1
|
Fu W, Lai Y, Li K, Yang Y, Guo X, Gong Q, Zhou X, Zhou L, Liu C, Zhang Z, So J, Zhang Y, Huang L, Lu G, Yi C, Wang Q, Fan C, Liu C, Wang J, Yu H, Zhao Y, Huang T, Roh HC, Liu T, Tang H, Qi J, Xu M, Zheng Y, Huang H, Li J. Neurotensin-neurotensin receptor 2 signaling in adipocytes suppresses food intake through regulating ceramide metabolism. Cell Res 2025; 35:117-131. [PMID: 39748047 PMCID: PMC11770130 DOI: 10.1038/s41422-024-01038-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025] Open
Abstract
Neurotensin (NTS) is a secretory peptide produced by lymphatic endothelial cells. Our previous study revealed that NTS suppressed the activity of brown adipose tissue via interactions with NTSR2. In the current study, we found that the depletion of Ntsr2 in white adipocytes upregulated food intake, while the local treatment of NTS suppressed food intake. Our mechanistic study revealed that suppression of NTS-NTSR2 signaling enhanced the phosphorylation of ceramide synthetase 2, increased the abundance of its products ceramides C20-C24, and downregulated the production of GDF15 in white adipose tissues, which was responsible for the elevation of food intake. We discovered a potential causal and positive correlation between serum C20-C24 ceramide levels and human food intake in four populations with different ages and ethnic backgrounds. Together, our study shows that NTS-NTSR2 signaling in white adipocytes can regulate food intake via its direct control of lipid metabolism and production of GDF15. The ceramides C20-C24 are key factors regulating food intake in mammals.
Collapse
Affiliation(s)
- Wei Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology, The First Affiliated Hospital and Clinical Medicine College, Henan University of Science and Technology, Luoyang, Henan, China
- National Center for Clinical Research of Metabolic Diseases, Luoyang Center for Endocrinology and Metabolism, Luoyang, Henan, China
- Diabetic Nephropathy Academician Workstation of Henan Province, Luoyang, Henan, China
| | - Yuanting Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kexin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qifan Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cenxi Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yufeng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyou Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qichu Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenyu Fan
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Chao Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Jiaxing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Yimin Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianping Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - He Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zhang Z, Zhang D, Su K, Wu D, Hu Q, Jin T, Ye T, Zhang R. NTSR1 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma through the Wnt/β-catenin pathway. Mutat Res 2024; 829:111877. [PMID: 39180939 DOI: 10.1016/j.mrfmmm.2024.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients are implicated in poor prognoses and increased mortality rates. Metastasis, as a leading cause of LUAD-related deaths, requires further investigation. Highly metastatic cancer cells often exhibit extensive characteristics of epithelial-mesenchymal transition (EMT). This study attempted to identify novel targets associated with LUAD metastasis and validate their specific molecular mechanisms. METHODS Bioinformatics was conducted to determine NTSR1 expression in LUAD and the enriched pathways. Immunohistochemical analysis was used to assess NTSR1 expression in LUAD tissue. qRT-PCR examined expressions of NTSR1 and Wnt/β-Catenin pathway-related genes in LUAD cells. Transwell assayed cell migration and invasion. Cell adhesion experiments were conducted to evaluate cell adhesion capacity. Western blot analysis was employed to examine expression of EMT, Wnt/β-Catenin pathway, and cell adhesion markers. RESULTS NTSR1 was upregulated in LUAD tissues and cells, and enriched in EMT pathway. Knockdown of NTSR1 reduced migration, invasion, and adhesion abilities in LUAD cells, and inhibited EMT progression and Wnt/β-Catenin pathway. Rescue experiments demonstrated that β-Catenin activator SKL2001 reversed repressive influence of NTSR1 knockdown on LUAD cell malignant phenotypes and EMT progression. CONCLUSION The data obtained in this study suggested that NTSR1 stimulated EMT and metastasis in LUAD via Wnt/β-Catenin pathway. This finding may provide options for overcoming LUAD metastasis.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China.
