1
|
Li J, He Z, Chai W, Tian M, Yu H, He X, Zhu X. Dip2a regulates stress susceptibility in the basolateral amygdala. Neural Regen Res 2025; 20:1735-1748. [PMID: 39104112 PMCID: PMC11688567 DOI: 10.4103/nrr.nrr-d-23-01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00025/figure1/v/2024-08-05T133530Z/r/image-tiff Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post-traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A (Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid-associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Zixuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Weitai Chai
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Meng Tian
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Huali Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoxiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education; Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Raza ML. The stress-immune system axis: Exploring the interplay between stress and immunity. PROGRESS IN BRAIN RESEARCH 2025; 291:289-317. [PMID: 40222784 DOI: 10.1016/bs.pbr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The chapter talks about how our body and mind respond to stress and how it affects our immune system. Stress reactions, especially the fight-or-flight reaction, are helpful at first but can be harmful if they last too long. Long-term stress, caused by hormones like cortisol and adrenaline, weakens the immune system and makes people more likely to get sick. Important brain chemicals like serotonin and norepinephrine help control how our immune system works. Also, the connection between our gut and brain is an important way that mental health affects how our immune system functions. Getting older and experiencing stress early in life can affect how our immune system works. Inflammation caused by stress is connected to health issues like heart disease, depression, and autoimmune diseases. There are ways to manage stress, like being mindful and having support from friends, are important for keeping your immune system healthy and lessening harm caused by stress.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Martz J, Shelton MA, Langen TJ, Srinivasan S, Seney ML, Kentner AC. Peripubertal antagonism of corticotropin-releasing factor receptor 1 results in sustained changes in behavioral plasticity and the transcriptomic profile of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.14.607957. [PMID: 39185241 PMCID: PMC11343213 DOI: 10.1101/2024.08.14.607957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered the CRFR1 antagonist (CRFR1a) R121919 to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or prepulse inhibition (PPI). Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for persistent effects of the adolescent treatment. Males continued to experience deficits in PPI while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males. In females, pathways related to central nervous system myelination, cell junction organization, and glutamatergic regulation of synaptic transmission were affected. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for developing adolescents.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Micah A. Shelton
- Department of Psychiatry, University of Pittsburgh, 450
Technology Drive Pittsburgh, PA, 15219
| | - Tristen J. Langen
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Sakhi Srinivasan
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, 450
Technology Drive Pittsburgh, PA, 15219
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| |
Collapse
|
4
|
Wu L, Hong Z, Wang S, Huang J, Liu J. Sex differences of negative emotions in adults and infants along the prefrontal-amygdaloid brain pathway. Neuroimage 2024; 304:120948. [PMID: 39571642 DOI: 10.1016/j.neuroimage.2024.120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The neural basis of sex-related differences in processing negative emotions remains poorly understood. The amygdala-related fiber pathways serve as the neuroanatomical foundation for emotion processing. However, the precise sex-related variations within these pathways remain largely elusive. Using diffusion magnetic resonance imaging data from 418 healthy individuals, we identified sex differences in white-matter microstructures of the striato-amygdaloid-prefrontal tracts, particularly the amygdala (Amy)-medial prefrontal cortex (mPFC) pathway. These differences were associated with various neurobiological factors, including pain-related negative emotions, pain sensitivity, neurotransmitter receptors, and gene expressions in the human brain. Our findings suggested that the Amy-mPFC pathway may serve as a neuroanatomical foundation for sex-specific negative emotion processing, driven by specific genetic and neurotransmitter profiles. Notably, we also found similar sex differences in this pathway in an infant imaging dataset, hinting at its developmental significance as a precursor to sex differences in adulthood. These findings underscore the importance of the striato-amygdaloid-prefrontal tracts in sex-related differences in processing negative emotions. This may enhance our understanding of sex-specific emotion regulation and potentially inform future research on strategies for preventing and diagnosing emotional regulation disorders across sexes.
Collapse
Affiliation(s)
- Leiming Wu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Zilong Hong
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Shujun Wang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jia Huang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Weber S, Rey Álvarez LT, Ansede-Bermejo J, Cruz R, Del Real Á, Bühler J, Carracedo Á, Aybek S. The impact of genetic variations in the serotonergic system on symptom severity and clinical outcome in functional neurological disorders. J Psychosom Res 2024; 186:111909. [PMID: 39236646 DOI: 10.1016/j.jpsychores.2024.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE We studied gene-environment, as well as gene-gene interaction to elucidate their effects on symptom severity and predict clinical outcomes in functional neurological disorders (FND). METHODS Eighty-five patients with mixed FND were genotyped for ten single-nucleotide polymorphisms (SNP) from seven different stress-related genes. We tested cross-sectionally the association between genotype and the symptomatology of FND (symptom severity assessed with the examiner-based clinical global impression score [CGI] and age of onset). Clinical outcome was assessed in 52 patients who participated in a follow-up clinical visit after eight months (following their individual therapies as usual). We tested longitudinally the association between genotype and clinical outcome in FND. We examined the contribution of each SNP and their interaction between them to FND symptomatology and outcome. RESULTS We identified a nominal association between tryptophan hydroxylase 1 (TPH1) rs1800532 and symptom severity (CGI1) in FND under a codominant model (T/T: ßT/T = 2.31, seT/T = 0.57; G/T: ßG/T = -0.18, seG/T = 0.29, P = 0.035), with minor allele (T) carriers presenting more severe symptoms. An association was identified between TPH1 and clinical outcome, suggesting that major allele (G) carriers were more likely to have an improved outcome under a codominant model (G/T: ORG/T = 0.18, CIG/T = [0.02-1.34]; T/T: ORT/T = 2.08, CIT/T = [0.30-14.53], P = 0.041). Our analyses suggested a significant gene-gene interaction for TPH2 (rs4570625) and OXTR (rs2254298) on symptom severity, and a significant gene-gene interaction for TPH1, TPH2 and BDNF (rs1491850) on clinical outcome. CONCLUSION FND might arise from a complex interplay between individual predisposing risk genes involved in the serotonergic pathway and their gene-gene interactions.
Collapse
Affiliation(s)
- Samantha Weber
- Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, 3012 Bern, Switzerland; University of Zurich, Psychiatric University Hospital Zurich, Department of Psychiatry, Psychotherapy and Psychosomatics, 8032 Zurich, Switzerland
| | - Lucía Trinidad Rey Álvarez
- Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, 3012 Bern, Switzerland; Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Juan Ansede-Bermejo
- Centro Nacional de Genotipado (CEGEN), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Centro Nacional de Genotipado (CEGEN), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Álvaro Del Real
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain
| | - Janine Bühler
- Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Ángel Carracedo
- Centro Nacional de Genotipado (CEGEN), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Selma Aybek
- Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, 3012 Bern, Switzerland; Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
6
|
Tseilikman VE, Tseilikman OB, Karpenko MN, Traktirov DS, Obukhova DA, Shatilov VA, Zhukov MS, Manuilov GV, Yegorov ON, Aristov MR, Lipatov IA, Buksha IA, Epitashvili AE, Pashkov AA, Novak J. Unraveling the Serotonergic Mechanism of Stress-Related Anxiety: Focus on Co-Treatment with Resveratrol and Selective Serotonin Reuptake Inhibitors. Biomedicines 2024; 12:2455. [PMID: 39595020 PMCID: PMC11591826 DOI: 10.3390/biomedicines12112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: In post-traumatic stress disorder (PTSD), anxiety-like symptoms are often associated with elevated noradrenaline levels and decreased serotonin. Selective serotonin reuptake inhibitors (SSRIs) are frequently used to treat anxiety, but elevated serotonin has been observed in some anxiety disorders. This study investigates stress-induced anxiety as an immediate effect of chronic stress exposure using the predator stress paradigm. Methods: We examined serotonin levels, serotonin transporter (SERT), and 5-HT3A receptor gene expression in response to stress. The effects of SSRIs (paroxetine, sertraline) and resveratrol on these parameters were also analyzed, alongside co-treatment with resveratrol and sertraline. Results: Chronic stress exposure led to a significant increase in serotonin levels and upregulation of SERT and 5-HT3A receptor expression. SSRIs failed to prevent anxiety or reduce serotonin levels, partly due to suppressed SERT expression. Resveratrol downregulated SERT and 5-HT3A expression less than SSRIs but effectively reduced anxiety and restored serotonin, likely by upregulating MAO-A expression. Co-treatment with resveratrol and sertraline produced the strongest anxiolytic effect. Conclusions: Elevated serotonin and increased expression of SERT and 5-HT3A receptor genes are key factors in stress-related anxiety. Resveratrol and SSRIs target these mechanisms, suggesting potential therapeutic strategies for anxiety disorders. Future research will focus on further elucidating the serotonergic mechanisms involved and identifying new anxiolytic drug targets.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga B. Tseilikman
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Dmitrii S. Traktirov
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Daria A. Obukhova
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Vladislav A. Shatilov
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Maxim S. Zhukov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Gennady V. Manuilov
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Oleg N. Yegorov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Maxim R. Aristov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Ilya A. Lipatov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Irina A. Buksha
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | | | - Anton A. Pashkov
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, 630048 Novosibirsk, Russia
| | - Jurica Novak
