveness.
Collapse
Affiliation(s)
- Roslyn Tedja
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Cai M Roberts
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Ayesha B Alvero
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Carlos Cardenas
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Yang Yang-Hartwich
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Sydney Spadinger
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Mary Pitruzzello
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Gang Yin
- the Department of Pathology, Xiangya Hospital School of Basic Medical Sciences, Central South University, Changsa, Hunan Province 410083, China, and
| | - Carlotta A Glackin
- the Department of Stem Cell and Developmental Biology, City of Hope, Duarte, California 91010
| | - Gil Mor
- From the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06511,
| |
Collapse
|
10
|
Yochum ZA, Burns TF. TWIST1 regulation of circRNA: a novel mechanism to promote epithelial-mesenchymal transition in hepatocellular carcinoma. ACTA ACUST UNITED AC 2018; 2. [PMID: 30734026 DOI: 10.21037/ncri.2018.12.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zachary A Yochum
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Timothy F Burns
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Fucic A, Aghajanyan A, Culig Z, Le Novere N. Systems Oncology: Bridging Pancreatic and Castrate Resistant Prostate Cancer. Pathol Oncol Res 2018; 25:1269-1277. [PMID: 30220022 DOI: 10.1007/s12253-018-0467-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioinformatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma (PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a) detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology of PaC and CRPC.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska c 2, 10000, Zagreb, Croatia.
| | - A Aghajanyan
- Institute of Medicine, Peoples' Friendship University of Russia, Moscow, Russian Federation
| | - Z Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
12
|
Reduced expression of Twist 1 is protective against insulin resistance of adipocytes and involves mitochondrial dysfunction. Sci Rep 2018; 8:12590. [PMID: 30135600 PMCID: PMC6105588 DOI: 10.1038/s41598-018-30820-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/07/2018] [Indexed: 01/06/2023] Open
Abstract
Insulin resistance (IR) has become a global epidemic that represents a serious hazard to public health. However, the precise mechanisms modulating IR have not been fully elucidated. The present study aimed to investigate the role of transcriptional factor Twist 1 in adipocyte IR and to further explore the molecular mechanism. An in vitro IR model based on cultured 3T3-L1 adipocytes was established under high glucose/insulin stimulation and an in vivo IR model in C57/BL6J mice induced by a high fat diet (HFD) was also developed. Lentivirus targeting Twist 1 silencing was introduced. The relationships between Twist 1 expression and IR state, mitochondrial dysfunction and the downstream insulin signaling pathway were assayed. Our results firstly showed the elevation of Twist 1 in IR adipocytes, and Twist 1 silencing attenuated IR. Then mitochondrial ultra-structural damage, elevated ROS, decreased MMP and ATP, and changes in mitochondrial biosynthesis-related genes in IR group indicated mitochondrial dysfunction. Further, the downstream IRS/PI3K/AKT/GluT4 pathway was showed involved in Twist 1-mediated IR. In total, we provide evidence of a protective role of Twist 1 silencing in relieving the IR state of adipocytes. Mitochondrial dysfunction and the downstream IRS/PI3K/AKT/GluT4 pathway were involved in this Twist 1-mediated IR.
Collapse
|
13
|
Tang H, Massi D, Hemmings BA, Mandalà M, Hu Z, Wicki A, Xue G. AKT-ions with a TWIST between EMT and MET. Oncotarget 2018; 7:62767-62777. [PMID: 27623213 PMCID: PMC5308764 DOI: 10.18632/oncotarget.11232] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.