| | - Dongliang Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Kai Su
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Dongqiang Wu
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Qiqi Hu
- Human Resource Management Department, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Tianying Jin
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Tingting Ye
- Medical Insurance Information Section, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Rongrong Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
3
|
Bolduan F, Wetzel A, Giesecke Y, Eichhorn I, Alenina N, Bader M, Willnow TE, Wiedenmann B, Sigal M. Elevated sortilin expression discriminates functional from non-functional neuroendocrine tumors and enables therapeutic targeting. Front Endocrinol (Lausanne) 2024; 15:1331231. [PMID: 38694940 PMCID: PMC11061435 DOI: 10.3389/fendo.2024.1331231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
A subset of neuroendocrine tumors (NETs) can cause an excessive secretion of hormones, neuropeptides, and biogenic amines into the bloodstream. These so-called functional NETs evoke a hormone-related disease and lead to several different syndromes, depending on the factors released. One of the most common functional syndromes, carcinoid syndrome, is characterized mainly by over-secretion of serotonin. However, what distinguishes functional from non-functional tumors on a molecular level remains unknown. Here, we demonstrate that the expression of sortilin, a widely expressed transmembrane receptor involved in intracellular protein sorting, is significantly increased in functional compared to non-functional NETs and thus can be used as a biomarker for functional NETs. Furthermore, using a cell line model of functional NETs, as well as organoids, we demonstrate that inhibition of sortilin reduces cellular serotonin concentrations and may therefore serve as a novel therapeutic target to treat patients with carcinoid syndrome.
Collapse
Affiliation(s)
- Felix Bolduan
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Berlin, Germany
| | - Alexandra Wetzel
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yvonne Giesecke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Eichhorn
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Thomas E. Willnow
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bertram Wiedenmann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
4
|
Chan KKS, Au KY, Suen LH, Leung B, Wong CY, Leow WQ, Lim TKH, Ng IOL, Chung CYS, Lo RCL. Sortilin-Driven Cancer Secretome Enhances Tumorigenic Properties of Hepatocellular Carcinoma via de Novo Lipogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2156-2171. [PMID: 37673328 DOI: 10.1016/j.ajpath.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
A growing body of evidence suggests de novo lipogenesis as a key metabolic pathway adopted by cancers to fuel tumorigenic processes. While increased de novo lipogenesis has also been reported in hepatocellular carcinoma (HCC), understanding on molecular mechanisms driving de novo lipogenesis remains limited. In the present study, the functional role of sortilin, a member of the vacuolar protein sorting 10 protein receptor family, in HCC was investigated. Sortilin was overexpressed in HCC and was associated with poorer survival outcome. In functional studies, sortilin-overexpressing cells conferred tumorigenic phenotypes, namely, self-renewal and metastatic potential, of HCC cells via the cancer secretome. Proteomic profiling highlighted fatty acid metabolism as a potential molecular pathway associated with sortilin-driven cancer secretome. This finding was validated by the increased lipid content and expression of fatty acid synthase (FASN) in HCC cells treated with conditioned medium collected from sortilin-overexpressing cells. The enhanced tumorigenic properties endowed by sortilin-driven cancer secretome were partly abrogated by co-administration of FASN inhibitor C75. Further mechanistic dissection suggested protein stabilization by post-translational modification with O-GlcNAcylation as a major mechanism leading to augmented FASN expression. In conclusion, the present study uncovered the role of sortilin in hepatocarcinogenesis via modulation of the cancer secretome and deregulated lipid metabolism.