- Centre for Informatics and Computing, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Lu F, Zhang J, Zhong Y, Hong L, Wang J, Du H, Fang J, Fan Y, Wang X, Yang Y, He Z, Jia C, Wang W, Lv X. Neural signatures of default mode network subsystems in first-episode, drug-naive patients with major depressive disorder after 6-week thought induction psychotherapy treatment. Brain Commun 2024; 6:fcae263. [PMID: 39171204 PMCID: PMC11337011 DOI: 10.1093/braincomms/fcae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Evidence indicates that the default mode network (DMN) plays a crucial role in the neuropathology of major depressive disorder (MDD). However, the neural signatures of DMN subsystems in MDD after low resistance Thought Induction Psychotherapy (TIP) remain incompletely understood. We collected functional magnetic resonance imaging data from 20 first-episode, drug-naive MDD and 20 healthy controls (HCs). The DMN was segmented into three subsystems and seed-based functional connectivity (FC) was computed. After 6-week treatment, the significantly reduced FCs with the medial temporal lobe memory subsystem in MDD at baseline were enhanced and were comparable to that in HCs. Changed Hamilton Depression Rating Scale scores were significantly related with changed FC between the posterior cingulate cortex (PCC) and the right precuneus (PCUN). Further, changed serotonin 5-hydroxytryptamine levels were significantly correlated with changed FCs between the PCC and the left PCUN, between the posterior inferior parietal lobule and the left inferior temporal gyrus, and between the retrosplenial cortex and the right inferior frontal gyrus, opercular part. Finally, the support vector machine obtained an accuracy of 67.5% to distinguish between MDD at baseline and HCs. These findings may deepen our understanding of the neural basis of the effects of TIP on DMN subsystems in MDD.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jinhua Zhang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yihua Zhong
- Teaching Department, The Open University of Chengdu, Chengdu 610213, China
| | - Lan Hong
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jian Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hui Du
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiliang Fang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yangyang Fan
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoling Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Yang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chen Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weidong Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueyu Lv
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
8
|
Shin YS, Soni KK, Lee DY, Kam SC. The relationship between depression, anxiety and lower urinary tract symptoms in men. Prostate Int 2024; 12:86-89. [PMID: 39036760 PMCID: PMC11255884 DOI: 10.1016/j.prnil.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 07/23/2024] Open
Abstract
Purpose Patients with lower urinary tract symptoms (LUTS) often experience comorbid depression and anxiety, yet the mechanisms underlying this association remain incompletely understood. This prospective study aimed to investigate the relationship between depression, anxiety, and LUTS in men. Materials and methods A prospective study was conducted with 350 male patients who underwent urologic examinations at our institution from January 2021 to December 2021. Of these, 131 patients meeting the inclusion criteria were included. Various questionnaires, including the International Prostate Symptom Score (IPSS) and the Hospital Anxiety and Depression Scale (HADS), as well as LUTS examinations (prostate-specific antigen test, transrectal ultrasonography, and urine flowmetry), were administered. Results Among the 350 patients, 131 were included in the analysis, with an average age of 58.0 ± 13.69 years. The total IPSS was 18.0 ± 8.69, with the average voiding symptom score at 8.7 ± 5.19 and the average storage symptom score at 6.0 ± 3.27. Both anxiety and depression were found to be correlated with LUTS (P < 0.05). After adjusting for age, hypertension, and diabetes, anxiety (but not depression) was significantly associated with LUTS based on regression analysis. Conclusion Men with LUTS are more likely to experience anxiety. Therefore, it is essential to assess and address anxiety when managing men with LUTS.
Collapse
Affiliation(s)
- Yu Seob Shin
- Department of Urology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Kiran Kumar Soni
- Department of Physiology, Lord Buddha Koshi Medical College and Hospital, Saharsa, Bihar, India
| | - Dong Yun Lee
- Department of Psychiatry, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Sung Chul Kam
- Department of Urology, Gyeongsang National University Changwon Hospital, Institute of Health Sciences of Gyeongsang National University, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
9
|
Malheiros J, Amaral C, da Silva LS, Guinsburg R, Covolan L. Neonatal nociceptive stimulation results in pain sensitization, reduction of hippocampal 5-HT 1A receptor, and p-CREB expression in adult female rats. Behav Brain Res 2024; 466:114975. [PMID: 38552745 DOI: 10.1016/j.bbr.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Painful invasive procedures are often performed on newborns admitted to intensive care units (ICU). The acute and long-term effects caused by these stimuli can be investigated in animal models, such as newborn rats. Previous studies have shown that animals subjected to nociceptive stimuli in the neonatal period show sex-specific behavioral changes such as signs of anxiety or depression. Under the same conditions, neonatal stimuli also provoke an increase in the rate of neurogenesis and cell activation in the hippocampal dentate gyrus. So, this study aims to identify the possible roles of central monoamines, receptor expression (5-HT1A), and signaling factors (p-CREB) underlying the long-term effects of neonatal nociceptive stimulation. For this, noxious stimulation was induced by intra-plantar injection of Complete Freund´s adjuvant (CFA) on the postnatal day 1 (P1) or 8 (P8). Control animals were not stimulated. On P75 the behavioral tests were conducted (hotplate and elevated plus maze), followed by sacrifice and molecular studies. Our results showed that neonatal nociceptive stimulation alters pain sensitization specially in females, while stimulation on P1 increases pain threshold, P8-stimulated animals respond with reduced pain threshold (P < 0.001). Hippocampal expression of 5-HT1A receptor and p-CREB were reduced in P8 F group (P < 0.001) in opposition to the increased utilization rate of dopamine and serotonin in this group (P < 0.05). This study shows sex- and age-specific responses of signaling pathways within the hippocampus accompanied by altered behavioral repertoire, at long-term after neonatal painful stimulation.
Collapse
Affiliation(s)
- Jackeline Malheiros
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Cristiane Amaral
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Luiz Severino da Silva
- Departamento de Micro Imuno Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Ruth Guinsburg
- Disciplina de Pediatria Neonatal, Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
10
|
Chantada-Tirado P, Chantada-Abal V, Cózar-Ortiz JD, Chantada-Tirado C, Cózar-Olmo JM, Esteban-Fuertes M, Alvarez-Ossorio-Rodal A, Flores-Fraile J, Márquez-Sánchez MT, Padilla-Fernández BY, Lorenzo-Gómez MF. Relationship between Mental Disorders, Smoking or Alcoholism and Benign Prostate Disease. Clin Pract 2024; 14:250-264. [PMID: 38391406 PMCID: PMC10888384 DOI: 10.3390/clinpract14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION Mental disorders, smoking, or alcoholism and benign prostate disease are highly prevalent in men. AIMS To identify the relationship between mental disorders, smoking, or alcoholism and benign prostate disease. METHODOLOGY A prospective multicenter study that evaluated prostate health status in 558 men from the community. Groups: GP-men who request a prostate health examination and whose medical history includes a mental disorder, smoking, or alcoholism prior to a diagnosis of benign prostate disease; GU-men who request a prostate health examination and whose medical history includes a benign prostate disease prior to a diagnosis of mental disorder, smoking, or alcoholism. VARIABLES age, body mass index (BMI), prostate specific antigen (PSA), follow-up of the mental disorder, smoking or alcoholism, time elapsed between urological diagnosis and the mental disorder, smoking or alcoholism diagnosis, status of the urological disease (cured or not cured), concomitant diseases, surgical history, and concomitant treatments. Descriptive statistics, Student's t-test, Chi2, multivariate analysis. RESULTS There were no mental disorders, smoking, or alcoholism in 51.97% of men. Anxiety, smoking, major depressive disorder, pathological insomnia, psychosis, and alcoholism were identified in 19.71%, 13.26%, 5.73%, 4.30%, 2.87%, and 2.15% of individuals, respectively. Nonbacterial prostatitis (31.54%), urinary tract infection (other than prostatitis, 24.37%), prostatic intraepithelial neoplasia (13.98%), and prostatodynia (1.43%) were prostate diseases. Unresolved symptomatic benign prostate disease was associated with anxiety, depression, and psychosis (p = 0.002). Smoking was the disorder that men managed to eliminate most frequently. The dominant disorder in patients with symptomatic benign prostatic disease was alcoholism (p = 0.006). CONCLUSIONS Unresolved symptomatic benign prostatic disease is associated with anxiety, depression, and psychosis. Alcoholism is associated with a worse prognosis in the follow-up of symptomatic benign prostatic disease.
Collapse
Affiliation(s)
| | | | - José-David Cózar-Ortiz
- Department of Surgery, University of Salamanca, 37007 Salamanca, Spain
- Psychiatry Department, Gómez Ulla Defense Central University Hospital, 28047 Madrid, Spain
| | | | | | | | | | | | | | | | - María-Fernanda Lorenzo-Gómez
- Department of Surgery, University of Salamanca, 37007 Salamanca, Spain
- Urology Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Hood KE, Hurley LM. Listening to your partner: serotonin increases male responsiveness to female vocal signals in mice. Front Hum Neurosci 2024; 17:1304653. [PMID: 38328678 PMCID: PMC10847236 DOI: 10.3389/fnhum.2023.1304653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Lab, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
12
|
Long DR, Kinser A, Olalde-Welling A, Brewer L, Lim J, Matheny D, Long B, Roossien DH. 5-HT1A regulates axon outgrowth in a subpopulation of Drosophila serotonergic neurons. Dev Neurobiol 2023; 83:268-281. [PMID: 37714743 DOI: 10.1002/dneu.22928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Serotonergic neurons produce extensively branched axons that fill most of the central nervous system, where they modulate a wide variety of behaviors. Many behavioral disorders have been correlated with defective serotonergic axon morphologies. Proper behavioral output therefore depends on the precise outgrowth and targeting of serotonergic axons during development. To direct outgrowth, serotonergic neurons utilize serotonin as a signaling molecule prior to it assuming its neurotransmitter role. This process, termed serotonin autoregulation, regulates axon outgrowth, branching, and varicosity development of serotonergic neurons. However, the receptor that mediates serotonin autoregulation is unknown. Here we asked if serotonin receptor 5-HT1A plays a role in serotonergic axon outgrowth and branching. Using cultured Drosophila serotonergic neurons, we found that exogenous serotonin reduced axon length and branching only in those expressing 5-HT1A. Pharmacological activation of 5-HT1A led to reduced axon length and branching, whereas the disruption of 5-HT1A rescued outgrowth in the presence of exogenous serotonin. Altogether this suggests that 5-HT1A is a serotonin autoreceptor in a subpopulation of serotonergic neurons and initiates signaling pathways that regulate axon outgrowth and branching during Drosophila development.
