1
|
Cintron MA, Baumer Y, Pang AP, Aquino Peterson EM, Ortiz-Whittingham LR, Jacobs JA, Sharda S, Potharaju KA, Baez AS, Gutierrez-Huerta CA, Ortiz-Chaparro EN, Collins BS, Mitchell VM, Saurabh A, Mendelsohn LG, Redekar NR, Paul S, Corley MJ, Powell-Wiley TM. Associations between the neural-hematopoietic-inflammatory axis and DNA methylation of stress-related genes in human leukocytes: Data from the Washington, D.C. cardiovascular health and needs assessment. Brain Behav Immun Health 2025; 45:100976. [PMID: 40166762 PMCID: PMC11957810 DOI: 10.1016/j.bbih.2025.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Chronic stress is associated with cardiovascular disease (CVD) risk and elevated amygdala activity. Previous research suggests a plausible connection between amygdala activity, hematopoietic tissue activity, and cardiovascular events; however, the underlying biological mechanisms linking these relationships are incompletely understood. Chronic stress is thought to modulate epigenomic modifications. Our investigation focused on associations between amygdala activity (left (L), right (R), maximum (M), and average (Av) AmygA), and splenic (SpleenA), and bone marrow activity (BMA) as determined by 18Fluorodeoxyglucose (FDG) on Positron Emission Tomography/Computed Tomography (PET/CT) scans. Subsequently, we assessed how these markers of chronic stress and hematopoietic activity might relate to the DNA methylation of stress-associated genes in a community-based cohort of African American individuals from Washington D.C. at risk for CVD. To assess the relationships between AmgyA, SpleenA, BMA, and DNA methylation, linear regression models were run and adjusted for body mass index and 10-year predicted atherosclerotic CVD risk. Among 60 participants (93.3% female, mean age 60.8), M-AmygA positively associated with SpleenA (β = 0.29; p = 0.001), but not BMA (β = 0.01; p = 0.89). M-AmygA (β = 0.37; p = 0.01 and β = 0.31; p = 0.02, respectively) and SpleenA (β = 0.73; p < 0.01 and β = 0.59; p = 0.005, respectively) were associated with both IL-1β and TNFα. Decreased M-AmygA, SpleenA, IL-1β, and TNFα were associated with methylation of NFκB1 at cg07955720 and STAT3 at cg19438966. Our findings suggest a potential association between AmygA, SpleenA, and pro-inflammatory cytokines in the setting of chronic stress, suggesting an adverse hematopoietic effect. Furthermore, findings reveal associations with epigenetic markers of NFκB and JAK/STAT pathways linked to chronic stress.
Collapse
Affiliation(s)
- Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alina P.S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth M. Aquino Peterson
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua A. Jacobs
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonal Sharda
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kameswari A. Potharaju
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristhian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erika N. Ortiz-Chaparro
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abhinav Saurabh
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laurel G. Mendelsohn
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neelam R. Redekar
- Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Subrata Paul
- Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Li W, Yang Y, Guo S, Yi J, Li C, Shen G, Wang L, Chen X, Zhi Z, Gao H. Combined effects of social health and long-term exposure to fine particulate matter on cardiovascular disease in Chinese middle-aged and older adults. Soc Psychiatry Psychiatr Epidemiol 2025:10.1007/s00127-025-02901-8. [PMID: 40259033 DOI: 10.1007/s00127-025-02901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
PURPOSE Social isolation, loneliness, and fine particulate matter (PM2.5) exposure are significant social and environmental factors that frequently cooccur in vulnerable populations. The joint effects of these factors on the risk of cardiovascular disease (CVD), however, are not well supported by data. This study aimed to evaluate the independent and combined effects of social isolation, loneliness, and long-term PM2.5 exposure on CVD risk and to assess the interactions between social isolation or loneliness and PM2.5 exposure on CVD risk. METHODS We used Cox proportional hazards models to estimate the independent and combined effects of loneliness, social isolation, and long-term PM2.5 exposure on CVD incidence. We also conducted interaction analyses to investigate whether the effects of social factors on CVD are modified by the level of PM2.5 exposure. RESULTS This study included 12,544 participants, with mean age of 58.7 ± 9.4 years. The median follow-up was 7 years, with 1761 CVD events occurred. Individuals with loneliness presented a 29% increased risk of CVD (hazard ratio [HR] = 1.290, 95% confidence intervals [CI]: 1.165-1.428). A 10 µg/m3 increase in PM2.5 exposure was associated with a 6% increase in CVD risk (HR = 1.060, 95% CI: 1.028-1.092). A significant additive interaction effect was observed between loneliness and PM2.5 on CVD (P for additive interaction = 0.042). CONCLUSION Among Chinese middle and older adults, loneliness and long-term PM2.5 exposure had combined effects on CVD risk. The public health consequences of high PM2.5 exposure are more pronounced among individuals who experience feelings of loneliness.