Collapse
Affiliation(s)
- Huifang Tang
- Department of Pharmacology, Zhejiang University School of Basic Medical Sciences, Hangzhou, China
| | - Daniela Massi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Brian A Hemmings
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mario Mandalà
- Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Zhengqiang Hu
- Department of Pharmacology, Zhejiang University School of Basic Medical Sciences, Hangzhou, China
| | - Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
14
|
Yochum ZA, Cades J, Mazzacurati L, Neumann NM, Khetarpal SK, Chatterjee S, Wang H, Attar MA, Huang EHB, Chatley SN, Nugent K, Somasundaram A, Engh JA, Ewald AJ, Cho YJ, Rudin CM, Tran PT, Burns TF. A First-in-Class TWIST1 Inhibitor with Activity in Oncogene-Driven Lung Cancer. Mol Cancer Res 2017; 15:1764-1776. [PMID: 28851812 DOI: 10.1158/1541-7786.mcr-17-0298] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
TWIST1, an epithelial-mesenchymal transition (EMT) transcription factor, is critical for oncogene-driven non-small cell lung cancer (NSCLC) tumorigenesis. Given the potential of TWIST1 as a therapeutic target, a chemical-bioinformatic approach using connectivity mapping (CMAP) analysis was used to identify TWIST1 inhibitors. Characterization of the top ranked candidates from the unbiased screen revealed that harmine, a harmala alkaloid, inhibited multiple TWIST1 functions, including single-cell dissemination, suppression of normal branching in 3D epithelial culture, and proliferation of oncogene driver-defined NSCLC cells. Harmine treatment phenocopied genetic loss of TWIST1 by inducing oncogene-induced senescence or apoptosis. Mechanistic investigation revealed that harmine targeted the TWIST1 pathway through its promotion of TWIST1 protein degradation. As dimerization is critical for TWIST1 function and stability, the effect of harmine on specific TWIST1 dimers was examined. TWIST1 and its dimer partners, the E2A proteins, which were found to be required for TWIST1-mediated functions, regulated the stability of the other heterodimeric partner posttranslationally. Harmine preferentially promoted degradation of the TWIST1-E2A heterodimer compared with the TWIST-TWIST1 homodimer, and targeting the TWIST1-E2A heterodimer was required for harmine cytotoxicity. Finally, harmine had activity in both transgenic and patient-derived xenograft mouse models of KRAS-mutant NSCLC. These studies identified harmine as a first-in-class TWIST1 inhibitor with marked anti-tumor activity in oncogene-driven NSCLC including EGFR mutant, KRAS mutant and MET altered NSCLC.Implications: TWIST1 is required for oncogene-driven NSCLC tumorigenesis and EMT; thus, harmine and its analogues/derivatives represent a novel therapeutic strategy to treat oncogene-driven NSCLC as well as other solid tumor malignancies. Mol Cancer Res; 15(12); 1764-76. ©2017 AACR.
Collapse
Affiliation(s)
- Zachary A Yochum
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Cades
- Department of Pharmacology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucia Mazzacurati
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susheel K Khetarpal
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Suman Chatterjee
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myriam A Attar
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Eric H-B Huang
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Sarah N Chatley
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashwin Somasundaram
- Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Johnathan A Engh
- Department of Neurological Surgery University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Oregon Health & Science University, Portland, Oregon
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy F Burns
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Medicine, Division of Hematology-Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Bouard C, Terreux R, Tissier A, Jacqueroud L, Vigneron A, Ansieau S, Puisieux A, Payen L. Destabilization of the TWIST1/E12 complex dimerization following the R154P point-mutation of TWIST1: an in silico approach. BMC STRUCTURAL BIOLOGY 2017; 17:6. [PMID: 28521820 PMCID: PMC5437649 DOI: 10.1186/s12900-017-0076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
Abstract
Background The bHLH transcription factor TWIST1 plays a key role in the embryonic development and in tumorigenesis. Some loss-of-function mutations of the TWIST1 gene have been shown to cause an autosomal dominant craniosynostosis, known as the Saethre-Chotzen syndrome (SCS). Although the functional impacts of many TWIST1 mutations have been experimentally reported, little is known on the molecular mechanisms underlying their loss-of-function. In a previous study, we highlighted the predictive value of in silico molecular dynamics (MD) simulations in deciphering the molecular function of TWIST1 residues. Results Here, since the substitution of the arginine 154 amino acid by a glycine residue (R154G) is responsible for the SCS phenotype and the substitution of arginine 154 by a proline experimentally decreases the dimerizing ability of TWIST1, we investigated the molecular impact of this point mutation using MD approaches. Consistently, MD simulations highlighted a clear decrease in the stability of the α-helix during the dimerization of the mutated R154P TWIST1/E12 dimer compared to the wild-type TE complex, which was further confirmed in vitro using immunoassays. Conclusions Our study demonstrates that MD simulations provide a structural explanation for the loss-of-function associated with the SCS TWIST1 mutation and provides a proof of concept of the predictive value of these MD simulations. This in silico methodology could be used to determine reliable pharmacophore sites, leading to the application of docking approaches in order to identify specific inhibitors of TWIST1 complexes. