1
|
Acconito C, Rovelli K, Saquella F, Balconi M. Cognitive and emotional engagement in negotiation: insights from EEG and fNIRS Hyperscanning. Exp Brain Res 2025; 243:151. [PMID: 40397160 DOI: 10.1007/s00221-025-07093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
In negotiation, individuals collaborate to achieve a shared goal and reach a mutual agreement by understanding their partner's intentions and adapting to them. Unlike most social cognition studies that investigate brain activity in individuals separately, this study employed an innovative hyperscanning approach, which is able to explore the inter-brain synchronization during negotiation. 26 students, divided into 13 dyads, participated in a negotiation decision-making task, requiring convergence on a shared course of action. The interaction was segmented offline into three phases: opener (sharing of individual opinions), central (negotiation), and final phase (shared decision). Electrophysiological (EEG delta, theta, alpha, beta and gamma bands) and hemodynamic (oxygenated-OHb and deoxygenated-HHb hemoglobin) data were collected. Higher HHb levels were observed during the central phase compared to the final phase, suggesting a relative decrease in frontal activation, potentially due to a shift in cognitive processing toward temporoparietal regions, as indicated by EEG findings. Increased delta, theta, and alpha activity was reported in the frontal area, suggesting the engagement of emotional and motivational systems as well as cortical resources for information processing. Finally, beta and gamma bands showed higher activity in the temporo-central and parieto-occipital areas, indicating the activation of perspective-taking. This study highlights how hyperscanning reveals the neural mechanisms of negotiation, where emotional, cognitive, and perspective-taking processes converge.
Collapse
Affiliation(s)
- Carlotta Acconito
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123, Milan, Italy.
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123, Milan, Italy
| | - Federica Saquella
- Faculty of Medicine, Università Degli Studi di Milano, Via Festa del Perdono, 7, 20122, Milan, Italy
| | - Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123, Milan, Italy
| |
Collapse
|
2
|
Hao X, Ma M, Meng F, Liang H, Liang C, Liu X, Zhang B, Ju Y, Liu S, Ming D. Diminished attention network activity and heightened salience-default mode transitions in generalized anxiety disorder: Evidence from resting-state EEG microstate analysis. J Affect Disord 2025; 373:227-236. [PMID: 39743145 DOI: 10.1016/j.jad.2024.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Generalized anxiety disorder (GAD) is a common anxiety disorder characterized by excessive, uncontrollable worry and physical symptoms such as difficulty concentrating and sleep disturbances. Although functional magnetic resonance imaging (fMRI) studies have reported aberrant network-level activity related to cognition and emotion in GAD, its low temporal resolution restricts its ability to capture the rapid neural activity in mental processes. EEG microstate analysis offers millisecond-resolution for tracking the dynamic changes in brain electrical activity, thereby illuminating the neurophysiological mechanisms underlying the cognitive and emotional dysfunctions in GAD. This study collected 64-channel resting-state EEG data from 28 GAD patients and 28 healthy controls (HC), identifying five microstate classes (A-E) in both groups. Results showed that GAD patients exhibited significantly lower duration (p < 0.01), occurrence (p < 0.05), and coverage (p < 0.01) of microstate class D, potentially reflecting deficits in attention-related networks. Such alterations may contribute to the impairments in attention maintenance and cognitive control. Additionally, GAD patients displayed reduced transition probabilities in A → D, B → D, C → D, and E → D (all corrected p < 0.05), but increased in C → E (corrected p < 0.05) and E → C (corrected p < 0.01). These results highlight a significant reduction in the brain's ability to transition into microstate class D, alongside overactivity in switching between the default mode network and the salience network. Such neurophysiological changes may underlie cognitive control deficits, increased spontaneous rumination, and emotional regulation challenges observed in GAD. Together, these insights provide a new perspective for understanding the neurophysiological and pathological mechanisms underlying GAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Fanyu Meng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hui Liang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Chunyu Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xiaoya Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Bo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Kelsen B, Czeszumski A, Liang SHY, Pei YC, Hung J, Chan HL, Yeh HW. Exploring foreign language anxiety and resting-state EEG alpha asymmetry. BRAIN AND LANGUAGE 2025; 261:105519. [PMID: 39709935 DOI: 10.1016/j.bandl.2024.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Anxiety experienced when interacting in a foreign language hinders communication through detrimental behavioral, cognitive, and somatic effects. Despite its impact, there is limited research on how neural asymmetry relates to foreign language anxiety (FLA). While researchers have investigated FLA through brain imaging, there remains an absence of studies examining its correlation with frontal alpha asymmetry. Understanding FLA in the context of frontal alpha asymmetry is significant because it can reveal specific neural mechanisms underlying this anxiety. We investigated the associations between listening and speaking FLA - across behavioral, cognitive, and somatic domains - and participants' resting-state electroencephalography (EEG) signals prior to verbal interactions in a foreign language. The results revealed that significantly higher right-left frontal alpha asymmetry was associated with greater reported FLA in most listening and all of the speaking domains. This study offers insight into the neural processes in connection with FLA, highlighting the significance of frontal alpha asymmetry as a potential neural marker for understanding and addressing its unique challenges.
Collapse
Affiliation(s)
- Brent Kelsen
- Language Center, National Taipei University, No. 151, University Rd., Sanxia Dist., New Taipei City 237303, Taiwan
| | - Artur Czeszumski
- Institute of Cognitive Science, Universität Osnabrück, Wachsbleiche 27, Osnabrück 49074, Germany; Department of Clinical Psychology, Free University Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, the Netherlands
| | - Sophie Hsin-Yi Liang
- Section of Child & Adolescent Psychiatry, Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan, No. 123, Dinghu Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC; School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Yu-Cheng Pei
- School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Guishan Dist., Taoyuan City 333, Taiwan, ROC; Department of Physical Medicine and Rehabilitation, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan, ROC; Graduate School of Science Design Program in Innovation for Smart Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Guishan Dist., Taoyuan City 333, Taiwan, ROC; Center of Vascularized Tissue Allograft, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - June Hung
- School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Guishan Dist., Taoyuan City 333, Taiwan, ROC; Department of Neurology, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan, ROC; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Hsiao-Lung Chan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan, ROC; Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Hsuan-Wen Yeh
- Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Guishan Dist., Taoyuan City 333, Taiwan, ROC
| |
Collapse
|
4
|
Chen Y, Zhao Y, Deng X. Mindful bridge: Brief mindfulness practices alter negative emotion transmission and cooperative performance in parent-adolescent dynamics. Appl Psychol Health Well Being 2025; 17:e70002. [PMID: 39895149 DOI: 10.1111/aphw.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
Parent-adolescent emotion transmission is crucial for adolescents' psychological development. Parental negative emotions could impair parent-adolescent interaction and relationships. Brief mindfulness practices (BMPs) are effective for improving emotional regulation and reducing negative emotions. However, few studies explored the effects of BMP on parent-adolescent negative emotion transmission. This study used the hyperscanning technique to examine the differences in the change of emotional states, cooperative performance, and interbrain synchrony (IBS) between the BMP group (20 parent-adolescent dyads) and the control rest (CR) group (20 parent-adolescent dyads) under induced parental negative emotions in cooperation interaction tasks. Results showed (1) decreases in negative emotions, hostility, and state anxiety in the BMP group after BMP, but only negative emotions decreased in the CR group after rest; (2) an increase in the success rate in the BMP group after BMP, but no change in the CR group after rest; and (3) decreases in IBS in the delta and theta bands in success feedback and increases in IBS in failure feedback in the BMP group after BMP, but no change in the CR group after rest. These findings suggest that BMP may mitigate parental negative emotion transmission to adolescents and promote their focused attitude toward cooperation.
Collapse
Affiliation(s)
- Yangdi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yanhui Zhao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Antonelli F, Bernardi F, Koul A, Novembre G, Papaleo F. Emotions in multi-brain dynamics: A promising research frontier. Neurosci Biobehav Rev 2025; 168:105965. [PMID: 39617219 DOI: 10.1016/j.neubiorev.2024.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
Emotions drive and influence social interactions. Actions and reactions driven by emotions are dynamically modulated by continuous feedback loops between all interacting subjects. In this framework, interacting brains operate as an integrated system, with neural dynamics coevolving over time. Neuronal synchronization across brains has been observed in a range of species, including humans, monkeys, bats, and mice. This inter-neural synchrony (INS) has been proposed as a potential mechanism facilitating social interaction by enabling the functional integration of multiple brains. However, the role of emotions in modulating these processes remains underexplored and warrants further investigation. Here we provide a brief overview of studies on inter-neural synchrony in humans and other species, emphasizing the critical role that emotions might play in shaping multibrain dynamics.