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yunxiao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Shuai Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jiayi Yi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Chen Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Geng Shen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Lin Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiuhuan Chen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Zhaogong Zhi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Hai Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
3
|
Mampay M, Al‐Hity G, Rolle SO, Alzboon W, Stewart NA, Flint MS, Sheridan GK. Impact of Psychological Stress and Spontaneous Tumour Regression on the Hippocampal Proteome in a Mouse Model of Breast Cancer. J Neurochem 2025; 169:e70052. [PMID: 40172096 PMCID: PMC11963485 DOI: 10.1111/jnc.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Cognitive impairment is common in people diagnosed with breast cancer, but the molecular mechanisms that underlie maladaptive changes in the brain are unknown. The psychological stress of a cancer diagnosis is certainly a contributing factor. Here, we investigated alterations in the hippocampal proteome in response to both cancer and psychological stress using label-free quantitative mass spectrometry techniques. An orthotopic syngeneic model of triple-negative breast cancer (TNBC) was established by injecting Py230 cells into the mammary fat pads of female C57Bl/6 mice. Half of the mice were subjected to a daily restraint stress paradigm. Mice that experienced both cancer and restraint stress lost weight and displayed larger tumours compared to non-stressed mice. Their urinary corticosterone levels were also elevated, as measured by enzyme-linked immunosorbent assay. Non-stressed tumour-bearing mice displayed higher levels of TNFα in the prefrontal cortex (PFC) compared to stressed mice with cancer. Flow cytometry results suggested that the CD4+/CD8+ T cell ratios were also raised in non-stressed tumour-bearing mice compared to both controls and stressed mice with TNBC. Bioinformatic analysis of hippocampal proteomes indicated that cancer alone causes reduced mitochondrial respiration and ATP synthesis, as well as impaired glutamate recycling and synaptic plasticity. Moreover, daily stress in TNBC mice caused further mitochondrial dysfunction, increased oxidative phosphorylation, and altered lipid metabolism. Importantly, over half of the mammary tumours that initially developed spontaneously regressed after 7-9 weeks in these young immunocompetent mice. Tumour regression inhibited TNFα increases in the PFC. However, the hippocampal proteomes of tumour-bearing mice were largely similar to mice in which tumours regressed, suggesting that spontaneous regression of breast cancer confers lasting physiological dysregulations that impact hippocampal protein expression. This study in mice may help to identify molecular mechanisms responsible for long-term memory impairments in cancer survivors and reveal novel drug targets for cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Applied SciencesUniversity of BrightonBrightonUK
| | - Gheed Al‐Hity
- School of Applied SciencesUniversity of BrightonBrightonUK
| | | | - Walla Alzboon
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | | | | | |
Collapse
|
4
|
Cuevas AG, Cole SW. From Discrimination to Disease: The Role of Inflammation. Harv Rev Psychiatry 2025; 33:83-89. [PMID: 40036026 PMCID: PMC12037116 DOI: 10.1097/hrp.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
ABSTRACT Discrimination is an established social determinant of mental health that contributes to psychiatric illness disparities among marginalized populations. There is emerging research elucidating the biological mechanisms connecting discrimination to mental health outcomes, revealing inflammation as a key pathway. This column synthesizes evidence from existing literature on the links between discrimination and inflammation, and outlines both the opportunities and challenges in this field. The discussion highlights the necessity of a multifaceted approach to address discrimination, and thus, reduce inflammation at both individual and population levels.