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0076-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Raphael Terreux
- Université de Lyon1, ISPB, Lyon, 69008, France.,Pole Rhône-Alpes de Bioinformatique - Lyon Gerland (PRABI-LG), Lyon, 69007, France.,CNRS UMR 5305, Lyon, France
| | - Agnès Tissier
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Laurent Jacqueroud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Arnaud Vigneron
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Stéphane Ansieau
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France.,Université de Lyon1, ISPB, Lyon, 69008, France.,Institut Universitaire de France, Paris, 75231, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France. .,LabEX DEVweCAN, Lyon, France. .,UNIV UMR1052, Lyon, 69008, France. .,Centre Léon Bérard, Lyon, 69373, France. .,Université de Lyon1, ISPB, Lyon, 69008, France. .,Laboratoire de Biochimie et Biologie Moléculaire (CHLS), Hospices Civils de Lyon, Lyon, 69003, France.
| |
Collapse
|
16
|
Malek R, Gajula RP, Williams RD, Nghiem B, Simons BW, Nugent K, Wang H, Taparra K, Lemtiri-Chlieh G, Yoon AR, True L, An SS, DeWeese TL, Ross AE, Schaeffer EM, Pienta KJ, Hurley PJ, Morrissey C, Tran PT. TWIST1-WDR5- Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis. Cancer Res 2017; 77:3181-3193. [PMID: 28484075 DOI: 10.1158/0008-5472.can-16-2797] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/03/2017] [Accepted: 04/19/2017] [Indexed: 12/22/2022]
Abstract
TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR.
Collapse
Affiliation(s)
- Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajendra P Gajula
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Russell D Williams
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Belinda Nghiem
- Department of Urology, University of Washington, Seattle, Washington
| | - Brian W Simons
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ghali Lemtiri-Chlieh
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arum R Yoon
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Lawrence True
- Department of Pathology, University of Washington, Seattle, Washington
| | - Steven S An
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward M Schaeffer
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paula J Hurley
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Jacqueroud L, Bouard C, Richard G, Payen L, Devouassoux-Shisheboran M, Spicer DB, Caramel J, Collin G, Puisieux A, Tissier A, Ansieau S. The Heterodimeric TWIST1-E12 Complex Drives the Oncogenic Potential of TWIST1 in Human Mammary Epithelial Cells. Neoplasia 2017; 18:317-327. [PMID: 27237323 PMCID: PMC4887617 DOI: 10.1016/j.neo.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022] Open
Abstract
The TWIST1 embryonic transcription factor displays biphasic functions during the course of carcinogenesis. It facilitates the escape of cells from oncogene-induced fail-safe programs (senescence, apoptosis) and their consequent neoplastic transformation. Additionally, it promotes the epithelial-to-mesenchymal transition and the initiation of the metastatic spread of cancer cells. Interestingly, cancer cells recurrently remain dependent on TWIST1 for their survival and/or proliferation, making TWIST1 their Achilles’ heel. TWIST1 has been reported to form either homodimeric or heterodimeric complexes mainly in association with the E bHLH class I proteins. These complexes display distinct, sometimes even antagonistic, functions during development and unequal prometastatic functions in prostate cancer cells. Using a tethered dimer strategy, we successively assessed the ability of TWIST1 dimers to cooperate with an activated version of RAS in human mammary epithelial cell transformation, to provide mice with the ability to spontaneously develop breast tumors, and lastly to maintain a senescence program at a latent state in several breast cancer cell lines. We demonstrate that the TWIST1-E12 complex, unlike the homodimer, is an oncogenic form of TWIST1 in mammary epithelial cells and that efficient binding of both partners is a prerequisite for its activity. The detection of the heterodimer in human premalignant lesions by a proximity ligation assay, at a stage preceding the initiation of the metastatic cascade, is coherent with such an oncogenic function. TWIST1-E protein heterodimeric complexes may thus constitute the main active forms of TWIST1 with regard to senescence inhibition over the time course of breast tumorigenesis.
