1
|
Batista AR, Folia V, Silva S. More than a Bundle? Developing Adaptive Guidance for Task Selection in an Online, Semantic-Based Cognitive Stimulation Program. Brain Sci 2025; 15:419. [PMID: 40309900 PMCID: PMC12026196 DOI: 10.3390/brainsci15040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cognitive stimulation programs typically consist of task collections ("bundles") designed to cover various aspects of a cognitive domain and/or sustain user engagement. However, task order is often overlooked, despite variations in difficulty based on structure or mode of implementation. This study examined users' performance accuracy across the eight tasks that comprise the BOX semantic-based program, adapted for the Cerup/CQ online platforms. Our ultimate goal was to map the tasks onto increasing levels of challenge within thematic clusters to provide guidance for personalized task selection. METHODS After adapting the program into Portuguese using original materials based on BOX task descriptions, we made Cerup and CQ (which share the same content but have different layouts) available as free web-based tools. Participants, primarily older adults without dementia, were invited to use these platforms for cognitive stimulation. We analyzed accuracy data as a function of activity-related characteristics (complexity scores, sentence- vs. word-level) as well as participants' spontaneous task selection. RESULTS Task characteristics influenced performance accuracy, indicating different levels of challenge across activities. However, spontaneous task selection did not follow any discernible pattern beyond the spatial contiguity of activity buttons, which was unrelated to participants' likelihood of success. Based on these findings, we defined optimal navigation paths for the eight tasks. CONCLUSIONS Challenge-based, active guidance for task selection appears justified and necessary within the BOX/Cerup/CQ programs. Additionally, the method we developed may help other programs enhance user experience and optimize task progression.
Collapse
Affiliation(s)
- Ana Rita Batista
- Center for Psychology, Faculty of Psychology and Educational Sciences, Psychology Department, University of Porto, Rua Alfredo Allen, s/n, 4200-135 Porto, Portugal
| | - Vasiliki Folia
- Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, University Campus, 546 26 Thessaloniki, Greece
| | - Susana Silva
- Center for Psychology, Faculty of Psychology and Educational Sciences, Psychology Department, University of Porto, Rua Alfredo Allen, s/n, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Yin P, Su Z, Shu X, Dong Z, Tian Y. Role of TREM2 in immune and neurological diseases: Structure, function, and implications. Int Immunopharmacol 2024; 143:113286. [PMID: 39378652 DOI: 10.1016/j.intimp.2024.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a transmembrane receptor initially linked to neurodegenerative diseases, has recently emerged as a key player in conditions such as obesity and cancer. This review explores the structure, function, and mechanisms of TREM2 across these diverse pathological contexts, with a particular focus on its critical roles in immune regulation and neuroprotection. TREM2 primarily modulates cellular activity by binding extracellular ligands, thereby activating downstream signaling pathways and exerting immunomodulatory effects. Additionally, the therapeutic potential of targeting TREM2 is discussed, emphasizing its promise as a future treatment strategy for various diseases.
Collapse
Affiliation(s)
- Peng Yin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaozheng Shu
- BioRegen Biomedical (Changzhou, Jiangsu) Co., Ltd, Changzhou, Jiangsu 213125, China
| | - Zhifeng Dong
- Department of Cardiovascular Medicine, Yancheng Third People's Hospital, 224000, China.
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
El Ouardi L, Yeou M. Are Personal and Reflexive Pronouns Dissociated in Agrammatic Comprehension? An Individual Participant Meta-Analysis With Clinical Implications. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:3218-3235. [PMID: 38968276 PMCID: PMC11651647 DOI: 10.1044/2024_ajslp-23-00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 05/11/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE This study had three objectives: (a) to verify if Grodzinsky et al.'s (1993) findings of worse comprehension of personal than reflexive pronouns can be replicated in a larger meta-analysis of individual participant data, (b) to examine if the heterogeneity found in the patterns of pronoun comprehension in agrammatism can be attributed to task effects, and (c) to evaluate the risk of bias in the reviewed studies. METHOD Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic literature search was performed to identify studies examining the personal-reflexive pronoun dissociation in agrammatic comprehension. Seven studies met the search criteria and were included in the meta-analysis. For each participant, individual accuracy scores for the comprehension of personal and reflexive pronouns were extracted in addition to information on the study methods. Individual accuracy data were analyzed using the Fisher's exact test and the binomial test. The risk of bias in the studies was assessed using an adapted version of the Newcastle-Ottawa Quality Assessment Scale. RESULTS The meta-analysis had three main findings: (a) The majority of the persons with agrammatic aphasia (89%) had no dissociation between the comprehension of personal and reflexive pronouns; (b) 8% revealed a pattern consistent with a neuropsychological dissociation, faring worse on the comprehension of personal than reflexive pronouns; and (c) 2% performed worse on reflexive than personal pronouns. The type of the task used affected pronoun comprehension accuracy and accounted for the heterogeneity in the patterns of pronoun comprehension attested across the different participants. CONCLUSIONS Taken together, the meta-analysis did not support a dissociation between personal and reflexive pronoun comprehension in agrammatic comprehension. When confirmed, the dissociation was driven by task effects. The clinical implications of these findings were discussed together with implications to minimize the risk of bias in future examinations of the topic.