Collapse
Affiliation(s)
- Adolfo G. Cuevas
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, New York, NY
- Center for Anti-racism, Social Justice, and Public Health, New York University School of Global Public Health, New York, NY
| | - Steven W. Cole
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
5
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2025; 36:169-187. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
6
|
Cuberos Paredes E, Goyes D, Mak S, Yardimian R, Ortiz N, McLaren A, Stauss HM. Transcutaneous auricular vagus nerve stimulation inhibits mental stress-induced cortisol release-Potential implications for inflammatory conditions. Physiol Rep 2025; 13:e70251. [PMID: 39936474 DOI: 10.14814/phy2.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Elevated glucocorticoid levels with reduced glucocorticoid responsiveness have been reported in chronic inflammatory conditions. Activation of neurons in the nucleus of the solitary tract by transcutaneous auricular vagus nerve stimulation (taVNS) may activate inhibitory pathways projecting to the hypothalamic paraventricular nucleus (PVN), thus inhibiting corticotropin-releasing hormone (CRH) release and improving glucocorticoid dysfunction in chronic inflammatory conditions. Healthy adults (n = 12) participated in experimental (taVNS) and control (sham-taVNS) sessions at least 4 days apart. A 30-min baseline recording was followed by 30 min of taVNS or sham-taVNS and 40 min of recovery. Ten minutes into taVNS or sham-taVNS, a mental arithmetic stress test (MAST) was conducted for 15 min. The MAST increased heart rate, low frequency (LF) heart rate variability (HRV), and the LF to high frequency ratio of HRV, confirming sympathetic activation. Salivary cortisol levels during the MAST were lower during taVNS (49.5 ± 48.0% from baseline; mean ± SD) compared to sham-taVNS (106.0 ± 81.1% from baseline; mean ± SD; p < 0.05). In a psoriasis patient, daily taVNS for 3 months reduced diurnal salivary cortisol levels from 58.2 ± 35.2 (ng/mL)*h (mean ± SD) to 34.9 ± 13.8 (ng/mL)*h (mean ± SD). While it is possible that taVNS inhibited CRH-releasing neurons in the PVN, our study design did not allow to confirm this potential mechanism.
Collapse
Affiliation(s)
- Ely Cuberos Paredes
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Domenica Goyes
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Sadie Mak
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Raffi Yardimian
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Nickolas Ortiz
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Ayana McLaren
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Harald M Stauss
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| |
Collapse
|
7
|
Marwaha K, Cain R, Asmis K, Czaplinski K, Holland N, Mayer DCG, Chacon J. Exploring the complex relationship between psychosocial stress and the gut microbiome: implications for inflammation and immune modulation. J Appl Physiol (1985) 2025; 138:518-535. [PMID: 39813028 DOI: 10.1152/japplphysiol.00652.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
There is growing interest in understanding the complex relationship between psychosocial stress and the human gastrointestinal microbiome (GIM). This review explores the potential physiological pathways connecting these two and how they contribute to a proinflammatory environment that can lead to the development and progression of the disease. Exposure to psychosocial stress triggers the activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary axis (HPA), leading to various physiological responses essential for survival and coping with the stressor. However, chronic stress in susceptible individuals could cause sustained activation of HPA and SNS, leading to immune dysregulation consisting of redistribution of natural killer (NK) cells in the bloodstream, decreased function of T and B cells, and elevation of proinflammatory cytokines such as interleukin-1, interleukin-6, tumor necrotic factor-α, interferon-gamma. It also leads to disruption of the GIM composition and increased intestinal barrier permeability, contributing to GIM dysbiosis. The GIM dysbiosis and elevated cytokines can lead to reciprocal effects and further stimulate the HPA and SNS, creating a positive feedback loop that results in a proinflammatory state underlying the pathogenesis and progression of stress-associated cardiovascular, gastrointestinal, autoimmune, and psychiatric disorders. Understanding these relationships is critical for developing new strategies for managing stress-related health disorders.
Collapse
Affiliation(s)
- Komal Marwaha
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Ryan Cain
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Katherine Asmis
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Katya Czaplinski
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Nathan Holland
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Darly C Ghislaine Mayer
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Jessica Chacon
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| |
Collapse
|
8
|
Frueh L, Sharma R, Sheffield PE, Clougherty JE. Community violence and asthma: A review. Ann Allergy Asthma Immunol 2024; 133:641-648.e12. [PMID: 39038705 DOI: 10.1016/j.anai.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Over the past 2 decades, epidemiologic studies have identified significant associations between exposure to violence, as a psychosocial stressor, and the incidence or exacerbation of asthma. Across diverse populations, study designs, and measures of community violence, researchers have consistently identified adverse associations. In this review, the published epidemiologic evidence is summarized with special attention to research published in the last 5 years and seminal papers. Hypothesized mechanisms for the direct effects of violence exposure and for how such exposure affects susceptibility to physical agents (eg, air pollution and extreme temperature) are discussed. These include stress-related pathways, behavioral mechanisms, and epigenetic mechanisms. Finally, clinical implications and recommendations are discussed.