Collapse
Affiliation(s)
- Delaney R Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Ava Kinser
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Luke Brewer
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Juri Lim
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Dayle Matheny
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Breanna Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | |
Collapse
|
13
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
15
|
Associations between the kynurenine pathway and the brain in patients with major depressive disorder-A systematic review of neuroimaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110675. [PMID: 36372294 DOI: 10.1016/j.pnpbp.2022.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Previous studies have indicated that an imbalance in the kynurenine (KYN) pathway is an important pathophysiological mechanism of depression. Several studies have reported that an imbalance in the KYN pathway and its metabolites is associated with abnormalities in cerebral structure and function in depression, but the available evidence has been inconsistent. In this review, we systematically reviewed and integrated the findings concerning the associations between the KYN pathway and the brain in patients with major depressive disorder (MDD). A total of 22 neuroimaging studies were ultimately included in the present study. The neuroimaging modalities used in the studies included structural magnetic resonance imaging (MRI), diffusion tensor imaging, functional MRI, magnetic resonance spectroscopy, arterial spin labelling and positron emission tomography. The results revealed that an imbalance in the KYN pathway was associated with structural and functional abnormalities in several brain regions in patients with MDD. The brain regions most frequently associated with an imbalance in the KYN pathway were cortical regions (i.e., anterior cingulate cortex and orbitofrontal cortex), subcortical regions (i.e., striatum, thalamus and amygdala) and white matter fibres (i.e., inner capsule and left superior longitudinal tract). Our study provides robust evidence that cerebral abnormalities associated with the KYN pathway may be the underlying pathophysiological mechanisms of MDD. Future prospective studies are needed to further elucidate the causal relationships between the imbalanced KYN pathway and cerebral abnormalities in patients with MDD.
Collapse
|
16
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
17
|
Hsu DY, Chien WC, Chung CH, Chiu KC, Li TI, Kung LY, Tzeng NS. Risk of anxiety and depression in patients with lichen planus: A nationwide population-based study. J Affect Disord 2022; 300:255-262. [PMID: 34990623 DOI: 10.1016/j.jad.2021.12.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/27/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study aims to determine the risk of developing anxiety and/or depression among patients with lichen planus. METHODS Based on the Longitudinal Health Insurance Database of Taiwan National Health Insurance Research Database, a total of 4012 patients with lichen planus and 16,048 matched controls (1:4) were enrolled between January 1, 2000, and December 31, 2015. After controlling for the risk variables, multivariate Cox proportional hazard regression and the log-rank test with Kaplan-Meier method were performed to assess the influence of anxiety/depression among individuals with lichen planus under a maximum follow-up period of 16 years. RESULTS The subsequent anxiety or depression incidence of the lichen planus group and the comparisons was 19.67% (1962.70 per 105 person-years) and 10.11% (982.23 per 105person-years), respectively. Additionally, after adjustment of the risk variables, the hazard ratios for anxiety, depression, anxiety without depression, depression without anxiety, anxiety or depression, and both anxiety and depression combined were 1.779 (95%CI: 1.289-2.477, p < 0.001), 2.010 (95%CI: 1.454-2.790, p < 0.001), 2.015 (95%CI: 1.463-2.799, p < 0.001), 2.356 (95%CI: 1.705-3.286, p < 0.001), 2.011 (95%CI: 1.457-2.793, p < 0.001), and 1.515 (95%CI: 1.100-2.134, p < 0.001), respectively. LIMITATIONS Individuals with lichen planus were unable to be classified into oral subtype and cutaneous subtype based on the ICD-9-CM. Moreover, the results of our study could not demonstrate the mechanism between lichen planus and anxiety and/or depression. CONCLUSION Patients with lichen planus was positively associated with developing anxiety or depression. Physicians should to be aware of the signs of anxiety and/or depression while facing the patients with lichen planus during the clinical practices.
Collapse
Affiliation(s)
- Dun-Yu Hsu
- Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan; School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Medical Research, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan; Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Medical Research, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan; Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Kuo-Chou Chiu
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan; Department of Family Dentistry and Oral Diagnosis, Tri-Service General Hospital, Taipei, Taiwan
| | - Tsung-I Li
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan; Department of Family Dentistry and Oral Diagnosis, Tri-Service General Hospital, Taipei, Taiwan
| | - Ling-Yu Kung
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan; Department of Family Dentistry and Oral Diagnosis, Tri-Service General Hospital, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, School of Medicine, National Defense Medical Center, Tri-Service General Hospital, No. 325, Section 2, Cheng-Gung Road, Nei-Hu District, Taipei, Taiwan; Student Counseling Center, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
18
|
Zan GY, Sun X, Wang YJ, Liu R, Wang CY, Du WJ, Guo LB, Chai JR, Li QL, Liu ZQ, Liu JG. Amygdala dynorphin/κ opioid receptor system modulates depressive-like behavior in mice following chronic social defeat stress. Acta Pharmacol Sin 2022; 43:577-587. [PMID: 34035484 PMCID: PMC8888759 DOI: 10.1038/s41401-021-00677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.
Collapse
Affiliation(s)
- Gui-ying Zan
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China ,grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Sun
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yu-jun Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chen-yao Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-jia Du
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liu-bin Guo
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-rui Chai
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing-lin Li
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhi-qiang Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jing-gen Liu
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
19
|
Nashed MG, Waye S, Hasan SMN, Nguyen D, Wiseman M, Zhang J, Lau H, Dinesh OC, Raymond R, Greig IR, Bambico FR, Nobrega JN. Antidepressant activity of pharmacological and genetic deactivation of the small-conductance calcium-activated potassium channel subtype-3. Psychopharmacology (Berl) 2022; 239:253-266. [PMID: 34982171 DOI: 10.1007/s00213-021-06045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE The voltage-insensitive, small-conductance calcium-activated potassium (SK) channel is a key regulator of neuronal depolarization and is implicated in the pathophysiology of depressive disorders. OBJECTIVE We ascertained whether the SK channel is impaired in the chronic unpredictable stress (CUS) model and whether it can serve as a molecular target of antidepressant action. METHODS We assessed the depressive-like behavioral phenotype of CUS-exposed rats and performed post-mortem SK channel binding and activity-dependent zif268 mRNA analyses on their brains. To begin an assessment of SK channel subtypes involved, we examined the effects of genetic and pharmacological inhibition of the SK3 channel using conditional knockout mice and selective SK3 channel negative allosteric modulators (NAMs). RESULTS We found that [125I]apamin binding to SK channels is increased in the prefrontal cortex and decreased in the hippocampus, an effect that was associated with reciprocal levels of zif268 mRNA transcripts indicating abnormal regional cell activity in this model. We found that genetic and pharmacological manipulations significantly decreased immobility in the forced swim test without altering general locomotor activity, a hallmark of antidepressant-like activity. CONCLUSIONS Taken together, these findings link depression-related neural and behavioral pathophysiology with abnormal SK channel functioning and suggest that this can be reversed by the selective inhibition of SK3 channels.
Collapse
Affiliation(s)
- Mina G Nashed
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Shannon Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - S M Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Diana Nguyen
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Micaela Wiseman
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Jing Zhang
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Harry Lau
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Iain R Greig
- Institute of Medical Sciences, University of Aberdeen, King's College, Aberdeen, AB25 2ZD, Scotland
| | - Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada. .,Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada.
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
20
|
Gawliński D, Gawlińska K, Smaga I. Maternal High-Fat Diet Modulates Cnr1 Gene Expression in Male Rat Offspring. Nutrients 2021; 13:nu13082885. [PMID: 34445045 PMCID: PMC8402185 DOI: 10.3390/nu13082885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, strong evidence has emerged that exposure to a maternal high-fat diet (HFD) provokes changes in the structure, function, and development of the offspring’s brain and may induce several neurodevelopmental and psychiatric illnesses. The aims of this study were to evaluate the effects of a maternal HFD during pregnancy and lactation on depressive-like behavior and Cnr1 gene expression (encoding the CB1 receptor) in brain structures of rat offspring and to investigate the epigenetic mechanism involved in this gene expression. We found that a maternal HFD during pregnancy and lactation induced a depressive-like phenotype at postnatal days (PNDs) 28 and 63. We found that a maternal HFD decreased the Cnr1 mRNA levels in the prefrontal cortex with the increased levels of miR-212-5p and methylation of CpG islands at the Cnr1 promoter and reduced the level of Cnr1 gene expression in the dorsal striatum with an increased level of miR-154-3p in adolescent male offspring. A contrasting effect of a maternal HFD was observed in the hippocampus, where upregulation of Cnr1 gene expression was accompanied by a decrease of miR-154-3p (at PNDs 28 and 63) and miR-212-5p (at PND 63) expression and methylation of CpG islands at the Cnr1 promoter in male offspring. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several epigenetic mechanisms in the brains of rat offspring, which may be related to long-lasting alterations in the next generation and produce behavioral changes in offspring, including a depressive-like phenotype.