Collapse
Affiliation(s)
- Loubna El Ouardi
- Department of Hearing & Speech Sciences, College of Behavioral and Social Sciences, University of Maryland, College Park
- Applied Language & Culture Studies Lab, Faculty of Letters and Humanities, Chouaib Doukkali University, El Jadida, Morocco
| | - Mohamed Yeou
- Applied Language & Culture Studies Lab, Faculty of Letters and Humanities, Chouaib Doukkali University, El Jadida, Morocco
| |
Collapse
|
4
|
Valle-Bautista R, Olivera-Acevedo M, Horta-Brussolo VR, Díaz NF, Ávila-González D, Molina-Hernández A. From songbird to humans: The multifaceted roles of FOXP2 in speech and motor learning. Neurosci Biobehav Rev 2024; 167:105936. [PMID: 39510218 DOI: 10.1016/j.neubiorev.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Motor learning involves a complex network of brain structures and is crucial for tasks like speech. The cerebral cortex, subcortical nuclei, and cerebellum are involved in motor learning and vocalization. Vocal learning has been demonstrated across species. However, it is a task that should be further studied and reevaluated, particularly in species considered non-vocal learners, to potentially uncover new insights. FOXP2, a transcription factor, has been implicated in speech learning and execution. Several variants have been involved in speech and cognitive impairments; the most studied is the R553H, found in the KE family, where more than half of the members show verbal dyspraxia. Brain FOXP2 expression shows consistent patterns across species in regions associated with motor learning and execution. Animal models expressing mutated FOXP2 showed impaired motor learning and vocalization. Genes regulated by FOXP2 are related to neural differentiation, connectivity, and synaptic plasticity, indicating its role in brain development and function. This review explores the intricate relationship between FOXP2, motor learning, and speech in an anatomical and functional context.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Monserrath Olivera-Acevedo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Instituto Tecnológico de Monterrey Campus Ciudad de México, Escuela de Medicina y Ciencias de la Salud, Colombia
| | - Victoria Regina Horta-Brussolo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV-IPN, Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Daniela Ávila-González
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico.
| |
Collapse
|
5
|
Coppieters R, Bouzigues A, Jiskoot L, Montembeault M, Tee BL, Rohrer JD, Bruffaerts R. A systematic review of the quantitative markers of speech and language of the frontotemporal degeneration spectrum and their potential for cross-linguistic implementation. Neurosci Biobehav Rev 2024; 167:105909. [PMID: 39393594 DOI: 10.1016/j.neubiorev.2024.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease spectrum with an urgent need for reliable biomarkers for early diagnosis and monitoring. Speech and language changes occur in the early stages of FTD and offer a potential non-invasive, early, and accessible diagnostic tool. The use of speech and language markers in this disease spectrum is limited by the fact that most studies investigate English-speaking patients. This systematic review examines the literature on psychoacoustic and linguistic features of speech that occur across the FTD spectrum across as many different languages as possible. 76 papers were identified that investigate psychoacoustic and linguistic markers in discursive speech. 75 % of these papers studied English-speaking patients. The most generalizable features found across different languages, are speech rate, articulation rate, pause frequency, total pause duration, noun-verb ratio, and total number of nouns. While there are clear interlinguistic differences across patient groups, the results show promise for implementation of cross-linguistic markers of speech and language across the FTD spectrum particularly for psychoacoustic features.