Collapse
Affiliation(s)
- Lisa Frueh
- Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania.
| | - Rachit Sharma
- Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania
| | - Perry E Sheffield
- Departments of Environmental Medicine and Climate Science and Public Health and Pediatrics, Mount Sinai Icahn School of Medicine, New York, New York
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
10
|
Hajj J, Sizemore B, Singh K. Impact of Epigenetics, Diet, and Nutrition-Related Pathologies on Wound Healing. Int J Mol Sci 2024; 25:10474. [PMID: 39408801 PMCID: PMC11476922 DOI: 10.3390/ijms251910474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic wounds pose a significant challenge to healthcare. Stemming from impaired wound healing, the consequences can be severe, ranging from amputation to mortality. This comprehensive review explores the multifaceted impact of chronic wounds in medicine and the roles that diet and nutritional pathologies play in the wound-healing process. It has been well established that an adequate diet is crucial to proper wound healing. Nutrients such as vitamin D, zinc, and amino acids play significant roles in cellular regeneration, immune functioning, and collagen synthesis and processing. Additionally, this review discusses how patients with chronic conditions like diabetes, obesity, and nutritional deficiencies result in the formation of chronic wounds. By integrating current research findings, this review highlights the significant impact of the genetic make-up of an individual on the risk of developing chronic wounds and the necessity for adequate personalized dietary interventions. Addressing the nutritional needs of individuals, especially those with chronic conditions, is essential for improving wound outcomes and overall patient care. With new developments in the field of genomics, there are unprecedented opportunities to develop targeted interventions that can precisely address the unique metabolic needs of individuals suffering from chronic wounds, thereby enhancing treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- John Hajj
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Brandon Sizemore
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
11
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Osei Baah F, Sharda S, Davidow K, Jackson S, Kernizan D, Jacobs JA, Baumer Y, Schultz CL, Baker-Smith CM, Powell-Wiley TM. Social Determinants of Health in Cardio-Oncology: Multi-Level Strategies to Overcome Disparities in Care: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:331-346. [PMID: 38983377 PMCID: PMC11229550 DOI: 10.1016/j.jaccao.2024.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 07/11/2024] Open
Abstract
Addressing the need for more equitable cardio-oncology care requires attention to existing disparities in cardio-oncologic disease prevention and outcomes. This is particularly important among those affected by adverse social determinants of health (SDOH). The intricate relationship of SDOH, cancer diagnosis, and outcomes from cardiotoxicities associated with oncologic therapies is influenced by sociopolitical, economic, and cultural factors. Furthermore, mechanisms in cell signaling and epigenetic effects on gene expression link adverse SDOH to cancer and the CVD-related complications of oncologic therapies. To mitigate these disparities, a multifaceted strategy is needed that includes attention to health care access, policy, and community engagement for improved disease screening and management. Interdisciplinary teams must also promote cultural humility and competency and leverage new health technology to foster collaboration in addressing the impact of adverse SDOH in cardio-oncologic outcomes.
Collapse
Affiliation(s)
- Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Sonal Sharda
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberly Davidow
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Delaware, Wilmington, Delaware, USA
| | - Sadhana Jackson
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Daphney Kernizan
- Preventive Cardiology Program, Cardiac Center, Nemours Children's Health, Panama City, Florida, USA
- College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Joshua A Jacobs
- Department of Population Health Sciences, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Corinna L Schultz
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Delaware, Wilmington, Delaware, USA
| | - Carissa M Baker-Smith
- Preventive Cardiology Program, Cardiac Center, Nemours Children's Health, Wilmington, Delaware, USA
| | - Tiffany M Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Intramural Research Program, National Institute on Minority Health Disparities, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Frank N, Herrmann MJ, Lauer M, Förster CY. Exploratory Review of the Takotsubo Syndrome and the Possible Role of the Psychosocial Stress Response and Inflammaging. Biomolecules 2024; 14:167. [PMID: 38397404 PMCID: PMC10886847 DOI: 10.3390/biom14020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Takotsubo syndrome (TTS) is a cardiomyopathy that clinically presents as a transient and reversible left ventricular wall motion abnormality (LVWMA). Recovery can occur spontaneously within hours or weeks. Studies have shown that it mainly affects older people. In particular, there is a higher prevalence in postmenopausal women. Physical and emotional stress factors are widely discussed and generally recognized triggers. In addition, the hypothalamic-pituitary-adrenal (HPA) axis and the associated glucocorticoid-dependent negative feedback play an important role in the resulting immune response. This review aims to highlight the unstudied aspects of the trigger factors of TTS. The focus is on emotional stress/chronic unpredictable mild stress (CUMS), which is influenced by estrogen concentration and noradrenaline, for example, and can lead to changes in the behavioral, hormonal, and autonomic systems. Age- and gender-specific aspects, as well as psychological effects, must also be considered. We hypothesize that this leads to a stronger corticosteroid response and altered feedback of the HPA axis. This may trigger proinflammatory markers and thus immunosuppression, inflammaging, and sympathetic overactivation, which contributes significantly to the development of TTS. The aim is to highlight the importance of CUMS and psychological triggers as risk factors and to make an exploratory proposal based on the new knowledge. Based on the imbalance between the sympathetic and parasympathetic nervous systems, transcutaneous vagus nerve stimulation (tVNS) is presented as a possible new therapeutic approach.