Collapse
Affiliation(s)
- Kristy Kwan-Shuen Chan
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan-Yung Au
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Long-Hin Suen
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bernice Leung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Yan Wong
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital & Duke-NUS Medical School, Singapore
| | - Tony Kiat-Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital & Duke-NUS Medical School, Singapore
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Clive Yik-Sham Chung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Shrestha K, Al-Alem L, Garcia P, Wynn MAA, Hannon PR, Jo M, Drnevich J, Duffy DM, Curry Jr TE. Neurotensin expression, regulation, and function during the ovulatory period in the mouse ovary†. Biol Reprod 2023; 108:107-120. [PMID: 36345168 PMCID: PMC9843676 DOI: 10.1093/biolre/ioac191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
The luteinizing hormone (LH) surge induces paracrine mediators within the ovarian follicle that promote ovulation. The present study explores neurotensin (NTS), a neuropeptide, as a potential ovulatory mediator in the mouse ovary. Ovaries and granulosa cells (GCs) were collected from immature 23-day-old pregnant mare serum gonadotropin primed mice before (0 h) and after administration of human chorionic gonadotropin (hCG; an LH analog) across the periovulatory period (4, 8, 12, and 24 h). In response to hCG, Nts expression rapidly increased 250-fold at 4 h, remained elevated until 8 h, and decreased until 24 h. Expression of Nts receptors for Ntsr1 remained unchanged across the periovulatory period, Ntsr2 was undetectable, whereas Sort1 expression (also called Ntsr3) gradually decreased in both the ovary and GCs after hCG administration. To better understand Nts regulation, inhibitors of the LH/CG signaling pathways were utilized. Our data revealed that hCG regulated Nts expression through the protein kinase A (PKA) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Additionally, epidermal-like-growth factor (EGF) receptor signaling also mediated Nts induction in GCs. To elucidate the role of NTS in the ovulatory process, we used a Nts silencing approach (si-Nts) followed by RNA-sequencing (RNA-seq). RNA-seq analysis of GCs collected after hCG with or without si-Nts identified and qPCR confirmed Ell2, Rsad2, Vps37a, and Smtnl2 as genes downstream of Nts. In summary, these findings demonstrate that hCG induces Nts and that Nts expression is mediated by PKA, p38MAPK, and EGF receptor signaling pathways. Additionally, NTS regulates several novel genes that could potentially impact the ovulatory process.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Linah Al-Alem
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Priscilla Garcia
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Michelle A A Wynn
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick R Hannon
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jenny Drnevich
- Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Thomas E Curry Jr
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Barrett K, Zhao H, Hao P, Bacic A, Lange L, Holck J, Meyer AS. Discovery of novel secretome CAZymes from Penicillium sclerotigenum by bioinformatics and explorative proteomics analyses during sweet potato pectin digestion. Front Bioeng Biotechnol 2022; 10:950259. [PMID: 36185449 PMCID: PMC9523869 DOI: 10.3389/fbioe.2022.950259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Novel selective enzymatic refining of sweet potato processing residues requires judicious enzyme selection and enzyme discovery. We prepared a pectinaceous cell wall polysaccharide fraction from sweet potato using an enzymatic a treatment to preserve the natural linkages and substitutions. Polysaccharide composition and linkage analysis data confirmed the pectinaceous polysaccharide fraction to be a rhamnogalacturonan I-rich fraction with a high content of arabinogalactan Type I. We hypothesized that the post-harvest tuber pathogenic fungus Penicillium sclerotigenum would harbor novel enzymes targeting selective sweet potato pectin modification. As part of the study, we also report the first genome sequence of P. sclerotigenum. We incubated the sweet potato pectinaceous fraction with P. sclerotigenum. Using proteomics accompanied by CUPP-bioinformatics analysis, we observed induced expression of 23 pectin-associated degradative enzymes. We also identified six abundantly secreted, induced proteins that do not correspond to known CAZymes, but which we suggest as novel enzymes involved in pectin degradation. For validation, the predicted CUPP grouping of putative CAZymes and the exo-proteome data obtained for P. sclerotigenum during growth on sweet potato pectin were compared with proteomics and transcriptomics data reported previously for pectin-associated CAZymes from Aspergillus niger strain NRRL3. The data infer that P. sclerotigenum has the capacity to express several novel enzymes that may provide novel opportunities for sweet potato pectin modification and valorization of sweet potato starch processing residues. In addition, the methodological approach employed represents an integrative systematic strategy for enzyme discovery.