Collapse
|
21
|
Antunes DF, Teles MC, Zuelling M, Friesen CN, Oliveira RF, Aubin‐Horth N, Taborsky B. Early social deprivation shapes neuronal programming of the social decision-making network in a cooperatively breeding fish. Mol Ecol 2021; 30:4118-4132. [PMID: 34133783 PMCID: PMC8457231 DOI: 10.1111/mec.16019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
The early social environment an animal experiences may have pervasive effects on its behaviour. The social decision-making network (SDMN), consisting of interconnected brain nuclei from the forebrain and midbrain, is involved in the regulation of behaviours during social interactions. In species with advanced sociality such as cooperative breeders, offspring are exposed to a large number and a great diversity of social interactions every day of their early life. This diverse social environment may have life-long consequences on the development of several neurophysiological systems within the SDMN, although these effects are largely unknown. We studied these life-long effects in a cooperatively breeding fish, Neolamprologus pulcher, focusing on the expression of genes involved in the monoaminergic and stress response systems in the SDMN. N. pulcher fry were raised until an age of 2 months either with their parents, subordinate helpers and same-clutch siblings (+F), or with same-clutch siblings only (-F). Analysis of the expression of glucocorticoid receptor, mineralocorticoid receptor, corticotropin releasing factor, dopamine receptors 1 and 2, serotonin transporter and DNA methyltransferase 1 genes showed that early social experiences altered the neurogenomic profile of the preoptic area. Moreover, the dopamine receptor 1 gene was up-regulated in the preoptic area of -F fish compared to +F fish. -F fish also showed up-regulation of GR1 expression in the dorsal medial telencephalon (functional equivalent to the basolateral amygdala), and in the dorsolateral telencephalon (functional equivalent to the hippocampus). Our results suggest that early social environment has life-long effects on the development of several neurophysiological systems within the SDMN.
Collapse
Affiliation(s)
- Diogo F. Antunes
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Magda C. Teles
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
| | - Matthew Zuelling
- Division of Evolutionary EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Caitlin N. Friesen
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| | - Rui F. Oliveira
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
- Champalimaud ResearchLisbonPortugal
| | - Nadia Aubin‐Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Barbara Taborsky
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| |
Collapse
|
22
|
Przydacz M, Skalski M, Sobanski J, Chlosta M, Raczynski K, Klasa K, Dudek D, Chlosta P. Association between Lower Urinary Tract Symptoms and Sleep Quality of Patients with Depression. ACTA ACUST UNITED AC 2021; 57:medicina57040394. [PMID: 33921585 PMCID: PMC8073100 DOI: 10.3390/medicina57040394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Background and Objectives: In the general population, sleep disorders are associated with lower urinary tract symptoms (LUTS) including urinary incontinence (UI). This connection has not been explored fully in specific patient groups. Thus, we investigated the association between sleep quality and LUTS for patients with depression. Materials and Methods: This study was prospective and cross-sectional. We analyzed questionnaire data on depression, sleep quality, LUTS, and UI from depressed patients treated in our department of adult psychiatry. We used the Hamilton Rating Scale for Depression, the Holland Sleep Disorders Questionnaire, the International Prostate Symptom Score, and the International Consultation on Incontinence Questionnaire-Short Form. Results: In total, 102 patients treated for depression were enrolled. We found a statistically significant correlation between depression severity and sleep quality. A significant correlation was also investigated for sleep quality and LUTS severity. The group of depressed patients with moderate or severe LUTS had greater sleep problems compared with patients who had mild urinary tract symptoms or no symptoms. With regression analysis, we further demonstrated that the relationships between LUTS and sleep quality as well as UI and sleep quality in depressed patients are independent from age and sex. Conclusions: In the cohort of patients treated for depression, sleep quality correlated with LUTS including UI. We suggest that the negative effect of LUTS and UI on sleep quality that we observed should lead to the re-evaluation of current recommendations for diagnosis and treatment of sleep problems among patients with depression.
Collapse
Affiliation(s)
- Mikolaj Przydacz
- Department of Urology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.C.); (K.R.); (P.C.)
- Correspondence: ; Tel.: +48-12-424-79-50; Fax: +48-12-424-79-70
| | - Michal Skalski
- Department of Adult Psychiatry, University Hospital, 31-501 Krakow, Poland;
| | - Jerzy Sobanski
- Department of Psychotherapy, Jagiellonian University Medical College, 31-138 Krakow, Poland; (J.S.); (K.K.)
| | - Marcin Chlosta
- Department of Urology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.C.); (K.R.); (P.C.)
| | - Karol Raczynski
- Department of Urology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.C.); (K.R.); (P.C.)
| | - Katarzyna Klasa
- Department of Psychotherapy, Jagiellonian University Medical College, 31-138 Krakow, Poland; (J.S.); (K.K.)
| | - Dominika Dudek
- Department of Affective Disorders, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Piotr Chlosta
- Department of Urology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.C.); (K.R.); (P.C.)
| |
Collapse
|
23
|
Carneiro-Nascimento S, Powell W, Uebel M, Buerge M, Sigrist H, Patterson M, Pryce CR, Opacka-Juffry J. Region- and receptor-specific effects of chronic social stress on the central serotonergic system in mice. IBRO Neurosci Rep 2021; 10:8-16. [PMID: 33861815 PMCID: PMC8019833 DOI: 10.1016/j.ibneur.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 10/25/2022] Open
Abstract
Serotonin (5-HT), via its receptors expressed in discrete brain regions, modulates aversion and reward processing and is implicated in various psychiatric disorders including depression. Stressful experiences affect central serotonergic activity and act as a risk factor for depression; this can be modelled preclinically. In adult male C57BL/6J mice, 15-day chronic social stress (CSS) leads to depression-relevant behavioural states, including increased aversion and reduced reward sensitivity. Based on this evidence, here we investigated CSS effects on 5-HT1A, 5-HT2A, and 5-HT2C receptor binding in discrete brain regions using in vitro quantitative autoradiography with selective radioligands. In addition, mRNA expression of Htr1a, 2a, 2c and Slc6a4 (5-HT transporter) was measured by quantitative PCR. Relative to controls, the following effects were observed in CSS mice: 5-HT1A receptor binding was markedly increased in the dorsal raphe nucleus (136%); Htr1a mRNA expression was increased in raphe nuclei (19%), medial prefrontal cortex (35%), and hypothalamic para- and periventricular nuclei (21%) and ventral medial nucleus (38%). 5-HT2A receptor binding was decreased in the amygdala (48%) and ventral tegmental area (60%); Htr2a mRNA expression was increased in the baso-lateral amygdala (116%). 5-HT2C receptor binding was decreased in the dorsal raphe nucleus (42%). Slc6a4 mRNA expression was increased in the raphe (59%). The present findings add to the translational evidence that chronic social stress impacts on the central serotonergic system in a region- and receptor-specific manner, and that this altered state of the serotonergic system contributes to stress-induced dysfunctions in emotional processing.
Collapse
Affiliation(s)
| | - William Powell
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Michaela Uebel
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Michaela Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
24
|
Ye F, Wan H, Zhang H. Determination of 5-HT 3 Receptor Antagonists in Human Urine by Porous Graphitic Carbon (PGC) Solid Phase Extraction (SPE) Coupled with High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1767641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fanfan Ye
- School of Chemical Engineering, Analytical Center, Dalian University of Technology, Dalian, China
| | - Huihui Wan
- School of Chemical Engineering, Analytical Center, Dalian University of Technology, Dalian, China
| | - Hua Zhang
- School of Chemical Engineering, Analytical Center, Dalian University of Technology, Dalian, China
| |
Collapse
|
25
|
Athira KV, Bandopadhyay S, Samudrala PK, Naidu VGM, Lahkar M, Chakravarty S. An Overview of the Heterogeneity of Major Depressive Disorder: Current Knowledge and Future Prospective. Curr Neuropharmacol 2020; 18:168-187. [PMID: 31573890 PMCID: PMC7327947 DOI: 10.2174/1570159x17666191001142934] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is estimated to impose maximum debilitating effects on the society by 2030, with its critical effects on health, functioning, quality of life and concomitant high levels of morbidity and mortality. Yet, the disease is inadequately understood, diagnosed and treated. Moreover, with the recent drastic rise in the pace of life, stress has materialized as one of the most potent environmental factors for depression. In this scenario, it is important to understand the modern pathogenetic hypotheses and mechanisms, and possibly try to shift from the traditional approaches in depression therapy. These include the elaboration of pathophysiological changes in heterogeneous systems such as genetic, epigenetic, serotonergic, noradrenergic, gamma-aminobutyric acid, glutamatergic and endocannabinoid systems, neurotrophic factors, HPA axis, immune system as well as cellular stress mechanisms. These components interact with each other in a complex matrix and further elucidation of their mechanism and cascade pathways are needed. This might aid in the identification of MDD subtypes as well as the development of sophisticated biomarkers. Further, characterization might also aid in developing multitargeted therapies that hold much promise as compared to the conventional monoamine based treatment. New candidate pharmacons, refined psychotherapeutic modalities, advanced neuro-surgical and imaging techniques as well as the implementation of pharmacokinetic, pharmacogenetic prescribing guidelines constitute the emerging expanses of MDD treatment.