Collapse
Affiliation(s)
- Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Fabrizio Bernardi
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Atesh Koul
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Giacomo Novembre
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy.
| |
Collapse
|
6
|
Deng X, Hosseini S, Miyake Y, Nozawa T. Cooperativeness as a Personality Trait and Its Impact on Cooperative Behavior in Young East Asian Adults Who Synchronized in Casual Conversations. Behav Sci (Basel) 2024; 14:987. [PMID: 39594287 PMCID: PMC11590874 DOI: 10.3390/bs14110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Cooperation is essential in social life, involving collaborative efforts for mutual benefits. Individual differences in the cooperativeness trait are pivotal in these interactions. A single-group pretest-posttest design was used in this study to determine if Duchenne smiling with gaze and inter-brain synchrony (IBS) during conversation mediates the relationship between cooperativeness and cooperative behavior. The relationships among the variables were examined using mediation analysis and path analysis. We hypothesized that Duchenne smiling with gaze would mediate cooperativeness' impact on cooperative behavior, while expecting IBS in the left prefrontal region to predict cooperative behavior. The results demonstrated that cooperativeness significantly predicted Duchenne smiling with gaze and cooperative behavior; however, Duchenne smiling with gaze did not mediate the relationship between them. Additionally, IBS during conversation did not predict successive cooperative behavior. These results suggest dispositional factors like cooperativeness may play a more decisive role than momentary expressional cues or neural synchrony in naturalistic unstructured communication in shaping cooperative behavioral outcomes after the communication. The study highlights how personality traits like cooperativeness shape nonverbal communication and social interactions, implying that interventions aimed at developing cooperativeness could lead to more effective collaboration in social settings.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Sarinasadat Hosseini
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan; (X.D.); (S.H.); (Y.M.)
| | - Takayuki Nozawa
- Department of Intellectual Information Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
7
|
Kelsen B, Liang SHY. Frontal EEG alpha asymmetry predicts foreign language anxiety while speaking a foreign language. Behav Brain Res 2024; 475:115216. [PMID: 39214421 DOI: 10.1016/j.bbr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Engaging in dialog requires interlocutors to coordinate sending and receiving linguistic signals to build a discourse based upon interpretations and perceptions interconnected with a range of emotions. Conversing in a foreign language may induce emotions such as anxiety which influence the quality communication. The neural processes underpinning these interactions are crucial to understanding foreign language anxiety (FLA). Electroencephalography (EEG) studies reveal that anxiety is often displayed via hemispheric frontal alpha asymmetry (FAA). To examine the neural mechanisms underlying FLA, we collected self-reported data on the listening and speaking sections of the Second language skill specific anxiety scale (L2AS) over behavioral, cognitive, and somatic domains and recorded EEG signals during participation in word chain turn-taking activities in first (L1, Chinese) and second (L2, English) languages. Regression analysis showed FAA for the L2 condition was a significant predictor primarily of the behavioral and somatic domains on the L2AS speaking section. The results are discussed along with implications for improving communication during L2 interactions.
Collapse
Affiliation(s)
- Brent Kelsen
- Language Center, National Taipei University, New Taipei City, Taiwan, ROC
| | - Sophie Hsin-Yi Liang
- Section of Child & Adolescent Psychiatry, Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan, No. 123, Dinghu Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC; School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao, Yuan 333, Taiwan, ROC.
| |
Collapse
|
8
|
Grasso-Cladera A, Costa-Cordella S, Mattoli-Sánchez J, Vilina E, Santander V, Hiltner SE, Parada FJ. Embodied hyperscanning for studying social interaction: A scoping review of simultaneous brain and body measurements. Soc Neurosci 2024:1-17. [PMID: 39387663 DOI: 10.1080/17470919.2024.2409758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Indexed: 10/15/2024]
Abstract
We systematically investigated the application of embodied hyperscanning methodologies in social neuroscience research. Hyperscanning enables the simultaneous recording of neurophysiological and physiological signals from multiple participants. We highlight the trend toward integrating Mobile Brain/Body Imaging (MoBI) within the 4E research framework, which emphasizes the interconnectedness of brain, body, and environment. Our analysis revealed a geographic concentration of studies in the Global North, calling for global collaboration and transcultural research to balance the field. The predominant use of Magneto/Electroencephalogram (M/EEG) in these studies suggests a traditional brain-centric perspective in social neuroscience. Future research directions should focus on integrating diverse techniques to capture the dynamic interplay between brain and body functions in real-world contexts. Our review also finds a preference for tasks involving natural settings. Nevertheless, the analysis in hyperscanning studies is often limited to physiological signal synchrony between participants. This suggests a need for more holistic and complex approaches that combine inter-corporeal synchrony with intra-individual measures. We believe that the future of the neuroscience of relationships lies in embracing the complexity of cognition, integrating diverse methods and theories to enrich our grasp of human social behavior in its natural contexts.
Collapse
Affiliation(s)
| | - Stefanella Costa-Cordella
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Centro de Estudios en Psicología Clínica y Psicoterapia (CEPPS), Facultad de Psicología, Universidad Diego Portales institution, Santiago, Chile
- Instituto Milenio para la Investigación en Depresión y Personalidad (MIDAP), Santiago, Chile
| | - Josefina Mattoli-Sánchez
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Programa de Pregrado en Psicología, Facultad de Psicología. Universidad Diego Portales, Santiago, Chile
| | - Erich Vilina
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Valentina Santander
- Programa de Magíster en Neurociencia Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Shari E Hiltner
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Francisco J Parada
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
- Escuela de Diseño, Facultad de Arquitectura, Arte y Diseño, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
9
|
Li Y, Su C, Pan Y. Spontaneous movement synchrony as an exogenous source for interbrain synchronization in cooperative learning. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230155. [PMID: 39155721 PMCID: PMC11391278 DOI: 10.1098/rstb.2023.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 08/20/2024] Open
Abstract
Learning through cooperation with conspecifics-'cooperative learning'-is critical to cultural evolution and survival. Recent progress has established that interbrain synchronization (IBS) between individuals predicts success in cooperative learning. However, the likely sources of IBS during learning interactions remain poorly understood. To address this dearth of knowledge, we tested whether movement synchrony serves as an exogenous factor that drives IBS, taking an embodiment perspective. We formed dyads of individuals with varying levels of prior knowledge (high-high (HH), high-low (HL), low-low (LL) dyads) and instructed them to collaboratively analyse an ancient Chinese poem. During the task, we simultaneously recorded their brain activity using functional near-infrared spectroscopy and filmed the entire experiment to parse interpersonal movement synchrony using the computer-vision motion energy analysis. Interestingly, the homogeneous groups (HH and/or LL) exhibited stronger movement synchrony and IBS compared with the heterogeneous group. Importantly, mediation analysis revealed that spontaneous and synchronized body movements between individuals contribute to IBS, hence facilitating learning. This study therefore fills a critical gap in our understanding of how interpersonal transmission of information between individual brains, associated with behavioural entrainment, shapes social learning. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
| | - Chang Su
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University , Hangzhou 310058, People's Republic of China
| |
Collapse
|
10
|
Speer SPH, Mwilambwe-Tshilobo L, Tsoi L, Burns SM, Falk EB, Tamir DI. Hyperscanning shows friends explore and strangers converge in conversation. Nat Commun 2024; 15:7781. [PMID: 39237568 PMCID: PMC11377434 DOI: 10.1038/s41467-024-51990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
During conversation, people often endeavor to convey information in an understandable way (finding common ground) while also sharing novel or surprising information (exploring new ground). Here, we test how friends and strangers balance these two strategies to connect with each other. Using fMRI hyperscanning, we measure a preference for common ground as convergence over time and exploring new ground as divergence over time by tracking dyads' neural and linguistic trajectories over the course of semi-structured intimacy-building conversations. In our study, 60 dyads (30 friend dyads) engaged in a real-time conversation with discrete prompts and demarcated turns. Our analyses reveal that friends diverge neurally and linguistically: their neural patterns become more dissimilar over time and they explore more diverse topics. In contrast, strangers converge: neural patterns and language become more similar over time. The more a conversation between strangers resembles the exploratory conversations of friends, the more they enjoy it. Our results highlight exploring new ground as a strategy for a successful conversation.
Collapse
Affiliation(s)
| | - Laetitia Mwilambwe-Tshilobo
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
| | - Lily Tsoi
- Department of Psychology, Caldwell University, Caldwell, NJ, USA
| | - Shannon M Burns
- Department of Psychological Science, Pomona College, Claremont, CA, USA
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | - Emily B Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Wharton Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Operations, Information, and Decisions Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Diana I Tamir
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
Huang RY, Zhang X, Liang ZW, Cai L, Peng XR, Cen YS, Yu J. Intergenerational or intragenerational learning? The relationship between interpersonal neural synchrony and older adult's learning acquisition. Exp Gerontol 2024; 194:112499. [PMID: 38901772 DOI: 10.1016/j.exger.2024.112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES Lifelong learning facilitates active ageing, and intragenerational learning-the process by which older adults learn from their peers-is an effective means of achieving this goal. The present research aims to elucidate the mechanisms and differences between intergenerational and intragenerational learning models for older adults as evidenced by brain-to-brain synchrony. METHODS Fifty-six instructor-learner dyads completed a study comparing intergenerational and intragenerational learning models, as well as task difficulty. The study utilized a block puzzle task and functional near-infrared spectroscopy (fNIRS) for hyperscanning. RESULTS The instructor-learner dyads showed greater interpersonal neural synchrony (INS) and learning acquisition in the intragenerational learning model in the difficult task condition (t (54) = 3.49, p < 0.01), whereas the two learning models yielded similar results in the easy condition (t (54) = 1.96, p = 0.06). In addition, INS and self-efficacy mediated the association between learning models and learning acquisition in older adults (b = 0.14, SEM = 0.04, 95 % CI [0.01 0.16]). DISCUSSION This study is the first to provide evidence of interbrain synchrony in an investigation of the intragenerational learning model in older adults. Our findings suggest that intra-learning is as effective as traditional inter-learning and may be more effective in certain contexts, such as difficult tasks. Encouraging intra-learning in community service or educational activities can effectively mitigate the challenge of limited volunteers and enhance learning acquisition among older adults.