Collapse
Affiliation(s)
- Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | - Pengfei Hao
- La Trobe Institute for Agriculture and Food, La Trobe University, Melbourne, VIC, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, La Trobe University, Melbourne, VIC, Australia
| | - Lene Lange
- LLa BioEconomy, Research & Advisory, Valby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- *Correspondence: Anne S. Meyer,
| |
Collapse
|
7
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Sortilin 1 regulates hepatocellular carcinoma progression by activating the PI3K/AKT signaling. Hum Exp Toxicol 2022; 41:9603271221140111. [DOI: 10.1177/09603271221140111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Sortilin 1 (SORT1) has been reported as an oncogene in several human tumors. Nonetheless, the biological functions of SORT1 in hepatocellular carcinoma (HCC) remain poorly understood. Methods Western blotting was employed for the determination of protein expression. Hepatocellular carcinoma cell viability, apoptosis, migration, and invasion were measured via CCK-8, flow cytometry, wound healing, and Transwell assays. Results Sortilin 1 was upregulated in HCC and closely associated with unsatisfactory outcomes of HCC patients. Furthermore, in vitro and in vivo assays revealed that SORT1 knockdown significantly diminished HCC cell proliferation and metastasis but accelerated HCC cell apoptosis; moreover, SORT1 depletion also restrained the growth of xenografted HCC tumors. Mechanistically, SORT1 activated PI3K/AKT signaling in HCC cells, thereby promoting the malignant behaviors of HCC cells. Conclusion This study demonstrated that SORT1 might promote HCC progression by activating PI3K/AKT signaling, indicating that SORT1 might be a promising target and biomarker for HCC treatment and prognosis.
Collapse
|
9
|
Berger K, Pauwels E, Parkinson G, Landberg G, Le T, Demillo VG, Lumangtad LA, Jones DE, Islam MA, Olsen R, Kapri T, Intasiri A, Vermeire K, Rhost S, Bell TW. Reduction of Progranulin-Induced Breast Cancer Stem Cell Propagation by Sortilin-Targeting Cyclotriazadisulfonamide (CADA) Compounds. J Med Chem 2021; 64:12865-12876. [PMID: 34428050 PMCID: PMC10501753 DOI: 10.1021/acs.jmedchem.1c00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclotriazadisulfonamide (CADA) compounds selectively down-modulate two human proteins of potential therapeutic interest, cluster of differentiation 4 (CD4) and sortilin. Progranulin is secreted from some breast cancer cells, causing dedifferentiation of receiving cancer cells and cancer stem cell proliferation. Inhibition of progranulin binding to sortilin, its main receptor, can block progranulin-induced metastatic breast cancer using a triple-negative in vivo xenograft model. In the current study, seven CADA compounds (CADA, VGD020, VGD071, TL020, TL023, LAL014, and DJ010) were examined for reduction of cellular sortilin expression and progranulin-induced breast cancer stem cell propagation. In addition, inhibition of progranulin-induced mammosphere formation was examined and found to be most significant for TL020, TL023, VGD071, and LAL014. Full experimental details are given for the synthesis and characterization of the four new compounds (TL020, TL023, VGD071, and DJ010). Comparison of solubilities, potencies, and cytotoxicities identified VGD071 as a promising candidate for future studies using mouse breast cancer models.
Collapse
Affiliation(s)
- Karoline Berger
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Eva Pauwels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Gabrielle Parkinson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Truc Le
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Violeta G Demillo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Liezel A Lumangtad
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
- Nanosyn, 3100 Central Expressway, Santa Clara, California 95051, United States
| | - Dylan E Jones
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Md Azizul Islam
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Ryan Olsen
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Topprasad Kapri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Amarawan Intasiri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Kurt Vermeire
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sara Rhost
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| |
Collapse
|
10
|
Kim JT, Napier DL, Kim J, Li C, Lee EY, Weiss HL, Wang Q, Evers BM. Ketogenesis alleviates TNFα-induced apoptosis and inflammatory responses in intestinal cells. Free Radic Biol Med 2021; 172:90-100. [PMID: 34087430 PMCID: PMC8355065 DOI: 10.1016/j.freeradbiomed.2021.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as β-hydroxybutyrate (βHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, βHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with βHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and βHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | | | - Jinhwan Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Chang Li
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Qingding Wang
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
11
|
Campbell GE, Bender HR, Parker GA, Curry TE, Duffy DM. Neurotensin: A novel mediator of ovulation? FASEB J 2021; 35:e21481. [PMID: 33710668 PMCID: PMC8314182 DOI: 10.1096/fj.202002547rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