Collapse
Affiliation(s)
- Kaipuzha Venu Athira
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125, Assam, India.,Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India.,Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sikta Bandopadhyay
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, 781125, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, 781032, Assam, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
26
|
Buchecker V, Waldron AM, van Dijk RM, Koska I, Brendel M, von Ungern-Sternberg B, Lindner S, Gildehaus FJ, Ziegler S, Bartenstein P, Potschka H. [ 18F]MPPF and [ 18F]FDG μPET imaging in rats: impact of transport and restraint stress. EJNMMI Res 2020; 10:112. [PMID: 32990819 PMCID: PMC7524912 DOI: 10.1186/s13550-020-00693-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background Stress exposure can significantly affect serotonergic signaling with a particular impact on 5-HT1A receptor expression. Positron emission tomography (PET) provides opportunities for molecular imaging of alterations in 5-HT1A receptor binding following stress exposure. Considering the possible role of 5-HT1A receptors in stress coping mechanisms, respective imaging approaches are of particular interest. Material and methods For twelve consecutive days, Sprague Dawley rats were exposed to daily transport with a 1 h stay in a laboratory or daily transport plus 1 h restraint in a narrow tube. Following, animals were subjected to μPET imaging with 2′-methoxyphenyl-(N-2′-pyridinyl)-p-[18F]fluoro-benzamidoethylpiperazine ([18F]MPPF) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Behavioral and biochemical parameters were analyzed to obtain additional information. Results In rats with repeated transport, hippocampal [18F]MPPF binding exceeded that in the naive group, while no difference in [18F]FDG uptake was detected between the groups. A transient decline in body weight was observed in rats with transport or combined transport and restraint. Thereby, body weight development correlated with [18F]MPPF binding. Conclusions Mild-to-moderate stress associated with daily transport and exposure to a laboratory environment can trigger significant alterations in hippocampal binding of the 5-HT1A receptor ligand [18F]MPPF. This finding indicates that utmost care is necessary to control and report transport and associated handling procedures for animals used in μPET studies analyzing the serotonergic system in order to enhance the robustness of conclusions and allow replicability of findings. In view of earlier studies indicating that an increase in hippocampal 5-HT1A receptor expression may be associated with a resilience to stress, it would be of interest to further evaluate 5-HT1A receptor imaging approaches as a candidate biomarker for the vulnerability to stress.
Collapse
Affiliation(s)
- Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - R Maarten van Dijk
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | | | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany.
| |
Collapse
|
27
|
Improved visual discrimination learning in mice with partial 5-HT2B gene deletion. Neurosci Lett 2020; 738:135378. [PMID: 32920046 DOI: 10.1016/j.neulet.2020.135378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has been linked to multiple aspects of cognition. For example, in rodents, discrimination and reversal learning are altered by experimentally induced changes in brain serotonin levels, and reduced expression of the 5-HT2B receptor subtype in mice and humans is associated with decreased serotonergic tone and increased behavioral impulsivity. Serotonin modulates cognitive flexibility as well as fear and anxiety, but the specific contributions of 5-HT2B receptors to these behaviors is unknown. The current study assessed mice with partial Htr2b deletion for performance on a touchscreen-based pairwise visual discrimination and reversal learning task followed by a test of cued fear learning. Male Htr2b heterozygous mice (+/-) and littermate controls (+/+) were trained to discriminate between two visual stimuli presented on a touch-sensitive screen, one which predicted delivery of a 14-mg food pellet and the other which was not rewarded. Once discrimination performance criterion was attained, the stimulus-reward contingencies were reversed. Htr2b +/- mice were faster to reach discrimination criterion than +/+ controls, and made fewer errors. Htr2b +/- mice were also slower to make responses and collect rewards. Conversely, measures of reversal learning were not different between genotypes. Pavlovian cued fear conditioning was also normal in Htr2b +/-mice. These data demonstrate a selective improvement in touchscreen-based discrimination learning in mice with partial deletion of the 5-HT2B receptor, and provide further insight into the role of the 5-HT2B receptor in cognition.
Collapse
|
28
|
Przydacz M, Skalski M, Golabek T, Sobanski J, Klasa K, Rajwa P, Zembrzuski M, Dudek D, Chlosta P. Correlation of urinary incontinence with depression severity of patients treated for depression. Cent European J Urol 2020; 73:321-327. [PMID: 33133660 PMCID: PMC7587479 DOI: 10.5173/ceju.2020.0177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction Urinary incontinence (UI) is a major public health issue because of the high number of individuals affected, its adverse effects on job-related functioning, and the decline in quality of life. The association between UI and symptoms of depression has been evaluated extensively for the general population. However, relationships between UI and depression have not been adequately assessed for specific patient groups. Thus, we investigated the association between UI and depression severity in patients treated for depression. Material and methods This study was a single-center, prospective, cross-sectional inquiry. We analyzed questionnaire data on UI and depression from depressed patients treated in our Department of Adult Psychiatry. Patients completed the International Consultation on Incontinence Questionnaire Short Form and General Health Questionnaire whereas psychiatrists administered the Hamilton Rating Scale for Depression. Results One hundred two patients were enrolled in the study. Most patients had mild depression. Patients who were incontinent mostly reported moderate UI and UI was statistically more prevalent in women than in men. Further, with the General Health Questionnaire, depression severity in women was significantly associated with the severity of UI. We did not observe correlation between depression severity analyzed with the Hamilton Rating Scale for Depression and UI. Conclusions In the cohort of patients treated for depression, UI affected more women than men. In wo- men, UI was associated with the severity of depression. Because UI and depression may coexist and share the symptom burden, particularly in women, clinicians should be aware of the interconnection between these two conditions.
Collapse
Affiliation(s)
- Mikolaj Przydacz
- Department of Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Michal Skalski
- Department of Adult Psychiatry, University Hospital, Cracow, Poland
| | - Tomasz Golabek
- Department of Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Jerzy Sobanski
- Department of Psychotherapy, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Klasa
- Department of Psychotherapy, Jagiellonian University Medical College, Cracow, Poland
| | - Pawel Rajwa
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Michal Zembrzuski
- Department of Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Dominika Dudek
- Department of Affective Disorders, Jagiellonian University Medical College, Cracow, Poland
| | - Piotr Chlosta
- Department of Urology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
29
|
Spagnolo PA, Norato G, Maurer CW, Goldman D, Hodgkinson C, Horovitz S, Hallett M. Effects of TPH2 gene variation and childhood trauma on the clinical and circuit-level phenotype of functional movement disorders. J Neurol Neurosurg Psychiatry 2020; 91:814-821. [PMID: 32576619 PMCID: PMC7402460 DOI: 10.1136/jnnp-2019-322636] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/19/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Functional movement disorders (FMDs), part of the wide spectrum of functional neurological disorders (conversion disorders), are common and often associated with a poor prognosis. Nevertheless, little is known about their neurobiological underpinnings, particularly with regard to the contribution of genetic factors. Because FMD and stress-related disorders share a common core of biobehavioural manifestations, we investigated whether variants in stress-related genes also contributed, directly and interactively with childhood trauma, to the clinical and circuit-level phenotypes of FMD. METHODS Sixty-nine patients with a 'clinically defined' diagnosis of FMD were genotyped for 18 single-nucleotide polymorphisms (SNPs) from 14 candidate genes. FMD clinical characteristics, psychiatric comorbidity and symptomatology, and childhood trauma exposure were assessed. Resting-state functional connectivity data were obtained in a subgroup of 38 patients with FMD and 38 age-matched and sex-matched healthy controls. Amygdala-frontal connectivity was analysed using a whole-brain seed-based approach. RESULTS Among the SNPs analysed, a tryptophan hydroxylase 2 (TPH2) gene polymorphism-G703T-significantly predicted clinical and neurocircuitry manifestations of FMD. Relative to GG homozygotes, T carriers were characterised by earlier FMD age of onset and decreased connectivity between the right amygdala and the middle frontal gyrus. Furthermore, the TPH2 genotype showed a significant interaction with childhood trauma in predicting worse symptom severity. CONCLUSIONS This is, to our knowledge, the first study showing that the TPH2 genotype may modulate FMD both directly and interactively with childhood trauma. Because both this polymorphism and early-life stress alter serotonin levels, our findings support a potential molecular mechanism modulating FMD phenotype.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Human Motor Control Section, Medical Neurology Branch, National Institute on Nuerological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gina Norato
- Office of Biostatistics, National Institute on Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA, Bethesda, Maryland, USA
| | - Carine W Maurer
- Department of Neurology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - David Goldman
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Colin Hodgkinson
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Silvina Horovitz
- Human Motor Control Section, Medical Neurology Branch, National Institute on Nuerological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute on Nuerological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Jaddoa E, Masania J, Masiero E, Sgamma T, Arroo R, Sillence D, Zetterström T. Effect of antidepressant drugs on the brain sphingolipid system. J Psychopharmacol 2020; 34:716-725. [PMID: 32403969 DOI: 10.1177/0269881120915412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Major depression is a common mood disorder and the central sphingolipid system has been identified as a possible drug target of this condition. Here we investigated the action of antidepressant drugs on sphingolipid levels in rat brain regions, plasma and in cultured mouse macrophages. METHODS Two antidepressant drugs were tested: the serotonin reuptake inhibitor paroxetine and the noradrenaline reuptake inhibitor desipramine, either following acute or chronic treatments. Content of sphingosine and ceramide were analysed using LC-MS or HPLC-UV, respectively. This was from samples of brain, plasma and cultured mouse macrophages. Antidepressant-induced effects on mRNA expression for two key genes of the sphingolipid pathway, SMPD1 and ASAH1, were also measured by using quantitative real-time PCR. RESULTS Chronic but not acute administration of paroxetine or desipramine reduced sphingosine levels in the prefrontal cortex and hippocampus (only paroxetine) but not in the striatum. Ceramide levels were also measured in the hippocampus following chronic paroxetine and likewise to sphingosine this treatment reduced its levels. The corresponding collected plasma samples from chronically treated animals did not show any decrease of sphingosine compared to the corresponding controls. Both drugs failed to reduce sphingosine levels from cultured mouse macrophages. The drug-induced decrease of sphingolipids coincided with reduced mRNA expression of two enzymes of the central sphingolipid pathway, i.e. acid sphingomyelinase (SMPD1) and acid ceramidase (ASAH1). CONCLUSIONS This study supports the involvement of brain sphingolipids in the mechanism of action by antidepressant drugs and for the first time highlights their differential effects on brain versus plasma levels.