Collapse
Affiliation(s)
- Run-Yu Huang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xin Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Zi-Wei Liang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Lin Cai
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Xue-Rui Peng
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Yu-Shan Cen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
12
|
Riva G, Mantovani F, Wiederhold BK, Marchetti A, Gaggioli A. Psychomatics-A Multidisciplinary Framework for Understanding Artificial Minds. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2024. [PMID: 39207299 DOI: 10.1089/cyber.2024.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although large language models (LLMs) and other artificial intelligence systems demonstrate cognitive skills similar to humans, such as concept learning and language acquisition, the way they process information fundamentally differs from biological cognition. To better understand these differences, this article introduces Psychomatics, a multidisciplinary framework bridging cognitive science, linguistics, and computer science. It aims to delve deeper into the high-level functioning of LLMs, focusing specifically on how LLMs acquire, learn, remember, and use information to produce their outputs. To achieve this goal, Psychomatics will rely on a comparative methodology, starting from a theory-driven research question-is the process of language development and use different in humans and LLMs?-drawing parallels between LLMs and biological systems. Our analysis shows how LLMs can map and manipulate complex linguistic patterns in their training data. Moreover, LLMs can follow Grice's Cooperative principle to provide relevant and informative responses. However, human cognition draws from multiple sources of meaning, including experiential, emotional, and imaginative facets, which transcend mere language processing and are rooted in our social and developmental trajectories. Moreover, current LLMs lack physical embodiment, reducing their ability to make sense of the intricate interplay between perception, action, and cognition that shapes human understanding and expression. Ultimately, Psychomatics holds the potential to yield transformative insights into the nature of language, cognition, and intelligence, both artificial and biological. Moreover, by drawing parallels between LLMs and human cognitive processes, Psychomatics can inform the development of more robust and human-like artificial intelligence systems.
Collapse
Affiliation(s)
- Giuseppe Riva
- Humane Technology Lab, Catholic University of Sacred Heart, Milan, Italy
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Fabrizia Mantovani
- Department of Human Sciences for Education "Riccardo Massa," Centre for Studies in Communication Sciences "Luigi Anolli" (CESCOM), University of Milano-Bicocca, Milan, Italy
| | - Brenda K Wiederhold
- Virtual Reality Medical Center, La Jolla, California, USA
- Interactive Media Institute, San Diego, California, USA
| | - Antonella Marchetti
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy
- Research Unit on Theory of Mind, Catholic University of Sacred Heart, Milan, Italy
| | - Andrea Gaggioli
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Research Center in Communication Psychology (PSICOM), Catholic University of Sacred Heart, Milan, Italy
| |
Collapse
|
13
|
Li S, Yu L, Gan X, Hou Y, Pan Y, Luo Y, Hu Y. The acquired dyad inclination and decreased interpersonal brain communication in the pursuit of collective benefit. Neuroimage 2024; 297:120700. [PMID: 38942103 DOI: 10.1016/j.neuroimage.2024.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
People perform better collectively than individually, a phenomenon known as the collective benefit. To pursue the benefit, they may learn from previous behaviors, come to know whose initial opinion should be valued, and develop the inclination to take it as the collective one. Such learning may affect interpersonal brain communication. To test these hypotheses, this study recruited participant dyads to conduct a perceptual task on which they made individual decisions first and then the collective one. The enhanced interpersonal brain synchronization (IBS) between participants was explored when individual decisions were in disagreement vs. agreement. Computational modeling revealed that participant dyads developed the dyad inclination of taking the higher-able participants', not the lower-able ones' decisions as their collective ones. Brain analyses unveiled the enhanced IBS at frontopolar areas, premotor areas, supramarginal gyri, and right temporal-parietal junctions. The premotor IBS correlated negatively with dyad inclination and collective benefit in the absence of correction. The Granger causality analyses further supported the negative relation of dyad inclination with inter-brain communication. This study highlights that dyads learn to weigh individuals' decisions, resulting in dyad inclinations, and explores associated inter-brain communication, offering insights into the dynamics of collective decision-making.
Collapse
Affiliation(s)
- Shuyi Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Linwei Yu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Xiaorong Gan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Yingying Hou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China.
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
14
|
Li Z, Hong B, Nolte G, Engel AK, Zhang D. Speaker-listener neural coupling correlates with semantic and acoustic features of naturalistic speech. Soc Cogn Affect Neurosci 2024; 19:nsae051. [PMID: 39012092 PMCID: PMC11296674 DOI: 10.1093/scan/nsae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024] Open
Abstract
Recent research has extensively reported the phenomenon of inter-brain neural coupling between speakers and listeners during speech communication. Yet, the specific speech processes underlying this neural coupling remain elusive. To bridge this gap, this study estimated the correlation between the temporal dynamics of speaker-listener neural coupling with speech features, utilizing two inter-brain datasets accounting for different noise levels and listener's language experiences (native vs. non-native). We first derived time-varying speaker-listener neural coupling, extracted acoustic feature (envelope) and semantic features (entropy and surprisal) from speech, and then explored their correlational relationship. Our findings reveal that in clear conditions, speaker-listener neural coupling correlates with semantic features. However, as noise increases, this correlation is only significant for native listeners. For non-native listeners, neural coupling correlates predominantly with acoustic feature rather than semantic features. These results revealed how speaker-listener neural coupling is associated with the acoustic and semantic features under various scenarios, enriching our understanding of the inter-brain neural mechanisms during natural speech communication. We therefore advocate for more attention on the dynamic nature of speaker-listener neural coupling and its modeling with multilevel speech features.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Dan Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Zhou X, Wong PCM. Hyperscanning to explore social interaction among autistic minds. Neurosci Biobehav Rev 2024; 163:105773. [PMID: 38889594 DOI: 10.1016/j.neubiorev.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hyperscanning - the monitoring of brain activity of two or more people simultaneously - has emerged to be a popular tool for assessing neural features of social interaction. This perspective article focuses on hyperscanning studies that use functional near-infrared spectroscopy (fNIRS), a technique that is very conducive to studies requiring naturalistic paradigms. In particular, we are interested in neural features that are related to social interaction deficits among individuals with autism spectrum disorders (ASD). This population has received relatively little attention in research using neuroimaging hyperscanning techniques, compared to neurotypical individuals. The study is outlined as follows. First, we summarize the findings about brain-behavior connections related to autism from previously published fNIRS hyperscanning studies. Then, we propose a preliminary theoretical framework of inter-brain coherence (IBC) with testable hypotheses concerning this population. Finally, we provide two examples of areas of inquiry in which studies could be particularly relevant for social-emotional/behavioral development for autistic children, focusing on intergenerational relationships in family units and learning in classroom settings in mainstream schools.
Collapse
Affiliation(s)
- Xin Zhou
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Patrick C M Wong
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Linguistics and Modern Languages, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
16
|
Nagornova ZV, Shemyakina NV. Competition during verbal creative processes influences on ERS/ERD. Soc Neurosci 2024; 19:296-306. [PMID: 39442547 DOI: 10.1080/17470919.2024.2419655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Humans are social creatures, and many tasks in our daily lives are solved together. The two main forms of social interaction in problem solving could be defined as competition and cooperation. In our study, we compared the ERS/ERD when performing a creative task (Alternative Uses Test, AUT) and a control task ("naming the objects from the presented category") under competitive conditions in dyads (22 dyads, m-m, f-f, 18-23 years old) compared to the performance of tasks individually. The number of answers given by subjects under competitive conditions was significantly lower than during the execution of the tasks individually. The solving of the creative task in competition versus individual performance was accompanied by EEG synchronization (9-30 hz) clusters: 140-1220 ms and 900-1780 ms after stimulus presentation; 13.5-30 hz (1800-1980 ms), reflecting the creative thinking mode, and expected cognitive, emotional answers' assessment. The control task under competitive conditions was accompanied by pronounced synchronization of low frequencies in the frontal areas (2-7 hz, 0-1980 ms), due to a greater working memory load; synchronization clusters in broadband (10-30 hz, 100-320 ms, 400-860 ms) and in the beta EEG band (17-30 hz, 1140-1980 ms). The competitive conditions significantly modulated the brain activity underlying creative and non-creative cognitive task performance, and resulted in greater induced EEG synchronization.
Collapse
Affiliation(s)
- Zhanna V Nagornova
- Laboratory of Comparative Ecological and Physiological Researches, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia V Shemyakina
- Laboratory of Comparative Ecological and Physiological Researches, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
17
|
Carollo A, Esposito G. Hyperscanning literature after two decades of neuroscientific research: A scientometric review. Neuroscience 2024; 551:345-354. [PMID: 38866073 DOI: 10.1016/j.neuroscience.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Hyperscanning, a neuroimaging approach introduced in 2002 for simultaneously recording the brain activity of multiple participants, has significantly contributed to our understanding of social interactions. Nevertheless, the existing literature requires systematic organization to advance our knowledge. This study, after two decades of hyperscanning research, aims to identify the primary thematic domains and the most influential documents in the field. We conducted a scientometric analysis to examine co-citation patterns quantitatively, using a sample of 548 documents retrieved from Scopus and their 32,022 cited references. Our analysis revealed ten major thematic domains in hyperscanning research, with the most impactful document authored by Czeszumski and colleagues in 2020. Notably, while hyperscanning was initially developed for functional magnetic resonance imaging (fMRI), our findings indicate a substantial influence of research conducted using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). The introduction of fNIRS and advancements in EEG methods have enabled the implementation of more ecologically valid experiments for investigating social interactions. The study also highlights the need for more research that combines multi-brain neural stimulation with neuroimaging techniques to understand the causal role played by interpersonal neural synchrony in social interactions.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| |
Collapse
|
18
|
Wang LS, Chang YC, Liou S, Weng MH, Chen DY, Kung CC. When "more for others, less for self" leads to co-benefits: A tri-MRI dyad-hyperscanning study. Psychophysiology 2024; 61:e14560. [PMID: 38469655 DOI: 10.1111/psyp.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Unselfishness is admired, especially when collaborations between groups of various scales are urgently needed. However, its neural mechanisms remain elusive. In a tri-MRI dyad-hyperscanning experiment involving 26 groups, each containing 4 participants as two rotating pairs in a coordination game, we sought to achieve reciprocity, or "winning in turn by the two interacting players," as the precursor to unselfishness. Due to its critical role in social processing, the right temporal-parietal junction (rTPJ) was the seed for both time domain (connectivity) and frequency domain (i.e., coherence) analyses. For the former, negative connectivity between the rTPJ and the mentalizing network areas (e.g., the right inferior parietal lobule, rIPL) was identified, and such connectivity was further negatively correlated with the individual's final gain, supporting our task design that "rewarded" the reciprocal participants. For the latter, cerebral coherences of the rTPJs emerged between the interacting pairs (i.e., within-group interacting pairs), and the coupling between the rTPJ and the right superior temporal gyrus (rSTG) between the players who were not interacting with each other (i.e., within-group noninteracting pairs). These coherences reinforce the hypotheses that the rTPJ-rTPJ coupling tracks the collaboration processes and the rTPJ-rSTG coupling for the emergence of decontextualized shared meaning. Our results underpin two social roles (inferring others' behavior and interpreting social outcomes) subserved by the rTPJ-related network and highlight its interaction with other-self/other-concerning brain areas in reaching co-benefits among unselfish players.