Collapse
Affiliation(s)
- Rosie Coppieters
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Belgium; VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Paris Brain Institute, Sorbonne University, Paris, France
| | - Lize Jiskoot
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
| | - Boon Lead Tee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA; Global Brain Health Institute, University of California, San Francisco, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Belgium; Biomedical Research Institute, Hasselt University, Belgium.
| |
Collapse
|
6
|
Gallée J, Cartwright J, Grasso S, Jokel R, Lavoie M, McGowan E, Pozzebon M, Beber BC, Duboisdindien G, Montagut N, Norvik M, Sugimoto T, Townsend R, Unger N, Winsnes IE, Volkmer A. Global perspectives on the management of primary progressive aphasia. Sci Rep 2024; 14:19712. [PMID: 39181907 PMCID: PMC11344800 DOI: 10.1038/s41598-024-70156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Speech-language therapists/pathologists (SLT/Ps) are key professionals in the management and treatment of primary progressive aphasia (PPA), however, there are gaps in education and training within the discipline, with implications for skills, confidence, and clinical decision-making. This survey aimed to explore the areas of need amongst SLT/Ps working with people living with PPA (PwPPA) internationally to upskill the current and future workforce working with progressive communication disorders. One hundred eighty-six SLT/Ps from 27 countries who work with PwPPA participated in an anonymous online survey about their educational and clinical experiences, clinical decision-making, and self-reported areas of need when working with this population. Best practice principles for SLT/Ps working with PwPPA were used to frame the latter two sections of this survey. Only 40.7% of respondents indicated that their university education prepared them for their current work with PwPPA. Competency areas of "knowing people deeply," "practical issues," "connectedness," and "preventing disasters" were identified as the basic areas of priority and need. Respondents identified instructional online courses (92.5%), sample tools and activities for interventions (64.8%), and concrete training on providing care for advanced stages and end of life (58.3%) as central areas of need in their current work. This is the first international survey to comprehensively explore the perspectives of SLT/Ps working with PwPPA. Based on survey outcomes, there is a pressing need to enhance current educational and ongoing training opportunities to better promote the well-being of PwPPA and their families, and to ensure appropriate preparation of the current and future SLT/P workforce.
Collapse
Affiliation(s)
- Jeanne Gallée
- Center for Psychometric Analyses of Aging and Neurodegeneration, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA, USA.
- School of Health Sciences, University of Tasmania, Launceston, Australia.
| | - Jade Cartwright
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Stephanie Grasso
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Regina Jokel
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Rotman Research Institute, Toronto, Canada
| | - Monica Lavoie
- The Chaire de recherche sur les aphasies primaires progressives - Fondation de la famille Lemaire, Université Laval, Quebec, Qc, Canada
- Clinique Interdisciplinaire de Mémoire, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Ellen McGowan
- Pennine Care NHS Foundation Trust, Greater Manchester, Derbyshire, UK
| | | | - Bárbara Costa Beber
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guillaume Duboisdindien
- The Chaire de recherche sur les aphasies primaires progressives - Fondation de la famille Lemaire, Université Laval, Quebec, Qc, Canada
- Clinique Interdisciplinaire de Mémoire, CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Núria Montagut
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain
- Institut d'Investigació Biomèdica August Pi I Sunyer, Barcelona, Spain
| | - Monica Norvik
- Department of Education, UiT The Arctic University of Norway, Tromsø, Norway
| | - Taiki Sugimoto
- Center for Psychometric Analyses of Aging and Neurodegeneration, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Prevention and Care Science, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan
| | | | - Nina Unger
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Ingvild E Winsnes
- Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway
| | - Anna Volkmer
- Department of Psychology and Language Science, University College London, London, UK
| |
Collapse
|
7
|
Libon DJ, Swenson R, Price CC, Lamar M, Cosentino S, Bezdicek O, Kling MA, Tobyne S, Jannati A, Banks R, Pascual-Leone A. Digital assessment of cognition in neurodegenerative disease: a data driven approach leveraging artificial intelligence. Front Psychol 2024; 15:1415629. [PMID: 39035083 PMCID: PMC11258860 DOI: 10.3389/fpsyg.2024.1415629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction A rapid and reliable neuropsychological protocol is essential for the efficient assessment of neurocognitive constructs related to emergent neurodegenerative diseases. We developed an AI-assisted, digitally administered/scored neuropsychological protocol that can be remotely administered in ~10 min. This protocol assesses the requisite neurocognitive constructs associated with emergent neurodegenerative illnesses. Methods The protocol was administered to 77 ambulatory care/memory clinic patients (56.40% women; 88.50% Caucasian). The protocol includes a 6-word version of the