Collapse
Affiliation(s)
- Estabraq Jaddoa
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Jinit Masania
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Eva Masiero
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tiziana Sgamma
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Randolph Arroo
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Daniel Sillence
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tyra Zetterström
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
31
|
Nelumbo nucifera Gaertn Stems (Hegeng) Improved Depression Behavior in CUMS Mice by Regulating NCAM and GAP-43 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3056954. [PMID: 32308703 PMCID: PMC7149381 DOI: 10.1155/2020/3056954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
Background Nelumbo nucifera Gaertn stem (Hegeng [HG]) is a traditional Chinese medicine that is used to treat mental symptoms in East Asia. However, scientific evidence is generally lacking to support this traditional claim. Aim of the Study. This study's aim is to investigate the antidepression effect of HG and to further explore the possible molecular mechanisms that are involved in its actions. Materials and Methods. HG aqueous extract was administered intragastrically for 21 days after the chronic unpredictable mild stress (CUMS) procedure, and its effect on memory, learning, and emotion was assessed using animal behavioral tests. HG aqueous extract was characterized using HPLC. Immunofluorescence was used to measure the neural cell-adhesion molecule (NCAM) and growth-associated protein-43 (GAP-43) expression. Results Depression-like behaviors increased in the CUMS group compared with the control (CON) group, while they were reduced in the high-dose HG (H-HG) and fluoxetine (FLU) groups (p < 0.05). Additionally, NCAM and GAP-43 expression was reduced in the CUMS group compared with the CON group, but it increased in the H-HG and FLU groups (p < 0.05). Conclusions These findings show the potential antidepressant effects of HG through mechanisms involving regulation of NCAM and GAP-43. This provides a new theoretical basis for its potential application as an antidepressant-like agent.
Collapse
|
32
|
Atmaca HT. Expression of serotonin 2A, 2C, 6 and 7 receptor and IL-6 mRNA in experimental toxoplasmic encephalitis in mice. Heliyon 2019; 5:e02890. [PMID: 31844757 PMCID: PMC6888730 DOI: 10.1016/j.heliyon.2019.e02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/25/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
The neurotropic pathogen Toxoplasma gondii infects about one-third of the human population. Both acute and chronic (latent or life-long) forms of toxoplasmosis are associated with specific neurologic and neuropsychiatric symptoms. In the present study, swiss albino mice were inoculated intraperitoneally with 15–20 tissue cysts of the ME-49 strain of Toxoplasma gondii. The brain samples were collected on the days 10, 20, and 30 for determining the histopathological scores and the number of cysts. Furthermore, a real-time quantitative polymerase chain reaction (RT-PCR) was conducted to find out the gene expression levels of the serotonin 2A receptor (5-HTR2A), serotonin 2C receptor (5-HTR2C), serotonin 6 receptor (5-HTR6), serotonin 7 receptor (5-HTR7), and interleukin-6. The results were compared to the histopathological findings of encephalitic toxoplasmosis. The expression levels were observed to increase for all receptors; however at different time points of infection. This experimental model demonstrates that the expression of serotonin receptors was induced in Toxoplasma gondii infections, displaying unique findings for each of the individual receptors.
Collapse
|
33
|
Lo Iacono L, Ielpo D, Accoto A, Di Segni M, Babicola L, D’Addario SL, Ferlazzo F, Pascucci T, Ventura R, Andolina D. MicroRNA-34a Regulates the Depression-like Behavior in Mice by Modulating the Expression of Target Genes in the Dorsal Raphè. Mol Neurobiol 2019; 57:823-836. [DOI: 10.1007/s12035-019-01750-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023]
|
34
|
Bambico FR, Li Z, Creed M, De Gregorio D, Diwan M, Li J, McNeill S, Gobbi G, Raymond R, Nobrega JN. A Key Role for Prefrontocortical Small Conductance Calcium-Activated Potassium Channels in Stress Adaptation and Rapid Antidepressant Response. Cereb Cortex 2019; 30:1559-1572. [DOI: 10.1093/cercor/bhz187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/22/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023] Open
Abstract
AbstractThe muscarinic acetylcholine receptor antagonist scopolamine elicits rapid antidepressant activity, but its underlying mechanism is not fully understood. In a chronic stress model, a single low-dose administration of scopolamine reversed depressive-like reactivity. This antidepressant-like effect was mediated via a muscarinic M1 receptor–SKC pathway because it was mimicked by intra-medial prefrontal cortex (intra-mPFC) infusions of scopolamine, of the M1 antagonist pirenzepine or of the SKC antagonist apamin, but not by the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. Extracellular and whole-cell recordings revealed that scopolamine and ketamine attenuate the SKC-mediated action potential hyperpolarization current and rapidly enhance mPFC neuronal excitability within the therapeutically relevant time window. The SKC agonist 1-EBIO abrogated scopolamine-induced antidepressant activity at a dose that completely suppressed burst firing activity. Scopolamine also induced a slow-onset activation of raphe serotonergic neurons, which in turn was dependent on mPFC-induced neuroplasticity or excitatory input, since mPFC transection abolished this effect. These early behavioral and mPFC activational effects of scopolamine did not appear to depend on prefrontocortical brain-derived neurotrophic factor and serotonin-1A activity, classically linked to SSRIs, and suggest a novel mechanism associated with antidepressant response onset through SKC-mediated regulation of activity-dependent plasticity.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Zhuoliang Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Meaghan Creed
- Département des Neurosciences Fondamentales & Service de Neurologie, University of Geneva, Geneva, CH-1211, Switzerland
| | - Danilo De Gregorio
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mustansir Diwan
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Jessica Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Sean McNeill
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
35
|
López-Gil X, Jiménez-Sánchez L, Campa L, Castro E, Frago C, Adell A. Role of Serotonin and Noradrenaline in the Rapid Antidepressant Action of Ketamine. ACS Chem Neurosci 2019; 10:3318-3326. [PMID: 31244055 DOI: 10.1021/acschemneuro.9b00288] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Depression is a chronic and debilitating illness that interferes severely with many human behaviors, and is the leading cause of disability in the world. There is data suggesting that deficits in serotonin neurotransmission can contribute to the development of depression. Indeed, >90% of prescribed antidepressant drugs act by increasing serotonergic transmission at the synapse. However, this increase is offset by a negative feedback operating at the level of the cell body of the serotonin neurons in the raphe nuclei. In the present work, we demonstrate: first, the intracortical infusion of ketamine induced an antidepressant-like effect in the forced swim test, comparable to that produced by systemic ketamine; second, systemic and intracortical ketamine increased serotonin and noradrenaline efflux in the prefrontal cortex, but not in the dorsal raphe nucleus; third, systemic and intracortical administration of ketamine increased the efflux of glutamate in the prefrontal cortex and dorsal raphe nucleus; fourth, systemic ketamine did not alter the functionality of 5-HT1A receptors in the dorsal raphe nucleus. Taken together, these findings suggest that the antidepressant-like effects of ketamine are caused by the stimulation of the prefrontal projection to the dorsal raphe nucleus and locus coeruleus caused by an elevated glutamate in the medial prefrontal cortex, which would stimulate release of serotonin and noradrenaline in the same area. The impact of both monoamines in the antidepressant response to ketamine seems to have different time frames.
Collapse
Affiliation(s)
- Xavier López-Gil
- Experimental 7T MRI Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Laura Jiménez-Sánchez
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain
| | - Leticia Campa
- Department of Neurochemistry and Neuropharmacology, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
| | - Elena Castro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander 39011, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander 39011, Spain
| | - Clara Frago
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander 39011, Spain
| | - Albert Adell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander 39011, Spain
| |
Collapse
|
36
|
Sengupta A, Holmes A. A Discrete Dorsal Raphe to Basal Amygdala 5-HT Circuit Calibrates Aversive Memory. Neuron 2019; 103:489-505.e7. [PMID: 31204082 DOI: 10.1016/j.neuron.2019.05.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
Despite a wealth of clinical and preclinical data implicating the serotonin (5-HT) system in fear-related affective disorders, a precise definition of this neuromodulator's role in fear remains elusive. Using convergent anatomical and functional approaches, we interrogate the contribution to fear of basal amygdala (BA) 5-HT inputs from the dorsal raphe nucleus (DRN). We show the DRN→BA 5-HT pathway is engaged during fear memory formation and retrieval, and activity of these projections facilitates fear and impairs extinction. The DRN→BA 5-HT pathway amplifies fear-associated BA neuronal firing and theta power and phase-locking. Although fear recruits 5-HT and VGluT3 co-expressing DRN neurons, the fear-potentiating influence of the DRN→BA 5-HT pathway requires signaling at BA 5-HT1A/2A receptors. Input-output mapping illustrates how the DRN→BA 5-HT pathway is anatomically distinct and connected with other brain regions that mediate fear. These findings reveal how a discrete 5-HT circuit orchestrates a broader neural network to calibrate aversive memory.
Collapse
Affiliation(s)
- Ayesha Sengupta
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| |
Collapse
|
37
|
Peplonska B, Safranow K, Adamczyk J, Boguszewski D, Szymański K, Soltyszewski I, Barczak A, Siewierski M, Ploski R, Sozanski H, Zekanowski C. Association of serotoninergic pathway gene variants with elite athletic status in the Polish population. J Sports Sci 2019; 37:1655-1662. [PMID: 30836829 DOI: 10.1080/02640414.2019.1583156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetic factors are known to influence sport performance. The aim of the present study was to assess genetic variants in genes coding for proteins potentially modulating activity of brain emotion centres in a group of 621 elite athletes (212 endurance, 183 power and 226 combat athletes) and 672 sedentary controls. Ten statistically significant variants were identified in genes encoding elements of serotoninergic, catecholaminergic and hypothalamic-pituitary-adrenal systems in different sport groups. Of those the rs860573 variant in the FEV gene coding for transcription factor exclusively expressed in neurons of the central serotonin system is the only one whose frequency significantly differentiates all the groups of athletes studied, regardless of discipline, from the controls (p = 0.000026). Our results support the hypothesis that genetic variants potentially affecting mental processes and emotions, particularly in the serotonergic pathway, also influence the predispositions to athletic performance.