The midcycle luteinizing hormone (LH) surge initiates a cascade of events within the ovarian follicle which culminates in ovulation. Only mural granulosa cells and theca cells express large numbers of LH receptors, and LH-stimulated paracrine mediators communicate the ovulatory signal within the follicle. Recent reports identified the neuropeptide neurotensin (NTS) as a product of granulosa cells. Here, we demonstrate that granulosa cells were the primary site of NTS expression in macaque ovulatory follicles. Granulosa cell NTS mRNA and protein increased after human chorionic gonadotropin (hCG) administration, which substitutes for the LH surge. To identify ovulatory actions of NTS, a NTS-neutralizing antibody was injected into preovulatory macaque follicles. hCG administration immediately followed, and ovaries were removed 48 hours later to evaluate ovulatory events. Follicles injected with control IgG ovulated normally. In contrast, 75% of NTS antibody-injected follicles failed to ovulate, containing oocytes trapped within unruptured, hemorrhagic follicles. Serum progesterone was unchanged. Of the three NTS receptors, SORT1 was highly expressed in follicular granulosa, theca, and endothelial cells; NTSR1 and NTSR2 were expressed at lower levels. Excessive blood cells in NTS antibody-injected follicles indicated vascular anomalies, so the response of monkey ovarian endothelial cells to NTS was evaluated in vitro. NTS stimulated endothelial cell migration and capillary sprout formation, consistent with a role for NTS in vascular remodeling associated with ovulation. In summary, we identified NTS as a possible paracrine mediator of ovulation. Further investigation of the NTS synthesis/response pathway may lead to improved treatments for infertility and novel targets for contraception.
Collapse
Affiliation(s)
- Genevieve E. Campbell
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Hannah R. Bender
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Grace A. Parker
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
12
|
Ghaemimanesh F, Mehravar M, Milani S, Poursani EM, Saliminejad K. The multifaceted role of sortilin/neurotensin receptor 3 in human cancer development. J Cell Physiol 2021; 236:6271-6281. [PMID: 33634506 DOI: 10.1002/jcp.30344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sortilin (also known as neurotensin receptor 3) is a multitasking protein implicated in numerous pathophysiological processes, including cancer development, cardiovascular impairment, Alzheimer-type dementia, and depression. Although the definitive role of sortilin in human solid and hematological malignancies has been evidenced, few articles reviewed the task. The aim of the current review is to unravel the mechanisms by which sortilin controls oncogenicity and cancer progression; and also to summarize and discuss the original data obtained from international research laboratories on this topic. Questions on how sortilin is involving in the impairment of cell junctions, in exosomes composition and release, as well as in the regulation of epidermal growth factor receptor trafficking are also responded. In addition, we provide a special focus on the regulatory role of sortilin in signal transduction by either neurotrophins or neurotensin in normal and malignant cells. The relevance of sortilin with normal and cancer stem cells is also discussed. The last section provides a general overview of sortilin applications as a diagnostic and prognostic biomarker in the context of cancer detection. Finally, we comment on the future research aspects in which the field of cancer diagnosis, prognosis, and therapy might be developed.
Collapse
Affiliation(s)
- Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Saeideh Milani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Blondy S, Talbot H, Saada S, Christou N, Battu S, Pannequin J, Jauberteau M, Lalloué F, Verdier M, Mathonnet M, Perraud A. Overexpression of sortilin is associated with 5-FU resistance and poor prognosis in colorectal cancer. J Cell Mol Med 2021; 25:47-60. [PMID: 33325631 PMCID: PMC7810928 DOI: 10.1111/jcmm.15752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Even if 5-fluorouracil (5-FU) is used as the first-line chemotherapeutic drug, responsiveness is only 20-30%. Acquired resistance to 5-FU contributes to both poor patient prognosis and relapse, emphasizing the need to identify biomarkers. Sortilin, a vacuolar protein sorting 10 protein (Vps10p), implicated in protein trafficking, is over expressed in CRC cell lines cultured 72 hours in presence of 5-FU. This overexpression was also observed in 5-FU-resistant cells derived from these cell lines as well as in CRC primary cultures (or patients derived cell lines). A significantly higher expression of sortilin was observed in vivo, in 5-FU-treated tumours engrafted in Nude mice, as compared with non-treated tumour. A study of transcriptional regulation allowed identifying a decrease in ATF3 expression, as an explanation of sortilin overexpression following 5-FU treatment. In silico analysis revealed SORT1 expression correlation with poor prognosis. Moreover, sortilin expression was found to be positively correlated with CRC tumour grades. Collectively, our findings identify sortilin as a potential biomarker of 5-FU resistance associated with poor clinical outcomes and aggressiveness in CRC. As a new prognostic factor, sortilin expression could be used to fight against CRC.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Aged
- Aged, 80 and over
- Animals
- Cell Line, Tumor
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Disease-Free Survival
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Fluorouracil/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Mice, Nude
- Neoplasm Grading
- Prognosis
- Protein Transport/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Sabrina Blondy