Collapse
Affiliation(s)
- Le-Si Wang
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Yi-Cing Chang
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Shyhnan Liou
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Ming-Hung Weng
- Department of Economics, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Der-Yow Chen
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| |
Collapse
|
19
|
Lei X, Xu J, Wang A, Hu N, Tong S, Guo X. Gamma-band inter-brain synchrony during shared emotional stimulation in romantic relationship. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039848 DOI: 10.1109/embc53108.2024.10782266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Shared emotional stimulation contributes to fostering robust interpersonal relationships such as romantic relationship. While romantic couples share the emotional states of their partner through empathy, the neural processing and the effect of empathy during shared emotional stimulation remain unclear. Utilizing a naturalistic co-viewing paradigm and electroencephalography (EEG) hyperscanning technique, we investigated the inter-brain synchrony in romantic couples while watching a positive movie clip. Compared to co-viewing a scrambled movie clip, couples exhibited more and stronger inter-brain connections in the gamma band when co-viewing the intact comedy clip, especially those connected couple's frontal and temporoparietal lobes. Correlation analysis further revealed that the strength of the inter-temporoparietal connection of romantic couples was significantly and positively correlated with the empathy ability of females. These findings provide electrophysiological insights into the neural synchrony induced by shared positive emotional content and the role of empathy in romantic relationship.
Collapse
|
20
|
Bonnaire J, Dumas G, Cassell J. Bringing together multimodal and multilevel approaches to study the emergence of social bonds between children and improve social AI. FRONTIERS IN NEUROERGONOMICS 2024; 5:1290256. [PMID: 38827377 PMCID: PMC11140154 DOI: 10.3389/fnrgo.2024.1290256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
This protocol paper outlines an innovative multimodal and multilevel approach to studying the emergence and evolution of how children build social bonds with their peers, and its potential application to improving social artificial intelligence (AI). We detail a unique hyperscanning experimental framework utilizing functional near-infrared spectroscopy (fNIRS) to observe inter-brain synchrony in child dyads during collaborative tasks and social interactions. Our proposed longitudinal study spans middle childhood, aiming to capture the dynamic development of social connections and cognitive engagement in naturalistic settings. To do so we bring together four kinds of data: the multimodal conversational behaviors that dyads of children engage in, evidence of their state of interpersonal rapport, collaborative performance on educational tasks, and inter-brain synchrony. Preliminary pilot data provide foundational support for our approach, indicating promising directions for identifying neural patterns associated with productive social interactions. The planned research will explore the neural correlates of social bond formation, informing the creation of a virtual peer learning partner in the field of Social Neuroergonomics. This protocol promises significant contributions to understanding the neural basis of social connectivity in children, while also offering a blueprint for designing empathetic and effective social AI tools, particularly for educational contexts.
Collapse
Affiliation(s)
| | - Guillaume Dumas
- Research Center of the CHU Sainte-Justine, Department of Psychiatry, University of Montréal, Montreal, QC, Canada
- Mila–Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Justine Cassell
- Inria Paris Centre, Paris, France
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Zheltyakova M, Korotkov A, Cherednichenko D, Didur M, Kireev M. To lie or to tell the truth? The influence of processing the opponent's feedback on the forthcoming choice. Front Psychol 2024; 15:1275884. [PMID: 38784609 PMCID: PMC11112074 DOI: 10.3389/fpsyg.2024.1275884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction The brain mechanisms of deceptive behavior are relatively well studied, and the key brain regions involved in its processing were established. At the same time, the brain mechanisms underlying the processes of preparation for deception are less known. Methods We studied BOLD-signal changes during the presentation of the opponent's feedback to a previous deceptive or honest action during the computer game. The goal of the game was to mislead the opponent either by means of deception or by means of telling the truth. Results As a result, it was shown that several brain regions that were previously demonstrated as involved in deception execution, such as the left anterior cingulate cortex and anterior insula, also underlie processes related to deception preparation. Discussion The results obtained also allowed us to suggest that brain regions responsible for performance monitoring, intention assessment, suppression of non-selected solutions, and reward processing could be involved in shaping future action selection and preparation for deception. By shedding light on the brain mechanisms underlying deception, our study contributes to a deeper understanding of this complex cognitive process. Furthermore, it emphasizes the significance of exploring brain mechanisms governing the choice between deception and truth at various stages of decision-making.
Collapse
Affiliation(s)
| | | | | | | | - Maxim Kireev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| |
Collapse
|
22
|
Réveillé C, Vergotte G, Perrey S, Bosselut G. Using interbrain synchrony to study teamwork: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105593. [PMID: 38373643 DOI: 10.1016/j.neubiorev.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
It has been proposed that interbrain synchrony (IBS) may help to elucidate the neural mechanisms underpinning teamwork. As hyperscanning studies have provided abundant findings on IBS in team environments, the current review aims to synthesize the findings of hyperscanning studies in a way that is relevant to the teamwork research. A systematic review was conducted. Included studies were classified according to the IPO (i.e. input, process, output) model of teamwork. Three multi-level meta-analyses were performed to quantify the associations between IBS and the three IPO variables. The methodology followed PRISMA guidelines and the protocol was pre-registered (https://osf.io/7h8sa/). Of the 229 studies, 41 were included, representing 1326 teams. The three meta-analyses found statistically significant positive effects, indicating a positive association between IBS and the three IPO teamwork variables. This study provides evidence that IBS is a relevant measure of the teamwork process and argues for the continued use of IBS to study teamwork.
Collapse
Affiliation(s)
- Coralie Réveillé
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France.
| | - Grégoire Vergotte
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Grégoire Bosselut
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| |
Collapse
|
23
|
Li Z, Zhang D. How does the human brain process noisy speech in real life? Insights from the second-person neuroscience perspective. Cogn Neurodyn 2024; 18:371-382. [PMID: 38699619 PMCID: PMC11061069 DOI: 10.1007/s11571-022-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Comprehending speech with the existence of background noise is of great importance for human life. In the past decades, a large number of psychological, cognitive and neuroscientific research has explored the neurocognitive mechanisms of speech-in-noise comprehension. However, as limited by the low ecological validity of the speech stimuli and the experimental paradigm, as well as the inadequate attention on the high-order linguistic and extralinguistic processes, there remains much unknown about how the brain processes noisy speech in real-life scenarios. A recently emerging approach, i.e., the second-person neuroscience approach, provides a novel conceptual framework. It measures both of the speaker's and the listener's neural activities, and estimates the speaker-listener neural coupling with regarding of the speaker's production-related neural activity as a standardized reference. The second-person approach not only promotes the use of naturalistic speech but also allows for free communication between speaker and listener as in a close-to-life context. In this review, we first briefly review the previous discoveries about how the brain processes speech in noise; then, we introduce the principles and advantages of the second-person neuroscience approach and discuss its implications to unravel the linguistic and extralinguistic processes during speech-in-noise comprehension; finally, we conclude by proposing some critical issues and calls for more research interests in the second-person approach, which would further extend the present knowledge about how people comprehend speech in noise.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, 100084 China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084 China
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, 100084 China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
24
|
De Felice S, Hakim U, Gunasekara N, Pinti P, Tachtsidis I, Hamilton A. Having a chat and then watching a movie: how social interaction synchronises our brains during co-watching. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae006. [PMID: 38707237 PMCID: PMC11069416 DOI: 10.1093/oons/kvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
How does co-presence change our neural experience of the world? Can a conversation change how we synchronise with our partner during later events? Using fNIRS hyperscanning, we measured brain activity from 27 pairs of familiar adults simultaneously over frontal, temporal and parietal regions bilaterally, as they co-watched two different episodes of a short cartoon. In-between the two episodes, each pair engaged in a face-to-face conversation on topics unrelated to the cartoon episodes. Brain synchrony was calculated using wavelet transform coherence and computed separately for real pairs and shuffled pseudo) pairs. Findings reveal that real pairs showed increased brain synchrony over right Dorso-Lateral Pre-Frontal cortex (DLPFC) and right Superior Parietal Lobe (SPL), compared to pseudo pairs (who had never seen each other and watched the same movie at different times; uncorrected for multiple comparisons). In addition, co-watching after a conversation was associated with greater synchrony over right TPJ compared to co-watching before a conversation, and this effect was significantly higher in real pairs (who engaged in conversation with each other) compared to pseudo pairs (who had a conversation with someone else; uncorrected for multiple comparisons). The present study has shed the light on the role of social interaction in modulating brain synchrony across people not just during social interaction, but even for subsequent non-social activities. These results have implications in the growing domain of naturalistic neuroimaging and interactive neuroscience.