Philadelphia (repeatable) Verbal Learning Test [P(r)VLT], three trials of 5 digits backward from the Backwards Digit Span Test (BDST), and the "animal" fluency test. The protocol provides a comprehensive set of traditional "core" measures that are typically obtained through paper-and-pencil tests (i.e., serial list learning, immediate and delayed free recall, recognition hits, percent correct serial order backward digit span, and "animal" fluency output). Additionally, the protocol includes variables that quantify errors and detail the processes used in administering the tests. It also features two separate, norm-referenced summary scores specifically designed to measure executive control and memory. Results Using four core measures, we used cluster analysis to classify participants into four groups: cognitively unimpaired (CU; n = 23), amnestic mild cognitive impairment (MCI; n = 17), dysexecutive MCI (n = 23), and dementia (n = 14). Subsequent analyses of error and process variables operationally defined key features of amnesia (i.e., rapid forgetting, extra-list intrusions, profligate responding to recognition foils); key features underlying reduced executive abilities (i.e., BDST items and dysexecutive errors); and the strength of the semantic association between successive responses on the "animal" fluency test. Executive and memory index scores effectively distinguished between all four groups. There was over 90% agreement between how cluster analysis of digitally obtained measures classified patients compared to classification using a traditional comprehensive neuropsychological protocol. The correlations between digitally obtained outcome variables and analogous paper/pencil measures were robust. Discussion The digitally administered protocol demonstrated a capacity to identify patterns of impaired performance and classification similar to those observed with standard paper/pencil neuropsychological tests. The inclusion of both core measures and detailed error/process variables suggests that this protocol can detect subtle, nuanced signs of early emergent neurodegenerative illness efficiently and comprehensively.
Collapse
Affiliation(s)
- David J. Libon
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Glassboro, NJ, United States
- Department of Psychology, Rowan University, Glassboro, NJ, United States
| | - Rod Swenson
- Department of Psychiatry and Behavioral Health, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Melissa Lamar
- Rush Alzheimer's Disease Center and the Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Stephanie Cosentino
- Columbia University Medical Center, Department of Neurology, Cognitive Neuroscience Division, Taub Institute and Sergievsky Center, New York, NY, United States
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Mitchel A. Kling
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Glassboro, NJ, United States
| | | | - Ali Jannati
- Linus Health, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | | | - Alvaro Pascual-Leone
- Linus Health, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research and Deanna, Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, United States
| |
Collapse
|
8
|
Meade G, Machulda MM, Clark HM, Duffy JR, Botha H, Whitwell JL, Josephs KA, Utianski RL. Identifying and Addressing Functional Communication Challenges in Patients With Behavioral Variant Frontotemporal Dementia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:1573-1589. [PMID: 38843453 PMCID: PMC11253250 DOI: 10.1044/2024_ajslp-24-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE We describe the communication challenges of four patients with a neurodegenerative disorder consistent with behavioral variant frontotemporal dementia (bvFTD), characterized by early behavioral and personality changes. By describing their clinical profiles, we identify common barriers to functional communication in this population and provide recommendations for how speech-language pathologists (SLPs) might contribute to minimizing them. METHOD Four patients with bvFTD were selected from a cohort of patients with progressive communication impairments. Three of them returned for at least one follow-up visit. Case histories are presented along with the results of comprehensive speech and language, neuropsychological, and neurological testing. RESULTS At the time of initial evaluation, patients were between the ages of 54 and 66 years and had been experiencing symptoms for 1.5-6 years. Consistent with their bvFTD diagnoses, all patients had prominent behavioral and personality changes that impacted communication. Patients 1 and 2 also had mild aphasia at enrollment, primarily characterized by anomia and loss of word meaning. Patients 3 and 4 both had apraxia of speech and moderate-to-severe aphasia at enrollment with prominent anomia and agrammatism. All four patients had impaired executive functioning and relative sparing of visuospatial skills; episodic memory was also impaired for Patients 2 and 4. Even though functional communication was progressively limited for all patients, none of them received regular support from an SLP. CONCLUSIONS This case series adds to a scant, but growing, literature demonstrating that patients with bvFTD have communication impairments. SLPs are uniquely positioned to identify barriers to functional communication and to provide tailored strategy training to the patients and their care partners over the course of their disease. Systematic evaluation of the efficacy of treatment in this population would be valuable. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25933762.