Collapse
Affiliation(s)
- Niklas Frank
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
| | - Martin J. Herrmann
- Center of Mental Health, Department of Psychiatry and Psychotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (M.J.H.); (M.L.)
| | - Martin Lauer
- Center of Mental Health, Department of Psychiatry and Psychotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (M.J.H.); (M.L.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
| |
Collapse
|
14
|
Abstract
Interstitial lung disease (ILD), a clinically recognized group of diseases resulting in pulmonary fibrosis, affects up to 200 individuals per 100,000 in the United States. Sarcoidosis has a wide range of clinical manifestations including pulmonary fibrosis. Health disparities are prevalent in both ILD and sarcoidosis around socioeconomic status, race, gender, and geographic location. This review outlines the known health disparities, discusses possible determinants of disparities, and outlines a path to achieve equity in ILD and sarcoidosis.
Collapse
Affiliation(s)
- Michelle Sharp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | - Ali M Mustafa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Naima Farah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, University of Virginia Pulmonary & Critical Care, 1215 Lee Street, 2nd Floor, Charlottesville, VA 22903, USA
| | - Catherine A Bonham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, University of Virginia Pulmonary & Critical Care, 1215 Lee Street, 2nd Floor, Charlottesville, VA 22903, USA
| |
Collapse
|
15
|
Nagai M, Shityakov S, Smetak M, Hunkler HJ, Bär C, Schlegel N, Thum T, Förster CY. Blood Biomarkers in Takotsubo Syndrome Point to an Emerging Role for Inflammaging in Endothelial Pathophysiology. Biomolecules 2023; 13:995. [PMID: 37371575 DOI: 10.3390/biom13060995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Takotsubo syndrome (TTS), an acute cardiac condition characterized by transient wall motion abnormalities mostly of the left ventricle, results in difficulties in diagnosing patients. We set out to present a detailed blood analysis of TTS patients analyzing novel markers to understand the development of TTS. Significant differences in proinflammatory cytokine expression patterns and sex steroid and glucocorticoid receptor (GR) expression levels were observed in the TTS patient collected. Remarkably, the measured catecholamine serum concentrations determined from TTS patient blood could be shown to be two orders of magnitude lower than the levels determined from experimentally induced TTS in laboratory animals. Consequently, the exposure of endothelial cells and cardiomyocytes in vitro to such catecholamine concentrations did not damage the cellular integrity or function of either endothelial cells forming the blood-brain barrier, endothelial cells derived from myocardium, or cardiomyocytes in vitro. Computational analysis was able to link the identified blood markers, specifically, the proinflammatory cytokines and glucocorticoid receptor GR to microRNA (miR) relevant in the ontogeny of TTS (miR-15) and inflammation (miR-21, miR-146a), respectively. Amongst the well-described risk factors of TTS (older age, female sex), inflammaging-related pathways were identified to add to these relevant risk factors or prediagnostic markers of TTS.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, 2-1-1, Kabeminami, Aaskita-ku, Hiroshima City Asa, Hiroshima 731-0293, Japan
| | - Sergey Shityakov
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Lomonosova Str. 9, 191002 Saint-Petersburg, Russia
| | - Manuel Smetak
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Carola Yvette Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
17
|
Teshale AB, Htun HL, Hu J, Dalli LL, Lim MH, Neves BB, Baker JR, Phyo AZZ, Reid CM, Ryan J, Owen AJ, Fitzgerald SM, Freak-Poli R. The relationship between social isolation, social support, and loneliness with cardiovascular disease and shared risk factors: A narrative review. Arch Gerontol Geriatr 2023; 111:105008. [PMID: 37003026 DOI: 10.1016/j.archger.2023.105008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the greatest contributor to global morbidity and mortality. Poor social health plays a critical role in CVD incidence. Additionally, the relationship between social health and CVD may be mediated through CVD risk factors. However, the underlying mechanisms between social health and CVD are poorly understood. Certain social health constructs (social isolation, low social support and loneliness) have complicated the characterisation of a causal relationship between social health and CVD. AIM To provide an overview of the relationship between social health and CVD (and its shared risk factors). METHOD In this narrative review, we examined published literature on the relationship between three social health constructs (social isolation, social support, and