Collapse
Affiliation(s)
- Laurent Jacqueroud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Geoffrey Richard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Mojgan Devouassoux-Shisheboran
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Hospices Civils de Lyon, Lyon, France; Hôpital de la Croix-Rousse, Lyon, France
| | - Douglas B Spicer
- Center for Molecular Medicine, Main Medical Center Research Institute, Scarborough, ME, USA
| | - Julie Caramel
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France
| | - Guillaume Collin
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France; Université de Lyon 1, ISPB, Lyon, France; Institut Universitaire de France, Paris, France
| | - Agnès Tissier
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France
| | - Stéphane Ansieau
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; LabEX DEVweCAN, Lyon, France; UNIV UMR1052, Lyon, France; Centre Léon Bérard, Lyon, France.
| |
Collapse
|
18
|
Wang J, Nikhil K, Viccaro K, Chang L, Jacobsen M, Sandusky G, Shah K. The Aurora-A-Twist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma. J Cell Sci 2017; 130:1078-1093. [PMID: 28167680 PMCID: PMC5358340 DOI: 10.1242/jcs.196790] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022] Open
Abstract
We uncovered a crucial role for the Aurora kinase A (AURKA)-Twist1 axis in promoting epithelial-to-mesenchymal transition (EMT) and chemoresistance in pancreatic cancer. Twist1 is the first EMT-specific target of AURKA that was identified using an innovative screen. AURKA phosphorylates Twist1 at three sites, which results in its multifaceted regulation - AURKA inhibits its ubiquitylation, increases its transcriptional activity and favors its homodimerization. Twist1 reciprocates and prevents AURKA degradation, thereby triggering a feedback loop. Ablation of either AURKA or Twist1 completely inhibits EMT, highlighting both proteins as central players in EMT progression. Phosphorylation-dead Twist1 serves as a dominant-negative and fully reverses the EMT phenotype induced by Twist1, underscoring the crucial role of AURKA-mediated phosphorylation in mediating Twist1-induced malignancy. Likewise, Twist1-overexpressing BxPC3 cells formed large tumors in vivo, whereas expression of phosphorylation-dead Twist1 fully abrogated this effect. Furthermore, immunohistochemical analysis of pancreatic cancer specimens revealed a 3-fold higher level of Twist1 compared to that seen in healthy normal tissues. This is the first study that links Twist1 in a feedback loop with its activating kinase, which indicates that concurrent inhibition of AURKA and Twist1 will be synergistic in inhibiting pancreatic tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Kumar Nikhil
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Keith Viccaro
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Lei Chang
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, room A-128, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, room A-128, Indianapolis, IN 46202, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS Genet 2016; 12:e1006273. [PMID: 27560976 PMCID: PMC4999241 DOI: 10.1371/journal.pgen.1006273] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 08/02/2016] [Indexed: 01/03/2023] Open
Abstract
Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.
Collapse
Affiliation(s)
- Da-Gang Hu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
20
|
Bouard C, Terreux R, Honorat M, Manship B, Ansieau S, Vigneron AM, Puisieux A, Payen L. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences. Nucleic Acids Res 2016; 44:5470-89. [PMID: 27151200 PMCID: PMC4914114 DOI: 10.1093/nar/gkw334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022] Open
Abstract
The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers.
Collapse
Affiliation(s)
- Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France
| | - Raphael Terreux
- Université de Lyon1, ISPB, Lyon 69008, France Institut de Biochimie des protéines IBCP, Lyon 69007, France CNRS UMR 5305, Lyon 69007, France
| | - Mylène Honorat
- Institut de Biochimie des protéines IBCP, Lyon 69007, France
| | | | - Stéphane Ansieau
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Arnaud M Vigneron
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Institut Universitaire de France, Paris 75231, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Hospices Civils de Lyon, Laboratoire de Biochimie et Biologie Moléculaire du CHLS, Lyon 69003, France
| |
Collapse
|