Collapse
Affiliation(s)
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | | | |
Collapse
|
9
|
van den Berg E, Dijkzeul JCM, Poos JM, Eikelboom WS, van Hemmen J, Franzen S, de Jong FJ, Dopper EGP, Vonk JMJ, Papma JM, Satoer D, Jiskoot LC, Seelaar H. Differential linguistic features of verbal fluency in behavioral variant frontotemporal dementia and primary progressive aphasia. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:669-677. [PMID: 35416098 PMCID: PMC10069460 DOI: 10.1080/23279095.2022.2060748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Frontotemporal dementia (FTD) is an early-onset neurodegenerative disorder with a heterogeneous clinical presentation. Verbal fluency is regularly used as a sensitive measure of language ability, semantic memory, and executive functioning, but qualitative changes in verbal fluency in FTD are currently overlooked. This retrospective study examined qualitative, linguistic features of verbal fluency in 137 patients with behavioral variant (bv)FTD (n = 50), or primary progressive aphasia (PPA) [25 non-fluent variant (nfvPPA), 27 semantic variant (svPPA), and 34 logopenic variant (lvPPA)] and 25 control participants. Between-group differences in clustering, switching, lexical frequency (LF), age of acquisition (AoA), neighborhood density (ND), and word length (WL) were examined in the category and letter fluency with analysis of variance adjusted for age, sex, and the total number of words. Associations with other cognitive functions were explored with linear regression analysis. The results showed that the verbal fluency performance of patients with svPPA could be distinguished from controls and other patient groups by fewer and smaller clusters, more switches, higher LF, and lower AoA (all p < 0.05). Patients with lvPPA specifically produced words with higher ND than the other patient groups (p < 0.05). Patients with bvFTD produced longer words than the PPA groups (p < 0.05). Clustering, switching, LF, AoA, and ND-but not WL-were differentially predicted by measures of language, memory, and executive functioning (range standardized regression coefficient 0.25-0.41). In addition to the total number of words, qualitative linguistic features differ between subtypes of FTD. These features provide additional information on lexical processing and semantic memory that may aid the differential diagnosis of FTD.
Collapse
Affiliation(s)
- E. van den Berg
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - J. C. M. Dijkzeul
- Department of Child Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - J. M. Poos
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - W. S. Eikelboom
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - J. van Hemmen
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - S. Franzen
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - F. J. de Jong
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - E. G. P. Dopper
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - J. M. J. Vonk
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - J. M. Papma
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - D. Satoer
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, Netherland
| | - L. C. Jiskoot
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Dementia Research Centre, University College London, London, UK
| | - H. Seelaar
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
10
|
Ossewaarde R, Pijnenburg Y, Keulen A, Jonkers R, Leijnen S. Role of pause duration in primary progressive aphasia. APHASIOLOGY 2024; 39:601-619. [PMID: 40303008 PMCID: PMC12036531 DOI: 10.1080/02687038.2024.2366285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/06/2024] [Indexed: 05/02/2025]
Abstract
Aims To detect differences in speech fluency in separate primary progressive aphasia syndromes (PPA) using automated analysis techniques. The resulting linguistic features are evaluated for their use in a predictive model to identify common patterns in speakers with PPA. As fluency is observable in audio recordings, its quantification may provide a low-cost instrument that augments spontaneous speech analyses in clinical practice. Methods and Procedures Speech was recorded in 14 controls, 7 nonfluent variant (nfvPPA) and 8 semantic variant (svPPA) speakers. The recordings were annotated for speech and non-speech with Kaldi, a common toolkit for speech processing software. Variables relating to fluency (pause rate, number of pauses, length of pauses) were analyzed. Outcomes and Results The best fitting distribution of pause duration was a combination of two Gaussian distributions, corresponding with pause categories short vs. long.Group level differences were found in the rate of pauses and proportion of silence: nfvPPA speakers use more short pauses relative to long pauses than control speakers, and the duration of short and long pauses is longer; svPPA speakers use more longer pauses relative to short pauses. Their short pauses are significantly shorter than those from control speakers.Participants in both PPA groups pause more frequently. SvPPA speakers are typically perceived as fluent. However, our analysis shows their fluency patterns to be distinct from control speakers, if the long-short distinction is observed. Conclusions Automatic measurements of pause duration show meaningful distinctions across the groups and might provide future aid in clinical assessment.