Collapse
Affiliation(s)
- S De Felice
- Department of Psychology, University of Cambridge, 2 Free School Lane, CB2 3RF, UK
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| | - U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - N Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, 33 Torrington place, London WC1E 7JL, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| |
Collapse
|
25
|
Anada R, Watanabe H, Shimojo A, Shiraishi H, Yokosawa K. Brain activity supporting alternating speech for semantic words: simultaneous magnetoencephalographic recording. Cereb Cortex 2024; 34:bhae031. [PMID: 38342686 DOI: 10.1093/cercor/bhae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
Communication, especially conversation, is essential for human social life. Many previous studies have examined the neuroscientific underpinnings of conversation, i.e. language comprehension and speech production. However, conversation inherently involves two or more people, and unless two people actually interact with one another, the nature of the conversation cannot be truly revealed. Therefore, in this study, we used two magnetoencephalographs that were connected together, and simultaneously recorded brain activity while two people took turns speaking in a word association/alphabet completion task. We compared the amplitude modulation of the alpha- and beta-band rhythms within each of the 62 brain regions under semantic (word association; less predictable) and non-semantic (alphabet completion; more predictable) conditions. We found that the amplitudes of the rhythms were significantly different between conditions in a wide range of brain regions. Additionally, significant differences were observed in nearly the same group of brain regions after versus before each utterance, indicating that a wide range of brain areas is involved in predicting a conversation partner's next utterance. This result supports the idea that mentalizing, e.g. predicting another person's speech, plays an important role in conversation, and suggests that the neural network implicated in mentalizing extends over a wide range of brain regions.
Collapse
Affiliation(s)
- Risa Anada
- Graduate School of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo 060-0812, Hokkaido, Japan
| | - Hayato Watanabe
- Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo 060-0812, Hokkaido, Japan
- Department of Child Studies, Toyooka Junior College, Tobera 160, Toyooka 668-8580, Hyogo, Japan
| | - Atsushi Shimojo
- Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo 060-0812, Hokkaido, Japan
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Hokkaido, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, N-14, W-5, Kita-ku, Sapporo 060-8648, Hokkaido, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, N-12, W-5, Kita-ku, Sapporo 060-0812, Hokkaido, Japan
| |
Collapse
|
26
|
Močilnik V, Rutar Gorišek V, Sajovic J, Pretnar Oblak J, Drevenšek G, Rogelj P. Integrating EEG and Machine Learning to Analyze Brain Changes during the Rehabilitation of Broca's Aphasia. SENSORS (BASEL, SWITZERLAND) 2024; 24:329. [PMID: 38257423 PMCID: PMC10818958 DOI: 10.3390/s24020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
The fusion of electroencephalography (EEG) with machine learning is transforming rehabilitation. Our study introduces a neural network model proficient in distinguishing pre- and post-rehabilitation states in patients with Broca's aphasia, based on brain connectivity metrics derived from EEG recordings during verbal and spatial working memory tasks. The Granger causality (GC), phase-locking value (PLV), weighted phase-lag index (wPLI), mutual information (MI), and complex Pearson correlation coefficient (CPCC) across the delta, theta, and low- and high-gamma bands were used (excluding GC, which spanned the entire frequency spectrum). Across eight participants, employing leave-one-out validation for each, we evaluated the intersubject prediction accuracy across all connectivity methods and frequency bands. GC, MI theta, and PLV low-gamma emerged as the top performers, achieving 89.4%, 85.8%, and 82.7% accuracy in classifying verbal working memory task data. Intriguingly, measures designed to eliminate volume conduction exhibited the poorest performance in predicting rehabilitation-induced brain changes. This observation, coupled with variations in model performance across frequency bands, implies that different connectivity measures capture distinct brain processes involved in rehabilitation. The results of this paper contribute to current knowledge by presenting a clear strategy of utilizing limited data to achieve valid and meaningful results of machine learning on post-stroke rehabilitation EEG data, and they show that the differences in classification accuracy likely reflect distinct brain processes underlying rehabilitation after stroke.
Collapse
Affiliation(s)
- Vanesa Močilnik
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
| | | | - Jakob Sajovic
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
- University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Pretnar Oblak
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
- University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Gorazd Drevenšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia (J.P.O.); (G.D.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia;
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia;
| |
Collapse
|
27
|
Moffat R, Casale CE, Cross ES. Mobile fNIRS for exploring inter-brain synchrony across generations and time. FRONTIERS IN NEUROERGONOMICS 2024; 4:1260738. [PMID: 38234472 PMCID: PMC10790948 DOI: 10.3389/fnrgo.2023.1260738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
While still relatively rare, longitudinal hyperscanning studies are exceptionally valuable for documenting changes in inter-brain synchrony, which may in turn underpin how behaviors develop and evolve in social settings. The generalizability and ecological validity of this experimental approach hinges on the selected imaging technique being mobile-a requirement met by functional near-infrared spectroscopy (fNIRS). fNIRS has most frequently been used to examine the development of inter-brain synchrony and behavior in child-parent dyads. In this position paper, we contend that dedicating attention to longitudinal and intergenerational hyperscanning stands to benefit the fields of social and cognitive neuroscience more broadly. We argue that this approach is particularly relevant for understanding the neural mechanisms underpinning intergenerational social dynamics, and potentially for benchmarking progress in psychological and social interventions, many of which are situated in intergenerational contexts. In line with our position, we highlight areas of intergenerational research that stand to be enhanced by longitudinal hyperscanning with mobile devices, describe challenges that may arise from measuring across generations in the real world, and offer potential solutions.
Collapse
Affiliation(s)
- Ryssa Moffat
- Social Brain Sciences, ETH Zurich, Zurich, Switzerland
| | - Courtney E. Casale
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| | | |
Collapse
|
28
|
Liu Z, Lu K, Hao N, Wang Y. Cognitive Reappraisal and Expressive Suppression Evoke Distinct Neural Connections during Interpersonal Emotion Regulation. J Neurosci 2023; 43:8456-8471. [PMID: 37852791 PMCID: PMC10711701 DOI: 10.1523/jneurosci.0954-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Interpersonal emotion regulation is the dynamic process where the regulator aims to change the target's emotional state, which is presumed to engage three neural systems: cognitive control (i.e., dorsal and ventral lateral PFC, etc.), empathy/social cognition (i.e., dorsal premotor regions, temporal-parietal junction, etc.), and affective response (i.e., insula, amygdala, etc.). This study aimed to identify the underlying neural correlate (especially the interpersonal one), of interpersonal emotion regulation based on two typical strategies (cognitive appraisal, expressive suppression). Thirty-four female dyads (friends) were randomly assigned into two strategy groups, with one assigned as the target and the other as the regulator to downregulate the target's negative emotions using two strategies. A functional near-infrared spectroscopy system was used to simultaneously measure participants' neural activity. Results showed that these two strategies could successfully downregulate the targets' negative emotions. Both strategies evoked intrapersonal and interpersonal neural couplings between the cognitive control, social cognition, and mirror neuron systems (e.g., PFC, temporal-parietal junction, premotor cortex, etc.), whereas cognitive reappraisal (vs expressive suppression) evoked a broader pattern. Further, cognitive reappraisal involved increased interpersonal brain synchronization between the prefrontal and temporal areas at the sharing stage, whereas expressive suppression evoked increased interpersonal brain synchronization associated with the PFC at the regulation stage. These findings indicate that intrapersonal and interpersonal neural couplings associated with regions within the abovementioned systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing, underlie interpersonal emotion regulation based on cognitive reappraisal or expressive suppression.SIGNIFICANCE STATEMENT As significant as intrapersonal emotion regulation, interpersonal emotion regulation subserves parent-child, couple, and leader-follower relationships. Despite enormous growth in research on intrapersonal emotion regulation, the field lacks insight into the neural correlates underpinning interpersonal emotion regulation. This study aimed to probe the underlying neural correlates of interpersonal emotion regulation using a multibrain neuroimaging (i.e., hyperscanning) based on functional near-infrared spectroscopy. Results showed that both cognitive reappraisal and expressive suppression strategies successfully downregulated the target's negative emotions. More importantly, they evoked intrapersonal and interpersonal neural couplings associated with regions within the cognitive control, social cognition, and mirror neuron systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing. These findings deepen our understanding of the neural correlates underpinning interpersonal emotion regulation.