Collapse
Affiliation(s)
- Beata Peplonska
- a Department of Neurodegenerative Disorders , Mossakowski Medical Research Centre Polish Academy of Sciences , Warsaw , Poland
| | - Krzysztof Safranow
- b Department of Biochemistry and Medical Chemistry , Pomeranian Medical University , Szczecin , Poland
| | - Jakub Adamczyk
- c Department of Sport's Theory , Jozef Pilsudski University of Physical Education in Warsaw , Warsaw , Poland
| | - Dariusz Boguszewski
- d Department of Rehabilitation, Physiotherapy Division , Medical University of Warsaw , Warsaw , Poland
| | - Konrad Szymański
- e Department of Medical Genetics , Centre for Biostructure, Medical University of Warsaw , Warsaw , Poland
| | - Ireneusz Soltyszewski
- f Department of Criminology and Forensic Medicine , Warmia and Mazury University , Olsztyn , Poland
| | - Anna Barczak
- a Department of Neurodegenerative Disorders , Mossakowski Medical Research Centre Polish Academy of Sciences , Warsaw , Poland
| | - Marcin Siewierski
- c Department of Sport's Theory , Jozef Pilsudski University of Physical Education in Warsaw , Warsaw , Poland
| | - Rafal Ploski
- e Department of Medical Genetics , Centre for Biostructure, Medical University of Warsaw , Warsaw , Poland
| | - Henryk Sozanski
- c Department of Sport's Theory , Jozef Pilsudski University of Physical Education in Warsaw , Warsaw , Poland
| | - Cezary Zekanowski
- c Department of Sport's Theory , Jozef Pilsudski University of Physical Education in Warsaw , Warsaw , Poland
| |
Collapse
|
38
|
Chao AM, Wadden TA, Pearl RL, Alamuddin N, Leonard SM, Bakizada ZM, Pinkasavage E, Gruber KA, Walsh OA, Berkowitz RI, Alfaris N, Tronieri JS. A randomized controlled trial of lorcaserin and lifestyle counselling for weight loss maintenance: changes in emotion- and stress-related eating, food cravings and appetite. Clin Obes 2018; 8:383-390. [PMID: 30222916 PMCID: PMC6711178 DOI: 10.1111/cob.12279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/26/2018] [Accepted: 08/16/2018] [Indexed: 02/04/2023]
Abstract
Anti-obesity medication may help people maintain diet-induced reductions in appetite. The present exploratory analysis assessed the effects of lorcaserin on changes at 24 weeks post-randomization in emotion- and stress-related eating, food cravings and other measures of appetite (i.e. binge eating, cognitive restraint, disinhibition, hunger, preoccupation with eating and fullness). The parent study investigated the efficacy of combined lorcaserin and behavioural treatment in facilitating weight loss maintenance (WLM) in 137 adults (mean age = 46.1 years, 86.1% female, 68.6% black) who had lost ≥5% of initial weight during a 14-week, low-calorie diet (LCD) run-in. Participants were randomly assigned to lorcaserin or placebo and were provided with group WLM counselling sessions. Emotion- and stress-related eating, food cravings and appetite were measured at the start of the LCD (week -14), randomization (0) and week 24. From randomization, lorcaserin-treated participants had significantly greater improvements in emotion- and stress-related eating compared to placebo-treated participants (P = 0.04). However, groups did not differ significantly after randomization in changes in the frequency of food cravings, binge eating or other measures of appetite (Ps > 0.05). Compared to placebo, lorcaserin may improve emotion- and stress-related eating.
Collapse
Affiliation(s)
- Ariana M. Chao
- Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Thomas A. Wadden
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Rebecca L. Pearl
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
- Department of Surgery, University of Pennsylvania Perelman School of Medicine
| | - Naji Alamuddin
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
- Department of Medicine, University of Pennsylvania Perelman School of Medicine
| | - Sharon M. Leonard
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Zayna M. Bakizada
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Emilie Pinkasavage
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Kathryn A. Gruber
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Olivia A. Walsh
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Robert I. Berkowitz
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children’s Hospital of Philadelphia
| | - Nasreen Alfaris
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
- Department of Surgery, University of Pennsylvania Perelman School of Medicine
- The Obesity, Endocrine, and Metabolism Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jena Shaw Tronieri
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
39
|
Farhan M, Riaz F, Wali S, Rafiq H. Desensitization of 5-HT-1A Somatodentritic Receptors in Tryptophan Treated and Co-treated Rats Induced by Methylphenidate. ACTA ACUST UNITED AC 2018; 14:125-131. [PMID: 30417792 DOI: 10.2174/1574884713666181112123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Psychostimulants can induce behavioral sensitization by their chronic use. The main target for the action of these drugs is dopamine, neither epinephrine nor serotonin transporters. Serotonin is synthesized by the precursor L-tryptophan. Tryptophan and methylphenidate being 5-HT agonists, both increase the level of serotonin thereby causing desensitization of 5-HT1a receptors. The present study investigated whether behavioral sensitization induced by Methylphenidate is decreased in tryptophan administrated animals. METHODS The Experiment was divided into 2 phases (1). Behavioral effects of repeated administration of TRP 100 mg/kg and MPD for 14 days in three groups; (i) water (ii) MPD 1.0 mg/kg (iii) TRP. To explore the locomotor effects of treatment, the activity was monitored in a familiar and novel environment. (2) Behavioral consequences of repeatedly administrated MPD (1.0 mg/kg) on pretreated TRP (100 mg/kg) and MPD (1.0 mg/kg) animals following Co-MPD and TRP for 14 days, rats were divided in three groups (i) water, (ii) MPD and (iii) TRP as mentioned in Experiment no 1. After two weeks six subgroups were assigned i.e. (i) water-saline, (ii) water- MPD, (iii) TRP-saline (iv) TRP-MPD (v) MPD-saline and (vi) MPD-MPD+TRP and treated for further 14 days. Locomotor behavior was monitored in familiar environment on the next day and in novel environment on alternate days of each administration. RESULTS The Results from phase 1 showed increased activity in both (TRP and MPD) treatments. However, the results of phase 2 showed significant decrease in methylphenidate-induced behavioral sensitization by both pretreatment and co-administration with TRP. CONCLUSION The present study suggests the potential of tryptophan to decrease the risk of behavioral sensitization induced by methylphenidate.
Collapse
Affiliation(s)
- Muhammad Farhan
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| | - Fatima Riaz
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| | - Sana Wali
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| |
Collapse
|
40
|
Zhang J, Han X, Si S, Zhang S. The Interaction of TPH1 A779C Polymorphism and Maternal Authoritarianism on Creative Potential. Front Psychol 2018; 9:2106. [PMID: 30450068 PMCID: PMC6224424 DOI: 10.3389/fpsyg.2018.02106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
Exploring the possible mechanisms through which gene may interact with environment to influence creativity has been one of the leading issues in creativity research. In a sample of four hundred and twenty-one Chinese undergraduate students, the present study investigated for the first time the interaction of TPH1 A779C polymorphism and maternal parenting styles on creative potential. The results showed that there was a significant interaction of TPH1 A779C polymorphism and maternal authoritarianism on creative potential. Moreover, the analysis of regions of significance (Ros) provided supporting evidences for both the diathesis-stress model (flexibility) and the differential susceptibility model (originality). These findings extend our understanding concerning the mechanisms by which gene and environment may act in coordination to contribute to creativity.
Collapse
Affiliation(s)
- Jinghuan Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Xiao Han
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Si Si
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Shun Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
41
|
Effect of 5-HTTLPR on current source density, connectivity, and topological properties of resting state EEG networks. Brain Res 2018; 1697:67-75. [PMID: 29913130 DOI: 10.1016/j.brainres.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022]
Abstract
The S allele of serotonin transporter gene (5-HTTLPR) has been found to increase the risk of depression and other mental health problems, but some evidence suggests that S-allele carriers outperform subjects carrying the long allele in an array of cognitive tasks. Evidence linking this polymorphism with individual variation in electrophysiological properties of resting state brain networks is very limited. This study investigated the effect of 5-HTTLPR polymorphism on EEG current source density, connectivity, and topological properties of resting state networks. We collected genetic and resting state EEG data in 113 Caucasians. As compared to L-homozygotes, S-allele carriers showed lower current source density and connectivity in most frequency bands in areas overlapping with the default mode and emotion regulation regions. The analysis of graph-theoretical measures showed that S-allele carriers, as compared to L-homozygotes, have less optimal topological properties of brain networks in theta, but more optimal in alpha band. This dissociation may reflect the predisposition to emotional disorders, which is inherent to S-allele carriers, and, on the other hand, their superior functioning in some cognitive domains.
Collapse
|
42
|
Peyron C, Rampon C, Petit JM, Luppi PH. Sub-regions of the dorsal raphé nucleus receive different inputs from the brainstem. Sleep Med 2018; 49:53-63. [PMID: 30078667 DOI: 10.1016/j.sleep.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The dorsal raphe nucleus (DRN) through its extensive efferent projections has been implicated in a great variety of physiological and behavioral functions including the regulation of the sleep-wake cycle. This nucleus is composed of five sub-regions defined according to the distribution of its serotonergic (5-HT) neurons. In addition to its heterogeneity in neuronal populations, the DRN contains a great diversity of 5-HT neuronal subtypes identified based on their electrophysiological characteristics, morphology and sub-regional distribution. This suggests that the DRN sub-regions may play different functional roles. Recent studies reported long-range inputs specific to the 5-HT neurons of the DRN; but they did not differentiate whether some inputs were specific to a DRN sub-region, or another region. To fulfill this gap, we have previously described the forebrain afferents to the different sub-regions of the DRN using cholera toxin b subunit and Phaseolus vulgaris-leucoagglutinin, as retrograde and anterograde tracers respectively. In the present work, we provide a detailed map of the brainstem projections to these different sub-regions. We show that if some brainstem structures project homogeneously to all sub-regions, most of the brainstem long-range inputs project in a topographically organized manner onto the DRN and, moreover, that a rich interconnected network is present within the DRN.