Collapse
Affiliation(s)
- Roelant Ossewaarde
- Center for Language and Cognition, Research School for Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
- Institute for ICT, HU University of Applied Science, Utrecht, The Netherlands
- Alzheimercentrum UMC Amsterdam, Neurology, Amsterdam, The Netherlands
| | | | - Antoinette Keulen
- Alzheimercentrum UMC Amsterdam, Neurology, Amsterdam, The Netherlands
| | - Roel Jonkers
- Center for Language and Cognition, Research School for Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Stefan Leijnen
- Institute for ICT, HU University of Applied Science, Utrecht, The Netherlands
| |
Collapse
|
11
|
Lopes da Cunha P, Ruiz F, Ferrante F, Sterpin LF, Ibáñez A, Slachevsky A, Matallana D, Martínez Á, Hesse E, García AM. Automated free speech analysis reveals distinct markers of Alzheimer's and frontotemporal dementia. PLoS One 2024; 19:e0304272. [PMID: 38843210 PMCID: PMC11156374 DOI: 10.1371/journal.pone.0304272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Dementia can disrupt how people experience and describe events as well as their own role in them. Alzheimer's disease (AD) compromises the processing of entities expressed by nouns, while behavioral variant frontotemporal dementia (bvFTD) entails a depersonalized perspective with increased third-person references. Yet, no study has examined whether these patterns can be captured in connected speech via natural language processing tools. To tackle such gaps, we asked 96 participants (32 AD patients, 32 bvFTD patients, 32 healthy controls) to narrate a typical day of their lives and calculated the proportion of nouns, verbs, and first- or third-person markers (via part-of-speech and morphological tagging). We also extracted objective properties (frequency, phonological neighborhood, length, semantic variability) from each content word. In our main study (with 21 AD patients, 21 bvFTD patients, and 21 healthy controls), we used inferential statistics and machine learning for group-level and subject-level discrimination. The above linguistic features were correlated with patients' scores in tests of general cognitive status and executive functions. We found that, compared with HCs, (i) AD (but not bvFTD) patients produced significantly fewer nouns, (ii) bvFTD (but not AD) patients used significantly more third-person markers, and (iii) both patient groups produced more frequent words. Machine learning analyses showed that these features identified individuals with AD and bvFTD (AUC = 0.71). A generalizability test, with a model trained on the entire main study sample and tested on hold-out samples (11 AD patients, 11 bvFTD patients, 11 healthy controls), showed even better performance, with AUCs of 0.76 and 0.83 for AD and bvFTD, respectively. No linguistic feature was significantly correlated with cognitive test scores in either patient group. These results suggest that specific cognitive traits of each disorder can be captured automatically in connected speech, favoring interpretability for enhanced syndrome characterization, diagnosis, and monitoring.