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Hugo Talbot
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Sofiane Saada
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Niki Christou
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service de Chirurgie DigestiveEndocrinienne et GénéraleCHU de LimogesLimogesFrance
| | - Serge Battu
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Julie Pannequin
- IGFUniversité MontpellierCNRSINSERMMontpellier Cedex 5France
| | - Marie‐Odile Jauberteau
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service d’ImmunologieCHU de LimogesLimogesFrance
| | - Fabrice Lalloué
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Mireille Verdier
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Muriel Mathonnet
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service de Chirurgie DigestiveEndocrinienne et GénéraleCHU de LimogesLimogesFrance
| | - Aurélie Perraud
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service de Chirurgie DigestiveEndocrinienne et GénéraleCHU de LimogesLimogesFrance
| |
Collapse
|
14
|
Neurotensins and their therapeutic potential: research field study. Future Med Chem 2020; 12:1779-1803. [PMID: 33032465 DOI: 10.4155/fmc-2020-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied.
Collapse
|
15
|
Gao F, Griffin N, Faulkner S, Li X, King SJ, Jobling P, Denham JW, Jiang CC, Hondermarck H. The Membrane Protein Sortilin Can Be Targeted to Inhibit Pancreatic Cancer Cell Invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1931-1942. [PMID: 32526166 DOI: 10.1016/j.ajpath.2020.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/03/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer has a dismal prognosis, and there is no targeted therapy against this malignancy. The neuronal membrane protein sortilin is emerging as a regulator of cancer cell development, but its expression and impact in pancreatic cancer are unknown. This study found that sortilin expression was higher in pancreatic cell lines versus normal pancreatic ductal epithelial cells, as shown by Western blot analysis and mass spectrometry. The increased sortilin level in pancreatic cancer cells was confirmed by immunohistochemistry in a series of 99 human pancreatic adenocarcinomas versus 48 normal pancreatic tissues (P = 0.0014). Sortilin inhibition by siRNA and the pharmacologic inhibitor AF38469 strongly reduced the adhesion and invasion of pancreatic cancer cells without affecting cell survival and viability. Sortilin inhibition also decreased the phosphorylation of the focal adhesion kinase in Tyr925. Together, these data show that sortilin contributes to pancreatic cancer invasion and could eventually be targeted in therapy.
Collapse
Affiliation(s)
- Fangfang Gao
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Nathan Griffin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Simon J King
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Jim W Denham
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia.
| |
Collapse
|
16
|
Dao T, Salahuddin S, Charfi C, Sicard AA, Jenabian MA, Annabi B. Pharmacological targeting of neurotensin response by diet-derived EGCG in macrophage-differentiated HL-60 promyelocytic leukemia cells. PHARMANUTRITION 2020; 12:100191. [DOI: 10.1016/j.phanu.2020.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Liu A, Zuo Z, Liu L, Liu L. Down-regulation of NTSR3 inhibits cell growth and metastasis, as well as the PI3K-AKT and MAPK signaling pathways in colorectal cancer. Biochem Cell Biol 2020; 98:548-555. [PMID: 32125883 DOI: 10.1139/bcb-2019-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is a common malignancy. NTS receptor 3 (NTSR3) is known to play an important role in several cancers. This study examined the effects of NTSR3 on cell growth and metastasis in colorectal cancer. Western blot analysis, real-time PCR, immunofluorescence staining, MTT, cell cycle assay, cell apoptosis assay, Hoechst staining, caspase-3 and caspase-9 activity assays, cell adhesion assay, wound healing assay, and a Transwell assay were used in this study. We found that NTSR3 was expressed at relatively high levels in the colorectal cancer cell lines SW620 and SW480. NTSR3 knockdown suppressed cell growth and promoted cell apoptosis. Meanwhile, the protein expression levels of cyclinD1, cyclinE1, CDK4, and p-RB were reduced, and the levels of p-P27, P15, P21, cleaved caspase-3, and cleaved caspase-9 protein were increased. Cell invasiveness and cell migration were reduced with knockdown of NTSR3. In addition, our rescue experiments demonstrated that overexpression of the siRNA-resistant alleles of NTSR3 abrogated the NTSR3-siRNA-mediated effects on cell function. Further, down-regulation of NTSR3 inactivated the PI3K-AKT and MAPK signaling pathways. Collectively, these data demonstrate that knockdown of NTSR3 inhibits cell growth and metastasis, as well as the PI3K-AKT and MAPK signaling pathways in colorectal cancer. Thus, our results indicate that NTSR3 is a potential therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Aihua Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhongfu Zuo
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Linlin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lihua Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
18
|
Jin XF, Spöttl G, Maurer J, Nölting S, Auernhammer CJ. Inhibition of Wnt/β-Catenin Signaling in Neuroendocrine Tumors in vitro: Antitumoral Effects. Cancers (Basel) 2020; 12:cancers12020345. [PMID: 32033025 PMCID: PMC7072467 DOI: 10.3390/cancers12020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.