Collapse
Affiliation(s)
- Zixin Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Yanmei Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| |
Collapse
|
29
|
Arioli M, Segatta C, Papagno C, Tettamanti M, Cattaneo Z. Social perception in deaf individuals: A meta-analysis of neuroimaging studies. Hum Brain Mapp 2023; 44:5402-5415. [PMID: 37609693 PMCID: PMC10543108 DOI: 10.1002/hbm.26444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
Deaf individuals may report difficulties in social interactions. However, whether these difficulties depend on deafness affecting social brain circuits is controversial. Here, we report the first meta-analysis comparing brain activations of hearing and (prelingually) deaf individuals during social perception. Our findings showed that deafness does not impact on the functional mechanisms supporting social perception. Indeed, both deaf and hearing control participants recruited regions of the action observation network during performance of different social tasks employing visual stimuli, and including biological motion perception, face identification, action observation, viewing, identification and memory for signs and lip reading. Moreover, we found increased recruitment of the superior-middle temporal cortex in deaf individuals compared with hearing participants, suggesting a preserved and augmented function during social communication based on signs and lip movements. Overall, our meta-analysis suggests that social difficulties experienced by deaf individuals are unlikely to be associated with brain alterations but may rather depend on non-supportive environments.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Human and Social SciencesUniversity of BergamoBergamoItaly
| | - Cecilia Segatta
- Department of Human and Social SciencesUniversity of BergamoBergamoItaly
| | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC)University of TrentoTrentoItaly
| | | | - Zaira Cattaneo
- Department of Human and Social SciencesUniversity of BergamoBergamoItaly
- IRCCS Mondino FoundationPaviaItaly
| |
Collapse
|
30
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Yang M, Li X, Sang B, Deng X. Age differences in interbrain synchronization during peer cooperation: an EEG hyperscanning study. Cereb Cortex 2023; 33:10614-10623. [PMID: 37615349 DOI: 10.1093/cercor/bhad308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Healthy peer relationships could provide emotional and social support for adolescents experiencing dramatic physical and environmental changes. Examining age differences in cognitive neural processing during peer interaction provides insight into adolescent interpersonal contact and "social brain" development. The present study compared the age differences between adolescents and adults by examining the behavior and interbrain synchronization of pairs in a cooperative computer game task. 32 pairs of adolescents and 31 pairs of adults were recruited as participants. The reaction times and interbrain synchronization of the participants were measured. The results revealed that interbrain synchronization activation following the onset of the "ready signal" was primarily detected in low-frequency bands such as delta and theta. Adolescent pairs' interbrain synchronization activations were significantly higher than those of adult pairs in the anterior and central brain regions, such as the frontal, frontal-central, and parietal lobes. Correlation analysis indicated a positive correlation between occipital region interbrain synchronization and behavioral performance. The findings provide behavioral and neurophysiological evidence for the characteristics of adolescent interpersonal cognitive processing and point to the significance of low-frequency interbrain synchronization in interpersonal coordination.
Collapse
Affiliation(s)
- Meng Yang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinqi Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Biao Sang
- Lab for Educational Big Data and Policymaking, Shanghai Academy of Educational Sciences, Shanghai 200032, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
32
|
Mazzini S, Holler J, Drijvers L. Studying naturalistic human communication using dual-EEG and audio-visual recordings. STAR Protoc 2023; 4:102370. [PMID: 37421617 PMCID: PMC10511849 DOI: 10.1016/j.xpro.2023.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 07/10/2023] Open
Abstract
We present a protocol to study naturalistic human communication using dual-electroencephalography (EEG) and audio-visual recordings. We describe preparatory steps for data collection including setup preparation, experiment design, and piloting. We then describe the data collection process in detail which consists of participant recruitment, experiment room preparation, and data collection. We also outline the kinds of research questions that can be addressed with the current protocol, including several analysis possibilities, from conversational to advanced time-frequency analyses. For complete details on the use and execution of this protocol, please refer to Drijvers and Holler (2022).1.
Collapse
Affiliation(s)
- Sara Mazzini
- The Communicative Brain, Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525XD, the Netherlands.
| | - Judith Holler
- Communication in Social Interaction, Max Planck Institute for Psycholinguistics, Nijmegen 6525XD, the Netherlands; Communication in Social Interaction, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525GD, the Netherlands
| | - Linda Drijvers
- The Communicative Brain, Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525XD, the Netherlands; The Communicative Brain, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525GD, the Netherlands.
| |
Collapse
|
33
|
Liu J, Zhang R, Xie E, Lin Y, Chen D, Liu Y, Li K, Chen M, Li Y, Wang G, Li X. Shared intentionality modulates interpersonal neural synchronization at the establishment of communication system. Commun Biol 2023; 6:832. [PMID: 37563301 PMCID: PMC10415255 DOI: 10.1038/s42003-023-05197-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Whether and how shared intentionality (SI) influences the establishment of a novel interpersonal communication system is poorly understood. To investigate this issue, we designed a coordinating symbolic communication game (CSCG) and applied behavioral, functional near-infrared spectroscopy (fNIRS)-based hyperscanning, and hyper-transcranial alternating current stimulation (hyper-tACS) methods. Here we show that SI is a strong contributor to communicative accuracy. Moreover, SI, communicative accuracy, and interpersonal neural synchronization (INS) in the right superior temporal gyrus (rSTG) are higher when dyads successfully establish a novel communication system. Furthermore, the SI influences communicative accuracy by increasing INS. Additionally, using time series and long short-term memory neural network analyses, we find that the INS can predict communicative accuracy at the early formation stage of the communication system. Importantly, the INS partially mediates the relationship between the SI and the communicative accuracy only at the formation stage of the communication system. In contrast, when the communication system is established, SI and INS no longer contribute to communicative accuracy. Finally, the hyper-tACS experiment confirms that INS has a causal effect on communicative accuracy. These findings suggest a behavioral and neural mechanism, subserved by the SI and INS, that underlies the establishment of a novel interpersonal communication system.
Collapse
Affiliation(s)
- Jieqiong Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Paediatric Translational Medicine Institute, Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruqian Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Enhui Xie
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yixuan Lin
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Danni Chen
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yang Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Keshuang Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Mei Chen
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yangzhuo Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guanghai Wang
- Paediatric Translational Medicine Institute, Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| |
Collapse
|
34
|
Balconi M, Allegretta RA, Angioletti L. Autonomic synchrony induced by hyperscanning interoception during interpersonal synchronization tasks. Front Hum Neurosci 2023; 17:1200750. [PMID: 37545591 PMCID: PMC10400890 DOI: 10.3389/fnhum.2023.1200750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
According to previous research, people influence each other's emotional states during social interactions via resonance mechanisms and coordinated autonomic rhythms. However, no previous studies tested if the manipulation of the interoceptive focus (focused attention on the breath for a given time interval) in hyperscanning during synchronized tasks may have an impact on autonomic synchrony. Thus, this study aims to assess the psychophysiological synchrony through autonomic measures recording during dyadic linguistic and motor synchronization tasks performed in two distinct interoceptive conditions: the focus and no focus on the breath condition. 26 participants coupled in 13 dyads were recruited. Individuals' autonomic measures [electrodermal: skin conductance level and response (SCL, SCR); cardiovascular indices: heart rate (HR) and HR variability (HRV)] was continuously monitored during the experiment and correlational coefficients were computed to analyze dyads physiological synchrony. Inter-subject analysis revealed higher synchrony for HR, HRV, SCL, and SCR values in the focus compared to no focus condition during the motor synchronization task and in general more for motor than linguistic task. Higher synchrony was also found for HR, SCL, and SCR values during focus than no focus condition in linguistic task. Overall, evidence suggests that the manipulation of the interoceptive focus has an impact on the autonomic synchrony during distinct synchronization tasks and for different autonomic measures. Such findings encourage the use of hyperscanning paradigms to assess the effect of breath awareness practices on autonomic synchrony in ecological and real-time conditions involving synchronization.
Collapse
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Roberta A. Allegretta
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
35
|
Feng Y, Liang Y, Zhang Y, Duan X, Zhang J, Yan H. Divergent interpersonal neural synchronization patterns in the first, second language and interlingual communication. Sci Rep 2023; 13:8706. [PMID: 37248270 DOI: 10.1038/s41598-023-35923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
An accumulating number of studies have highlighted the importance of interpersonal neural synchronization (INS) between interlocutors in successful verbal communications. The opportunities for communication across different language contexts are rapidly expanding, thanks to the frequent interactions among people all over the world. However, whether the INS changes in different language contexts and how language choice affects the INS remain scarcely explored. The study recruited twenty pairs of participants to communicate in the first language (L1), second language (L2) and interlingual contexts. Using functional near-infrared spectroscopy (fNIRS), we examined the neural activities of interlocutors and analyzed their wavelet transform coherence to assess the INS of dyads. Results showed that as compared to the resting state, stronger INS was observed at the left inferior temporal gyrus, middle temporal gyrus, pre-motor and supplementary motor cortex, dorsolateral prefrontal cortex, and inferior frontal gyrus in L1; at the left middle temporal gyrus, superior temporal gyrus, and inferior frontal gyrus in L2; at the left inferior temporal gyrus and inferior frontal gyrus in interlingual context. Additionally, INS at the left inferior frontal gyrus was significantly stronger in L2 than in L1. These findings reveal the differences of the INS in different language contexts and confirm the importance of language choice for the INS changes.
Collapse
Affiliation(s)
- Yanqin Feng
- School of Foreign Languages, Xidian University, Xi'an, China
| | - Yuan Liang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Yi Zhang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Xu Duan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Jie Zhang
- Department of Radiation Medicine, Air Force Military Medical University, Xi'an, China.