Collapse
Affiliation(s)
- Pamela Lopes da Cunha
- Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Fabián Ruiz
- Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
| | - Franco Ferrante
- Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ingeniería, Universidad de Buenos Aires (FIUBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lucas Federico Sterpin
- Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat) Institute, Universidad Adolfo Ibáñez, Santiago, Peñalolén, Región Metropolitana, Chile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, United States of America
- Trinity College Dublin, Dublin, Ireland
| | - Andrea Slachevsky
- Faculty of Medicine, Neuroscience and East Neuroscience Departments, Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Program – Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Providencia, Santiago, Chile
- Hospital del Salvador and Faculty of Medicine, Memory and Neuropsychiatric Center (CMYN), Neurology Department, University of Chile, Providencia, Santiago, Chile
- Departamento de Medicina, Servicio de Neurología, Clínica Alemana-Universidad del Desarrollo, Las Condes, Región Metropolitana, Chile
| | - Diana Matallana
- Facultad de Medicina, Departamento de Psiquiatría (Programa PhD Neurociencias), Instituto de Envejecimiento, Pontificia Universidad Javeriana, Bogotá, Colombia
- Centro de Memoria y Cognición, Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
- Departamento de Salud Mental, Hospital Universitario Santa Fe de Bogotá, Bogotá, Colombia
| | - Ángela Martínez
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Eugenia Hesse
- Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
- Departamento de Matemática, Universidad de San Andres, Victoria, Buenos Aires, Argentina
| | - Adolfo M. García
- Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat) Institute, Universidad Adolfo Ibáñez, Santiago, Peñalolén, Región Metropolitana, Chile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, United States of America
- Facultad de Humanidades, Departamento de Lingüística y Literatura, Universidad de Santiago de Chile, Estación Central, Santiago, Chile
| |
Collapse
|
12
|
Franco-O'Byrne D, Santamaría-García H, Migeot J, Ibáñez A. Emerging Theories of Allostatic-Interoceptive Overload in Neurodegeneration. Curr Top Behav Neurosci 2024. [PMID: 38637414 DOI: 10.1007/7854_2024_471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent integrative multilevel models offer novel insights into the etiology and course of neurodegenerative conditions. The predictive coding of allostatic-interoception theory posits that the brain adapts to environmental demands by modulating internal bodily signals through the allostatic-interoceptive system. Specifically, a domain-general allostatic-interoceptive network exerts adaptive physiological control by fine-tuning initial top-down predictions and bottom-up peripheral signaling. In this context, adequate adaptation implies the minimization of prediction errors thereby optimizing energy expenditure. Abnormalities in top-down interoceptive predictions or peripheral signaling can trigger allostatic overload states, ultimately leading to dysregulated interoceptive and bodily systems (endocrine, immunological, circulatory, etc.). In this context, environmental stress, social determinants of health, and harmful exposomes (i.e., the cumulative life-course exposition to different environmental stressors) may interact with physiological and genetic factors, dysregulating allostatic interoception and precipitating neurodegenerative processes. We review the allostatic-interoceptive overload framework across different neurodegenerative diseases, particularly in the behavioral variant frontotemporal dementia (bvFTD). We describe how concepts of allostasis and interoception could be integrated with principles of predictive coding to explain how the brain optimizes adaptive responses, while maintaining physiological stability through feedback loops with multiple organismic systems. Then, we introduce the model of allostatic-interoceptive overload of bvFTD and discuss its implications for the understanding of pathophysiological and neurocognitive abnormalities in multiple neurodegenerative conditions.
Collapse
Affiliation(s)
- Daniel Franco-O'Byrne
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Hernando Santamaría-García
- Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, USA
- Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Joaquín Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
- Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, USA.
- Trinity College Dublin, Dublin, Ireland.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Pistono A, Pariente J, Jucla M. Disfluency patterns in Alzheimer's disease and frontotemporal lobar degeneration. CLINICAL LINGUISTICS & PHONETICS 2024; 38:345-358. [PMID: 36004675 DOI: 10.1080/02699206.2022.2112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Disfluencies may reflect various mechanisms: word-finding difficulties, planning strategies, inter-individual cognitive variability, etc. In the current paper, we examined disfluency production in patients with a behavioural variant of Frontotemporal lobar degeneration (bvFTLD), compared to patients with Alzheimer's disease (AD) and healthy older adults. We showed that bvFTLD participants have lower speech rate and produce more incomplete utterances. However, those measures were not correlated with naming and fluency tasks. On the contrary, AD participants did not differ from healthy controls on disfluency production, but discourse measures were correlated with the participants' lexical-semantic impairment. This provides evidence for different causes of disfluency in AD and FTLD, and a distinct role of each disfluency phenomenon.