Collapse
Affiliation(s)
- Xi-Feng Jin
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
| | - Gerald Spöttl
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
| | - Julian Maurer
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
| | - Svenja Nölting
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
| | - Christoph Josef Auernhammer
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
19
|
Norris EJ, Zhang Q, Jones WD, DeStephanis D, Sutker AP, Livasy CA, Ganapathi RN, Tait DL, Ganapathi MK. Increased expression of neurotensin in high grade serous ovarian carcinoma with evidence of serous tubal intraepithelial carcinoma. J Pathol 2019; 248:352-362. [PMID: 30883751 PMCID: PMC6619390 DOI: 10.1002/path.5264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/04/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
High grade serous ovarian carcinoma (HGSC) without identifiable serous tubal intraepithelial carcinoma (STIC) within the fallopian tube (FT) occurs in approximately 50% of patients. The objective of this study was to use a multisite tumor sampling approach to study HGSC with and without STIC. RNAseq analysis of HGSC samples collected from multiple sites e.g. ovary, FT and peritoneum, revealed moderate levels of intrapatient heterogeneity in gene expression that could influence molecular profiles. Mixed‐model ANOVA analysis of gene expression in tumor samples from patients with multiple tumor sites (n = 13) and patients with a single site tumor sample (n = 11) to compare HGSC‐STIC to HGSC‐NOSTIC identified neurotensin (NTS) as significantly higher (> two‐fold change, False Discovery Rate (FDR) < 0.10) in HGSC‐STIC. This data was validated using publicly available RNA‐Seq datasets. Concordance between higher NTS gene expression and NTS peptide levels in HGSC‐STIC samples was demonstrated by immunohistochemistry. To determine the role of NTS in HGSC, five ovarian cancer (OvCa) cell lines were screened for expression of NTS and its receptors, NTSR1 and NTSR3. Increased expression of NTS and NSTR1 was observed in several of the OvCa cells, whereas the NTSR3 receptor was lower in all OvCa cells, compared to immortalized FT epithelial cells. Treatment with NTSR1 inhibitor (SR48692) decreased cell proliferation, but increased cell migration in OvCa cells. The effects of SR48692 were receptor mediated, since transient RNAi knockdown of NTSR1 mimicked the migratory effects and knockdown of NTSR3 mimicked the anti‐proliferative effects. Further, knockdown of NTSR1 or NTSR3 was associated with acquisition of distinct morphological phenotypes, epithelial or mesenchymal, respectively. Taken together, our results reveal a difference in a biologically active pathway between HGSC with and without STIC. Furthermore, we identify neurotensin signaling as an important pathway involved in cell proliferation and epithelial–mesenchymal transition in HGSC‐STIC which warrants further study as a potential therapeutic target. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eric J Norris
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Qing Zhang
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Wendell D Jones
- Department of Bioinformatics and Clinical Systems, Q2 Solutions - EA Genomics, Morrisville, NC, USA
| | | | | | | | | | - David L Tait
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | | |
Collapse
|