loneliness) and CVD. Evidence was synthesised in a narrative format, focusing on the potential ways in which social health affects CVD, including shared risk factors. RESULTS The current literature highlights an established relationship between social health and CVD with a likelihood for bi-directionality. However, there is speculation and varied evidence regarding how these relationships may be mediated through CVD risk factors. CONCLUSIONS Social health can be considered an established risk factor for CVD. However, the potential bi-directional pathways of social health with CVD risk factors are less established. Further research is needed to understand whether targeting certain constructs of social health may directly improve the management of CVD risk factors. Given the health and economic burdens of poor social health and CVD, improvements to addressing or preventing these interrelated health conditions would have societal benefits.
Collapse
Affiliation(s)
| | - Htet Lin Htun
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Jessie Hu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Lachlan L Dalli
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.
| | - Michelle H Lim
- Prevention Research Collaboration, School of Public Health, The University of Sydney, New South Wales, Australia.
| | | | - J R Baker
- School of Health, Southern Cross University, Australia; Primary & Community Care Limited, Australia.
| | - Aung Zaw Zaw Phyo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Christopher M Reid
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; School of Population Health, Curtin University, Perth, Western Australia, Australia.
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Alice J Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Sharyn M Fitzgerald
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Rosanne Freak-Poli
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Alewel DI, Henriquez AR, Schladweiler MC, Grindstaff R, Fisher AA, Snow SJ, Jackson TW, Kodavanti UP. Intratracheal instillation of respirable particulate matter elicits neuroendocrine activation. Inhal Toxicol 2023; 35:59-75. [PMID: 35867597 PMCID: PMC10590194 DOI: 10.1080/08958378.2022.2100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Inhalation of ozone activates central sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal stress axes. While airway neural networks are known to communicate noxious stimuli to higher brain centers, it is not known to what extent responses generated from pulmonary airways contribute to neuroendocrine activation. MATERIALS AND METHODS Unlike inhalational exposures that involve the entire respiratory tract, we employed intratracheal (IT) instillations to expose only pulmonary airways to either soluble metal-rich residual oil fly ash (ROFA) or compressor-generated diesel exhaust particles (C-DEP). Male Wistar-Kyoto rats (12-13 weeks) were IT instilled with either saline, C-DEP or ROFA (5 mg/kg) and necropsied at 4 or 24 hr to assess temporal effects. RESULTS IT-instillation of particulate matter (PM) induced hyperglycemia as early as 30-min and glucose intolerance when measured at 2 hr post-exposure. We observed PM- and time-specific effects on markers of pulmonary injury/inflammation (ROFA>C-DEP; 24 hr>4hr) as corroborated by increases in lavage fluid injury markers, neutrophils (ROFA>C-DEP), and lymphocytes (ROFA). Increases in lavage fluid pro-inflammatory cytokines differed between C-DEP and ROFA in that C-DEP caused larger increases in TNF-α whereas ROFA caused larger increases in IL-6. No increases in circulating cytokines occurred. At 4 hr, PM impacts on neuroendocrine activation were observed through depletion of circulating leukocytes, increases in adrenaline (ROFA), and decreases in thyroid-stimulating-hormone, T3, prolactin, luteinizing-hormone, and testosterone. C-DEP and ROFA both increased lung expression of genes involved in acute stress and inflammatory processes. Moreover, small increases occurred in hypothalamic Fkbp5, a glucocorticoid-sensitive gene. CONCLUSION Respiratory alterations differed between C-DEP and ROFA, with ROFA inducing greater overall lung injury/inflammation; however, both PM induced a similar degree of neuroendocrine activation. These findings demonstrate neuroendocrine activation after pulmonary-only PM exposure, and suggest the involvement of pituitary- and adrenal-derived hormones.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Mette C. Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Rachel Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Anna A. Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
19
|
Kodavanti UP, Jackson TW, Henriquez AR, Snow SJ, Alewel DI, Costa DL. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal Toxicol 2023; 35:109-126. [PMID: 36749208 PMCID: PMC11792093 DOI: 10.1080/08958378.2023.2172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.