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China.
| |
Collapse
|
36
|
Kuhlen AK, Abdel Rahman R. Beyond speaking: neurocognitive perspectives on language production in social interaction. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210483. [PMID: 36871592 PMCID: PMC9985974 DOI: 10.1098/rstb.2021.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/16/2022] [Indexed: 03/07/2023] Open
Abstract
The human faculty to speak has evolved, so has been argued, for communicating with others and for engaging in social interactions. Hence the human cognitive system should be equipped to address the demands that social interaction places on the language production system. These demands include the need to coordinate speaking with listening, the need to integrate own (verbal) actions with the interlocutor's actions, and the need to adapt language flexibly to the interlocutor and the social context. In order to meet these demands, core processes of language production are supported by cognitive processes that enable interpersonal coordination and social cognition. To fully understand the cognitive architecture and its neural implementation enabling humans to speak in social interaction, our understanding of how humans produce language needs to be connected to our understanding of how humans gain insights into other people's mental states and coordinate in social interaction. This article reviews theories and neurocognitive experiments that make this connection and can contribute to advancing our understanding of speaking in social interaction. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Anna K. Kuhlen
- Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Rasha Abdel Rahman
- Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
37
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
38
|
Balconi M, Angioletti L. Dyadic inter-brain EEG coherence induced by interoceptive hyperscanning. Sci Rep 2023; 13:4344. [PMID: 36927763 PMCID: PMC10020471 DOI: 10.1038/s41598-023-31494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Previous single-brain studies suggested interoception plays a role in interpersonal synchronization. The aim of the present study was to assess the electrophysiological intersubject coherence through electrophysiological (EEG) hyperscanning recording during simple dyadic synchronization tasks when the participants focused on their breath. To this aim, the neural activity of 15 dyads of participants was collected during the execution of a cognitive and motor synchronization task in two distinct IA conditions: focus and no focus on the breath condition. Individuals' EEG frequency bands were recorded through EEG hyperscanning and coherence analysis was performed. Results showed greater EEG coherence was observed for the alpha band in frontopolar brain regions (Fp1, Fp2) and also in central brain regions (C3, C4) within the dyads, during the focus on the breath condition for the motor compared to the cognitive synchronization task; during the same experimental condition, delta and theta band showed augmented inter-individual coherence in the frontal region (Fz) and central areas (C3, C4). To conclude, the current hyperscanning study highlights how the manipulation of the interoceptive focus (obtained through the focus on the breath) strengthens the manifestation of the EEG markers of interpersonal tuning during a motor synchronization task in specific brain areas.
Collapse
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20123, Milan, Italy
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20123, Milan, Italy.
| |
Collapse
|
39
|
De Felice S, Hamilton AFDC, Ponari M, Vigliocco G. Learning from others is good, with others is better: the role of social interaction in human acquisition of new knowledge. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210357. [PMID: 36571126 PMCID: PMC9791495 DOI: 10.1098/rstb.2021.0357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Learning in humans is highly embedded in social interaction: since the very early stages of our lives, we form memories and acquire knowledge about the world from and with others. Yet, within cognitive science and neuroscience, human learning is mainly studied in isolation. The focus of past research in learning has been either exclusively on the learner or (less often) on the teacher, with the primary aim of determining developmental trajectories and/or effective teaching techniques. In fact, social interaction has rarely been explicitly taken as a variable of interest, despite being the medium through which learning occurs, especially in development, but also in adulthood. Here, we review behavioural and neuroimaging research on social human learning, specifically focusing on cognitive models of how we acquire semantic knowledge from and with others, and include both developmental as well as adult work. We then identify potential cognitive mechanisms that support social learning, and their neural correlates. The aim is to outline key new directions for experiments investigating how knowledge is acquired in its ecological niche, i.e. socially, within the framework of the two-person neuroscience approach. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Sara De Felice
- Institute of Cognitive Neuroscience, University College London (UCL), 17–19 Alexandra House Queen Square, London WC1N 3AZ, UK
| | - Antonia F. de C. Hamilton
- Institute of Cognitive Neuroscience, University College London (UCL), 17–19 Alexandra House Queen Square, London WC1N 3AZ, UK
| | - Marta Ponari
- School of Psychology, University of Kent, Canterbury CT2 7NP, UK
| | | |
Collapse
|
40
|
Wei Y, Liu J, Zhang T, Su W, Tang X, Tang Y, Xu L, Qian Z, Zhang T, Li X, Wang J. Reduced interpersonal neural synchronization in right inferior frontal gyrus during social interaction in participants with clinical high risk of psychosis: An fNIRS-based hyperscanning study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110634. [PMID: 36099966 DOI: 10.1016/j.pnpbp.2022.110634] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Clinical high risk (CHR) of psychosis is characterized by cognitive impairment in social interaction. However, research investigating the neurobiological underpinnings of social interactions and interpersonal relationships in CHR participants is sparse. METHODS 21 CHR and 54 healthy controls (HCs) participated in the study. Dyads were formed between one CHR, one sex-matched HC, and two sex-matched HCs comprising 19 CHR-HC dyads and 19 HC-HC dyads. The concentration changes of oxyhemoglobin and deoxyhemoglobin were examined during a two-block button-press "cooperation" and "competition" task using functional near-infrared spectroscopy(fNIRS) hyperscanning technology. CHR diagnosis and psychopathological assessments were performed by Structured Interview for Prodromal Syndromes (SIPS) and Scale of Prodromal Symptoms (SOPS). Neural synchronizations were compared between CHR-HC dyads and HC-HC dyads. Correlation analyses were performed to identify the relationship between neural synchronization, clinical syndrome and cognition. RESULTS During the cooperation, but not the competition task, the CHR-HC dyads showed reduced inter-brain neural synchronization (INS) in the right inferior frontal gyrus (IFG) compared to the HC-HC dyads. INS also showed a positive correlation with the average cooperation rate. Moreover, the reduced INS in the CHR-HC group was significantly correlated with symptoms score of suspiciousness/persecutory ideas and movement disorders. CONCLUSIONS The decreased INS in right IFG during cooperation could account for CHR's cognitive impairment of social interaction. Our findings provide evidence that inter-brain neural synchronization potentially represents a biomarker of social interaction deficits of CHR.
Collapse
Affiliation(s)
- Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jieqiong Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tingyu Zhang
- Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China; Shanghai Changning Mental Health Center, Shanghai, 200335, China; Institute of Wisdom in China, East China Normal University, Shanghai, 200062, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
41
|
Long Y, Zhong M, Aili R, Zhang H, Fang X, Lu C. Transcranial direct current stimulation of the right anterior temporal lobe changes interpersonal neural synchronization and shared mental processes. Brain Stimul 2023; 16:28-39. [PMID: 36572209 DOI: 10.1016/j.brs.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have shown that interpersonal neural synchronization (INS) is a ubiquitous phenomenon between individuals, and recent studies have further demonstrated close associations between INS and shared external sensorimotor input and/or internal mental processes within a dyad. However, most previous studies have employed an observational approach to describe the behavior-INS correlation, leading to difficulties in causally disentangling the relationship among INS, external sensorimotor input and the internal mental process. OBJECTIVE/HYPOTHESIS The present study aimed to directly change the level of INS through anodal transcranial direct current stimulation (tDCS) to test whether the change in INS would directly impact the internal mental process (Hypothesis 1) or indirectly through external sensorimotor input; the interaction behaviors were also changed (Hypothesis 2) or not (Hypothesis 3). METHODS Thirty pairs of romantically involved heterosexual couples were recruited for a within-subjects design. Three conditions were assessed: a true stimulation condition with 20-min anodal high-definition tDCS to the right anterior temporal lobe (rATL) of women before they communicated with their partners, a sham stimulation condition and a control brain region stimulation condition. The comparison between the true and sham or control brain region conditions allows us to detect the true effect of brain stimulation on INS. Functional near-infrared spectroscopy (fNIRS) hyperscanning was used to simultaneously collect dyadic participants' hemodynamic signals during communication. INS, empathy, and interaction behaviors were examined and compared among different stimulation conditions. RESULTS True brain stimulation significantly decreased INS between the rATL of the women and sensorimotor cortex (SMC) of the men compared to the sham stimulation condition (t(27.8) = -2.821, P = 0.009, d = 0.714) and control brain region stimulation condition (t(27.2) = -2.606, P = 0.015, d = 0.664) during communication. It also significantly decreased the level of emotional empathy (F(2,145) = 6.893, P = 0.001) but did not change sensorimotor processes, such as verbal or nonverbal interaction behaviors. However, nonverbal behaviors mediated the relationship between the changes in INS and emotional empathy (lower limit confidence interval = 0.01, upper limit confidence interval = 2.66). CONCLUSION(S) These findings support the third hypothesis, suggesting that INS is associated with the shared internal mental process indirectly via the sensorimotor process, but the sensorimotor process itself does not covary with the INS and the associated internal mental process. These results provide new insight into the hierarchical architecture of dual-brain function from a bottom-up perspective.