Collapse
Affiliation(s)
- Christelle Peyron
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, University-Lyon1, Lyon, France.
| | - Claire Rampon
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre de Recherches sur la Cognition animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Jean-Marie Petit
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre des Neurosciences Psychiatriques, Centre Hospitalier Universitaire Vaudois (CHUV), Prilly, Switzerland
| | - Pierre-Hervé Luppi
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, University-Lyon1, Lyon, France
| |
Collapse
|
43
|
Bambico FR, Comai S, Diwan M, Hasan SN, Conway JD, Darvish-Ghane S, Hamani C, Gobbi G, Nobrega JN. High frequency stimulation of the anterior vermis modulates behavioural response to chronic stress: involvement of the prefrontal cortex and dorsal raphe? Neurobiol Dis 2018; 116:166-178. [DOI: 10.1016/j.nbd.2018.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/17/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022] Open
|
44
|
Antidepressant Effect of Fraxinus rhynchophylla Hance Extract in a Mouse Model of Chronic Stress-Induced Depression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8249563. [PMID: 30065945 PMCID: PMC6051329 DOI: 10.1155/2018/8249563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
Abstract
Prolonged exposure to stress can affect mood and cognition and lead to mood disorders. Research on stress-associated mood disorders is important in modern society as people are increasingly exposed to unavoidable stressors. We used a mouse model with 2 weeks of exposure to electric foot shock and restraint, to determine the effect of Fraxinus rhynchophylla Hance (FX) extract on chronic stress-induced depression. We measured the effect of FX extract using various physiological, behavioral, and biochemical measures. FX extract ameliorated chronic stress-induced body and relative liver weight loss and improved depressive-like behaviors in the open field and forced swim tests. In addition, plasma cortisol and serotonin levels in stress-induced mice following FX treatment were similar to normal mice, and the elevation of proinflammatory cytokines was prevented. Moreover, FX treatment increased the expression of phosphorylated cyclic adenosine-3′,5′-monophosphate response element-binding protein (pCREB)/brain-derived neurotrophic factor (BDNF). Further experiments confirmed the efficacy of FX extract by showing similar results using esculin and esculetin, compounds extracted from FX. Taken together, these results indicate that FX extract has an antidepressant effect on chronic stress-induced depression by associating signaling with neuroinflammation and neurogenesis.
Collapse
|
45
|
Knyazev GG, Bazovkina DV, Savostyanov AN, Naumenko VS, Kuznetsova VB, Proshina EA. Suppression mediates the effect of 5-HTTLPR by stress interaction on depression. Scand J Psychol 2018; 58:373-378. [PMID: 28901577 DOI: 10.1111/sjop.12389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
A number of studies have shown that the presence of short (S), as opposed to long (L), allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with a higher risk for depression following exposure to stressful life events. However, many other studies failed to confirm this association. One reason for this inconsistency might be the fact that the interaction of the 5-HTTLPR polymorphism with stress may relate not to depression per se, but rather to adaptive or maladaptive emotion regulation strategies. Here we show that individuals homozygous for the long allele respond to stressful events by reappraising their emotional meaning, which may hamper the harmful effect of stress on mental health. In S genotype carriers, on the other hand, stress triggers the appearance of intrusive thoughts and vain attempts to suppress them, which in this group acts as a mediator between stress and depressive symptoms. These findings are in line with neuroimaging studies showing that 5-HTTLPR polymorphism has an effect on the connectivity among key areas involved in emotion regulation.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia
| | - Daria V Bazovkina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Russia
| | - Alexander N Savostyanov
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia.,Novosibirsk State University, Russia
| | | | - Valeriya B Kuznetsova
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia
| | - Ekaterina A Proshina
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia
| |
Collapse
|
46
|
Réus GZ, de Moura AB, Silva RH, Resende WR, Quevedo J. Resilience Dysregulation in Major Depressive Disorder: Focus on Glutamatergic Imbalance and Microglial Activation. Curr Neuropharmacol 2018; 16:297-307. [PMID: 28676011 PMCID: PMC5843981 DOI: 10.2174/1570159x15666170630164715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Many studies have been shown an important role of glutamatergic system as well microglial activation in the pathophysiology of major depressive disorder (MDD). In humans most resistant to the development of psychiatric disorders, including MDD, are observed a greater degree of resilience resulting from stress. Less resilience is associated with neuroendocrine and neuroinflammatory markers, as well as with glutamatergic system dysregulation. Thus, this review we highlighted findings from literature identifying the function of glutamatergic system, microglial activation and inflammation in resilience. METHODS We conducted a review of computerized databases from 1970 to 2017. RESULTS There is an association between microglial activation and glutamatergic system activation with stress vulnerability and resilience. CONCLUSIONS Glutamate neurotransmission, including neurotransmitter synthesis, signalling, and glutamate receptor functions and expression all seem to be involved with both stress vulnerability and resilience. Moreover, inflammation and microglial activation mediate individual differences in resilience and the risk of stress-induced MDD.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Airam B. de Moura
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ritele H. Silva
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R. Resende
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
47
|
MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1. Mol Neurobiol 2018; 55:7401-7412. [PMID: 29417477 DOI: 10.1007/s12035-018-0925-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.
Collapse
|
48
|
Hart H, Lim L, Mehta MA, Curtis C, Xu X, Breen G, Simmons A, Mirza K, Rubia K. Altered Functional Connectivity of Fronto-Cingulo-Striatal Circuits during Error Monitoring in Adolescents with a History of Childhood Abuse. Front Hum Neurosci 2018; 12:7. [PMID: 29434543 PMCID: PMC5797423 DOI: 10.3389/fnhum.2018.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
Childhood maltreatment is associated with error hypersensitivity. We examined the effect of childhood abuse and abuse-by-gene (5-HTTLPR, MAOA) interaction on functional brain connectivity during error processing in medication/drug-free adolescents. Functional connectivity was compared, using generalized psychophysiological interaction (gPPI) analysis of functional magnetic resonance imaging (fMRI) data, between 22 age- and gender-matched medication-naïve and substance abuse-free adolescents exposed to severe childhood abuse and 27 healthy controls, while they performed an individually adjusted tracking stop-signal task, designed to elicit 50% inhibition failures. During inhibition failures, abused participants relative to healthy controls exhibited reduced connectivity between right and left putamen, bilateral caudate and anterior cingulate cortex (ACC), and between right supplementary motor area (SMA) and right inferior and dorsolateral prefrontal cortex. Abuse-related connectivity abnormalities were associated with longer abuse duration. No group differences in connectivity were observed for successful inhibition. The findings suggest that childhood abuse is associated with decreased functional connectivity in fronto-cingulo-striatal networks during error processing. Furthermore that the severity of connectivity abnormalities increases with abuse duration. Reduced connectivity of error detection networks in maltreated individuals may be linked to constant monitoring of errors in order to avoid mistakes which, in abusive contexts, are often associated with harsh punishment.
Collapse
Affiliation(s)
- Heledd Hart
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Lena Lim
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Lee Kong Chian School of Medicine, Imperial College London-Nanyang Technological University Singapore, London, United Kingdom
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Charles Curtis
- MRC SGDP Centre, NIHR BRC for Mental Health, Institute of Psychiatry, Psychology and Neuroscience and SLaM NHS Trust, King’s College London, London, United Kingdom
| | - Xiaohui Xu
- MRC SGDP Centre, NIHR BRC for Mental Health, Institute of Psychiatry, Psychology and Neuroscience and SLaM NHS Trust, King’s College London, London, United Kingdom
| | - Gerome Breen
- MRC SGDP Centre, NIHR BRC for Mental Health, Institute of Psychiatry, Psychology and Neuroscience and SLaM NHS Trust, King’s College London, London, United Kingdom
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Kah Mirza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
49
|
Vai B, Riberto M, Ghiglino D, Poletti S, Bollettini I, Lorenzi C, Colombo C, Benedetti F. A 5-HT 1Areceptor promoter polymorphism influences fronto-limbic functional connectivity and depression severity in bipolar disorder. Psychiatry Res Neuroimaging 2017; 270:1-7. [PMID: 28985530 DOI: 10.1016/j.pscychresns.2017.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Benedetta Vai
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.
| | - Martina Riberto
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Davide Ghiglino
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Sara Poletti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Irene Bollettini
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Cristina Colombo
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Francesco Benedetti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
50
|
Pilar-Cuéllar F, Vidal R, Díaz Á, Garro-Martínez E, Linge R, Castro E, Haberzettl R, Fink H, Bert B, Brosda J, Romero B, Crespo-Facorro B, Pazos Á. Enhanced Stress Response in 5-HT 1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation. ACS Chem Neurosci 2017; 8:2393-2401. [PMID: 28777913 DOI: 10.1021/acschemneuro.7b00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Postsynaptic 5-HT1A receptors (5-HT1AR) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT1ARs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT1ARs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT1AR overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT1AR activation might predispose to a high anxious phenotype and an impaired stress coping behavior.
Collapse
Affiliation(s)
- Fuencisla Pilar-Cuéllar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Rebeca Vidal
- Departamento
de Farmacología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Emilio Garro-Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Raquel Linge
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Elena Castro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Robert Haberzettl
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidrun Fink
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bettina Bert
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jan Brosda
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Romero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Hospital Universitario Marqués de Valdecilla, University of Cantabria-IDIVAL, School of Medicine, Department of Psychiatry, 39008 Santander, Spain
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|