Collapse
Affiliation(s)
- Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel L. Costa
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27713, USA
| |
Collapse
|
20
|
Rahman MM, Islam MR, Mim SA, Sultana N, Chellappan DK, Dua K, Kamal MA, Sharma R, Emran TB. Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Australia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
21
|
Madden VJ, Msolo N, Mqadi L, Lesosky M, Bedwell GJ, Hutchinson MR, Peter JG, Parker R, Schrepf A, Edwards RR, Joska JA. Study protocol: an observational study of distress, immune function and persistent pain in HIV. BMJ Open 2022; 12:e059723. [PMID: 36691234 PMCID: PMC9171212 DOI: 10.1136/bmjopen-2021-059723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Many people with HIV report both distress and pain. The relationship between distress and pain is bidirectional, but the mechanisms by which distress exacerbates pain are unclear. The inflammatory response to challenge (inflammatory reactivity, IR) may be a partial mediator, given that neuroimmune interactions provide a substrate for IR to also influence neurological reactivity and, thus, pain-related neural signalling. This prospective, observational, case-control study will characterise the relationships between distress, IR, pain-related signalling as captured by induced secondary hyperalgesia (SH), and pain, in people with HIV who report persistent pain (PP) (cases) or no pain (controls). METHODS AND ANALYSIS One hundred people with suppressed HIV, reporting either PP or no pain, will be assessed two or four times over 6 months. The primary outcomes are distress (Hopkins 25-item symptom checklist), IR (multiplex assay after LPS challenge), and PP (Brief Pain Inventory), assessed at the baseline timepoint, although each will also be assessed at follow-up time points. Induced SH will be assessed in a subsample of 60 participants (baseline timepoint only). To test the hypothesis that IR partly mediates the relationship between distress and pain, mediation analysis will use the baseline data from the PP group to estimate direct and indirect contributions of distress and IR to pain. To test the hypothesis that IR is positively associated with SH, data from the subsample will be analysed with generalised mixed effects models to estimate the association between IR and group membership, with SH as the dependent variable. ETHICS AND DISSEMINATION Information obtained from this study will be published in peer-reviewed journals and presented at scientific meetings. The study has been approved by the Human Research Ethics Committee of the University of Cape Town (approval number: 764/2019) and the City of Cape Town (ref: 24699). TRIAL REGISTRATION NUMBER NCT04757987.
Collapse
Affiliation(s)
- Victoria J Madden
- Pain Research Team, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ncumisa Msolo
- Pain Research Team, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Luyanduthando Mqadi
- Pain Research Team, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Maia Lesosky
- Division of Epidemiology & Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Gillian J Bedwell
- Pain Research Team, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Mark R Hutchinson
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jonathan Grant Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Romy Parker
- Pain Research Team, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - John A Joska
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Powell-Wiley TM, Baumer Y, Baah FO, Baez AS, Farmer N, Mahlobo CT, Pita MA, Potharaju KA, Tamura K, Wallen GR. Social Determinants of Cardiovascular Disease. Circ Res 2022; 130:782-799. [PMID: 35239404 PMCID: PMC8893132 DOI: 10.1161/circresaha.121.319811] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Social determinants of health (SDoH), which encompass the economic, social, environmental, and psychosocial factors that influence health, play a significant role in the development of cardiovascular disease (CVD) risk factors as well as CVD morbidity and mortality. The COVID-19 pandemic and the current social justice movement sparked by the death of George Floyd have laid bare long-existing health inequities in our society driven by SDoH. Despite a recent focus on these structural drivers of health disparities, the impact of SDoH on cardiovascular health and CVD outcomes remains understudied and incompletely understood. To further investigate the mechanisms connecting SDoH and CVD, and ultimately design targeted and effective interventions, it is important to foster interdisciplinary efforts that incorporate translational, epidemiological, and clinical research in examining SDoH-CVD relationships. This review aims to facilitate research coordination and intervention development by providing an evidence-based framework for SDoH rooted in the lived experiences of marginalized populations. Our framework highlights critical structural/socioeconomic, environmental, and psychosocial factors most strongly associated with CVD and explores several of the underlying biologic mechanisms connecting SDoH to CVD pathogenesis, including excess stress hormones, inflammation, immune cell function, and cellular aging. We present landmark studies and recent findings about SDoH in our framework, with careful consideration of the constructs and measures utilized. Finally, we provide a roadmap for future SDoH research focused on individual, clinical, and policy approaches directed towards developing multilevel community-engaged interventions to promote cardiovascular health.