Collapse
Affiliation(s)
- Yuhang Long
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Miao Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ruhuiya Aili
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Huan Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoyi Fang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
42
|
Angioletti L, Balconi M. Delta-Alpha EEG pattern reflects the interoceptive focus effect on interpersonal motor synchronization. FRONTIERS IN NEUROERGONOMICS 2022; 3:1012810. [PMID: 38235477 PMCID: PMC10790895 DOI: 10.3389/fnrgo.2022.1012810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 01/19/2024]
Abstract
Little is known about how the modulation of the interoceptive focus impacts the neural correlates of high-level social processes, such as synchronization mechanisms. Therefore, the current study aims to explore the intraindividual electrophysiological (EEG) patterns induced by the interoceptive focus on breath when performing cognitive and motor tasks requiring interpersonal synchronization. A sample of 28 healthy caucasian adults was recruited and asked to perform two tasks requiring interpersonal synchronization during two distinct conditions: while focusing on the breath or without the focus on the breath. EEG frequency bands (delta, theta, alpha, and beta band) were recorded from the frontal, temporo-central, and parieto-occipital regions of interest. Significant results were observed for the delta and alpha bands. Notably, higher mean delta values and alpha desynchronization were observed in the temporo-central area during the focus on the breath condition when performing the motor compared to the cognitive synchronization task. Taken together these results could be interpreted considering the functional meaning of delta and alpha band in relation to motor synchronization. Indeed, motor delta oscillations shape the dynamics of motor behaviors and motor neural processes, while alpha band attenuation was previously observed during generation, observation, and imagery of movement and is considered to reflect cortical motor activity and action-perception coupling. Overall, the research shows that an EEG delta-alpha pattern emerges in the temporo-central areas at the intra-individual level, indicating the attention to visceral signals, particularly during interpersonal motor synchrony.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
43
|
Abstract
Concepts allow us to make sense of the world. Most evidence on their acquisition and representation comes from studies of single decontextualized words and focuses on the opposition between concrete and abstract concepts (e.g., "bottle" vs. "truth"). A significant step forward in research on concepts consists in investigating them in online interaction during their use. Our study examines linguistic exchanges analyzing the differences between sub-kinds of concepts. Participants were submitted to an online task in which they had to simulate a conversational exchange by responding to sentences involving sub-kinds of concrete (tools, animals, food) and abstract concepts (PS, philosophical-spiritual; EMSS, emotional-social, PSTQ, physical-spatio-temporal-quantitative). We found differences in content: foods evoked interoception; tools and animals elicited materials, spatial, auditive features, confirming their sensorimotor grounding. PS and EMSS yielded inner experiences (e.g., emotions, cognitive states, introspections) and opposed PSTQ, tied to visual properties and concrete agency. More crucially, the various concepts elicited different interactional dynamics: more abstract concepts generated higher uncertainty and more interactive exchanges than concrete ones. Investigating concepts in situated interactions opens new possibilities for studying conceptual knowledge and its pragmatic and social aspects.
Collapse
|
44
|
Angioletti L, Balconi M. EEG brain oscillations are modulated by interoception in response to a synchronized motor vs. cognitive task. Front Neuroanat 2022; 16:991522. [PMID: 36213612 PMCID: PMC9540215 DOI: 10.3389/fnana.2022.991522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
So far, little is known about how conscious attention to internal body signals, that is, interoception, affects the synchronization with another person, a necessary or required social process that promotes affiliations and cooperation during daily joint social interactions. The effect of explicit interoceptive attentiveness (IA) modulation, conceived as the focus on the breath for a given time interval, on electrophysiological (EEG) correlates during an interpersonal motor task compared with a cognitive synchronization task was investigated in this study. A total of 28 healthy participants performed a motor and a cognitive synchronization task during the focus and no-focus breath conditions. During the tasks, frequency bands (delta, theta, alpha, and beta bands) from the frontal, temporo-central, and parieto-occipital regions of interest (ROIs) were acquired. According to the results, significantly higher delta and theta power were found in the focus condition in the frontal ROI during the execution of the motor than the cognitive synchronization task. Moreover, in the same experimental condition, delta and beta band power increased in the temporo-central ROI. The current study suggested two main patterns of frequency band modulation during the execution of a motor compared with the cognitive synchronization task while a person is focusing the attention on one's breath. This study can be considered as the first attempt to classify the different effects of interoceptive manipulation on motor and cognitive synchronization tasks using neurophysiological measures.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
45
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
46
|
Li Z, Hong B, Wang D, Nolte G, Engel AK, Zhang D. Speaker-listener neural coupling reveals a right-lateralized mechanism for non-native speech-in-noise comprehension. Cereb Cortex 2022; 33:3701-3714. [PMID: 35975617 DOI: 10.1093/cercor/bhac302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/14/2022] Open
Abstract
While the increasingly globalized world has brought more and more demands for non-native language communication, the prevalence of background noise in everyday life poses a great challenge to non-native speech comprehension. The present study employed an interbrain approach based on functional near-infrared spectroscopy (fNIRS) to explore how people adapt to comprehend non-native speech information in noise. A group of Korean participants who acquired Chinese as their non-native language was invited to listen to Chinese narratives at 4 noise levels (no noise, 2 dB, -6 dB, and - 9 dB). These narratives were real-life stories spoken by native Chinese speakers. Processing of the non-native speech was associated with significant fNIRS-based listener-speaker neural couplings mainly over the right hemisphere at both the listener's and the speaker's sides. More importantly, the neural couplings from the listener's right superior temporal gyrus, the right middle temporal gyrus, as well as the right postcentral gyrus were found to be positively correlated with their individual comprehension performance at the strongest noise level (-9 dB). These results provide interbrain evidence in support of the right-lateralized mechanism for non-native speech processing and suggest that both an auditory-based and a sensorimotor-based mechanism contributed to the non-native speech-in-noise comprehension.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China.,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Daifa Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Yoneta N, Watanabe H, Shimojo A, Takano K, Saito T, Yagyu K, Shiraishi H, Yokosawa K, Boasen J. Magnetoencephalography Hyperscanning Evidence of Differing Cognitive Strategies Due to Social Role During Auditory Communication. Front Neurosci 2022; 16:790057. [PMID: 35983225 PMCID: PMC9380591 DOI: 10.3389/fnins.2022.790057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Auditory communication is an essential form of human social interaction. However, the intra-brain cortical-oscillatory drivers of auditory communication exchange remain relatively unexplored. We used improvisational music performance to simulate and capture the creativity and turn-taking dynamics of natural auditory communication. Using magnetoencephalography (MEG) hyperscanning in musicians, we targeted brain activity during periods of music communication imagery, and separately analyzed theta (5–7 Hz), alpha (8–13 Hz), and beta (15–29 Hz) source-level activity using a within-subjects, two-factor approach which considered the assigned social role of the subject (leader or follower) and whether communication responses were improvisational (yes or no). Theta activity related to improvisational communication and social role significantly interacted in the left isthmus cingulate cortex. Social role was furthermore differentiated by pronounced occipital alpha and beta amplitude increases suggestive of working memory retention engagement in Followers but not Leaders. The results offer compelling evidence for both musical and social neuroscience that the cognitive strategies, and correspondingly the memory and attention-associated oscillatory brain activities of interlocutors during communication differs according to their social role/hierarchy, thereby indicating that social role/hierarchy needs to be controlled for in social neuroscience research.
Collapse
Affiliation(s)
- Nano Yoneta
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Watanabe
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Child Studies, Toyooka Junior College, Toyooka, Japan
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Shimojo
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuyoshi Takano
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Saito
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuyori Yagyu
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- *Correspondence: Koichi Yokosawa,
| | - Jared Boasen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Tech3Lab, HEC Montréal, Montréal, QC, Canada
| |
Collapse
|
48
|
Mirror neurons 30 years later: implications and applications. Trends Cogn Sci 2022; 26:767-781. [PMID: 35803832 DOI: 10.1016/j.tics.2022.06.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Mirror neurons (MNs) were first described in a seminal paper in 1992 as a class of monkey premotor cells discharging during both action execution and observation. Despite their debated origin and function, recent studies in several species, from birds to humans, revealed that beyond MNs properly so called, a variety of cell types distributed among multiple motor, sensory, and emotional brain areas form a 'mirror mechanism' more complex and flexible than originally thought, which has an evolutionarily conserved role in social interaction. Here, we trace the current limits and envisage the future trends of this discovery, showing that it inspired translational research and the development of new neurorehabilitation approaches, and constitutes a point of no return in social and affective neuroscience.
Collapse
|
49
|
Holroyd CB. Interbrain synchrony: on wavy ground. Trends Neurosci 2022; 45:346-357. [PMID: 35236639 DOI: 10.1016/j.tins.2022.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/08/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
In recent years the study of dynamic, between-brain coupling mechanisms has taken social neuroscience by storm. In particular, interbrain synchrony (IBS) is a putative neural mechanism said to promote social interactions by enabling the functional integration of multiple brains. In this article, I argue that this research is beset with three pervasive and interrelated problems. First, the field lacks a widely accepted definition of IBS. Second, IBS wants for theories that can guide the design and interpretation of experiments. Third, a potpourri of tasks and empirical methods permits undue flexibility when testing the hypothesis. These factors synergistically undermine IBS as a theoretical construct. I finish by recommending measures that can address these issues.
Collapse
Affiliation(s)
- Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Gent, Belgium.
| |
Collapse
|
50
|
Cooperative Behavior Evokes Interbrain Synchrony in the Prefrontal and Temporoparietal Cortex: A Systematic Review and Meta-Analysis of fNIRS Hyperscanning Studies. eNeuro 2022; 9:ENEURO.0268-21.2022. [PMID: 35365502 PMCID: PMC9014979 DOI: 10.1523/eneuro.0268-21.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/09/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Single-brain neuroimaging studies have shown that human cooperation is associated with neural activity in frontal and temporoparietal regions. However, it remains unclear whether single-brain studies are informative about cooperation in real life, where people interact dynamically. Such dynamic interactions have become the focus of interbrain studies. An advantageous technique in this regard is functional near-infrared spectroscopy (fNIRS) because it is less susceptible to movement artifacts than more conventional techniques like electroencephalography (EEG) or functional magnetic resonance imaging (fMRI). We conducted a systematic review and the first quantitative meta-analysis of fNIRS hyperscanning of cooperation, based on thirteen studies with 890 human participants. Overall, the meta-analysis revealed evidence of statistically significant interbrain synchrony while people were cooperating, with large overall effect sizes in both frontal and temporoparietal areas. All thirteen studies observed significant interbrain synchrony in the prefrontal cortex (PFC), suggesting that this region is particularly relevant for cooperative behavior. The consistency in these findings is unlikely to be because of task-related activations, given that the relevant studies used diverse cooperation tasks. Together, the present findings support the importance of interbrain synchronization of frontal and temporoparietal regions in interpersonal cooperation. Moreover, the present article highlights the usefulness of meta-analyses as a tool for discerning patterns in interbrain dynamics.
Collapse
|