Collapse
Affiliation(s)
- Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (T.M.P.-W., Y.B., F.O.B., A.S.B., C.T.M., M.A.P., K.A.P.), National Institutes of Health, Bethesda, MD
- Intramural Research Program, National Institute on Minority Health and Health Disparities (T.M.P.-W.), National Institutes of Health, Bethesda, MD
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (T.M.P.-W., Y.B., F.O.B., A.S.B., C.T.M., M.A.P., K.A.P.), National Institutes of Health, Bethesda, MD
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (T.M.P.-W., Y.B., F.O.B., A.S.B., C.T.M., M.A.P., K.A.P.), National Institutes of Health, Bethesda, MD
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (T.M.P.-W., Y.B., F.O.B., A.S.B., C.T.M., M.A.P., K.A.P.), National Institutes of Health, Bethesda, MD
| | - Nicole Farmer
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD (N.F., G.R.W.)
| | - Christa T. Mahlobo
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (T.M.P.-W., Y.B., F.O.B., A.S.B., C.T.M., M.A.P., K.A.P.), National Institutes of Health, Bethesda, MD
- The Pennsylvania State University (C.T.M.)
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (T.M.P.-W., Y.B., F.O.B., A.S.B., C.T.M., M.A.P., K.A.P.), National Institutes of Health, Bethesda, MD
| | - Kameswari A. Potharaju
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute (T.M.P.-W., Y.B., F.O.B., A.S.B., C.T.M., M.A.P., K.A.P.), National Institutes of Health, Bethesda, MD
| | - Kosuke Tamura
- Neighborhood Social and Geospatial Determinants of Health Disparities Laboratory, Population and Community Sciences Branch, Intramural Research Program, National Institute on Minority Health and Health Disparities (K.T.), National Institutes of Health, Bethesda, MD
| | - Gwenyth R. Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD (N.F., G.R.W.)
| |
Collapse
|
23
|
Lange T, Luebber F, Grasshoff H, Besedovsky L. The contribution of sleep to the neuroendocrine regulation of rhythms in human leukocyte traffic. Semin Immunopathol 2022; 44:239-254. [PMID: 35041075 PMCID: PMC8901522 DOI: 10.1007/s00281-021-00904-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Twenty-four-hour rhythms in immune parameters and functions are robustly observed phenomena in biomedicine. Here, we summarize the important role of sleep and associated parameters on the neuroendocrine regulation of rhythmic immune cell traffic to different compartments, with a focus on human leukocyte subsets. Blood counts of "stress leukocytes" such as neutrophils, natural killer cells, and highly differentiated cytotoxic T cells present a rhythm with a daytime peak. It is mediated by morning increases in epinephrine, leading to a mobilization of these cells out of the marginal pool into the circulation following a fast, beta2-adrenoceptor-dependent inhibition of adhesive integrin signaling. In contrast, other subsets such as eosinophils and less differentiated T cells are redirected out of the circulation during daytime. This is mediated by stimulation of the glucocorticoid receptor following morning increases in cortisol, which promotes CXCR4-driven leukocyte traffic, presumably to the bone marrow. Hence, these cells show highest numbers in blood at night when cortisol levels are lowest. Sleep adds to these rhythms by actively suppressing epinephrine and cortisol levels. In addition, sleep increases levels of immunosupportive mediators, such as aldosterone and growth hormone, which are assumed to promote T-cell homing to lymph nodes, thus facilitating the initiation of adaptive immune responses during sleep. Taken together, sleep-wake behavior with its unique neuroendocrine changes regulates human leukocyte traffic with overall immunosupportive effects during nocturnal sleep. In contrast, integrin de-activation and redistribution of certain leukocytes to the bone marrow during daytime activity presumably serves immune regulation and homeostasis.
Collapse
Affiliation(s)
- Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany. .,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Finn Luebber
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,Social Neuroscience Lab, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | |
Collapse
|