Collapse
Affiliation(s)
- Aurélie Pistono
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
- Neurology Department, Neuroscience Centre, Toulouse University Hospital, Toulouse, France
| | - Mélanie Jucla
- Laboratory of NeuroPsychoLinguistics, University of Toulouse, Toulouse, France
| |
Collapse
|
14
|
Gumus M, Koo M, Studzinski CM, Bhan A, Robin J, Black SE. Linguistic changes in neurodegenerative diseases relate to clinical symptoms. Front Neurol 2024; 15:1373341. [PMID: 38590720 PMCID: PMC10999640 DOI: 10.3389/fneur.2024.1373341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Background The detection and characterization of speech changes may help in the identification and monitoring of neurodegenerative diseases. However, there is limited research validating the relationship between speech changes and clinical symptoms across a wide range of neurodegenerative diseases. Method We analyzed speech recordings from 109 patients who were diagnosed with various neurodegenerative diseases, including Alzheimer's disease, Frontotemporal Dementia, and Vascular Cognitive Impairment, in a cognitive neurology memory clinic. Speech recordings of an open-ended picture description task were processed using the Winterlight speech analysis platform which generates >500 speech features, including the acoustics of speech and linguistic properties of spoken language. We investigated the relationship between the speech features and clinical assessments including the Mini Mental State Examination (MMSE), Mattis Dementia Rating Scale (DRS), Western Aphasia Battery (WAB), and Boston Naming Task (BNT) in a heterogeneous patient population. Result Linguistic features including lexical and syntactic features were significantly correlated with clinical assessments in patients, across diagnoses. Lower MMSE and DRS scores were associated with the use of shorter words and fewer prepositional phrases. Increased impairment on WAB and BNT was correlated with the use of fewer nouns but more pronouns. Patients also differed from healthy adults as their speech duration was significantly shorter with more pauses. Conclusion Linguistic changes such as the use of simpler vocabularies and syntax were detectable in patients with different neurodegenerative diseases and correlated with cognitive decline. Speech has the potential to be a sensitive measure for detecting cognitive impairments across various neurodegenerative diseases.
Collapse
Affiliation(s)
- Melisa Gumus
- Winterlight Labs, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Morgan Koo
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | - Aparna Bhan
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | | | - Sandra E. Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Gallée J, Cartwright J, Grasso S, Jokel R, Lavoie M, McGowan E, Pozzebon M, Beber BC, Duboisdindien G, Montagut N, Norvik M, Sugimoto T, Townsend R, Unger N, Winsnes IE, Volkmer A. Global Perspectives on the Management of Primary Progressive Aphasia. RESEARCH SQUARE 2024:rs.3.rs-4100219. [PMID: 38562789 PMCID: PMC10984010 DOI: 10.21203/rs.3.rs-4100219/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Speech-language therapists/pathologists (SLT/Ps) are key professionals in the management and treatment of primary progressive aphasia (PPA), however, there are gaps in education and training within the discipline, with implications for skills, confidence, and clinical decision-making. This survey aimed to explore the areas of need amongst SLT/Ps working with people living with PPA (PwPPA) internationally to upskill the current and future workforce working with progressive communication disorders. One hundred eighty-five SLT/Ps from 27 countries who work with PwPPA participated in an anonymous online survey about their educational and clinical experiences, clinical decision-making, and self-reported areas of need when working with this population. Best practice principles for SLT/Ps working with PwPPA were used to frame the latter two sections of this survey. Only 40.7% of respondents indicated that their university education prepared them for their current work with PwPPA. Competency areas of "Knowing people deeply," "Practical issues," "Connectedness," and "Preventing disasters" were identified as the basic areas of priority and need. Respondents identified instructional online courses (92.5%), sample tools and activities for interventions (64.8%), and concrete training on providing care for advanced stages and end of life (58.3%) as central areas of need in their current work. This is the first international survey to comprehensively explore the perspectives of SLT/Ps working with PwPPA. Based on survey outcomes, there is a pressing need to enhance current educational and ongoing training opportunities to better promote the well-being of PwPPA and their families, and to ensure appropriate preparation of the current and future SLT/P workforce.
Collapse
Affiliation(s)
- Jeanne Gallée
- Center for Psychometric Analyses of Aging and Neurodegeneration, Department of Medicine, University of Washington
| | | | - Stephanie Grasso
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| | - Regina Jokel
- Temerty Faculty of Medicine, University of Toronto
| | - Monica Lavoie
- Chaire de recherche sur les aphasies primaires progressives - Fondation de la famille Lemaire, Université Laval
| | | | | | - Bárbara Costa Beber
- Department of Speech, Language, and Hearing Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)
| | - Guillaume Duboisdindien
- Chaire de recherche sur les aphasies primaires progressives - Fondation de la famille Lemaire, Université Laval
| | - Núria Montagut
- Alzheimer's Disease and other Cognitive Disorders Unit, Neurology Service, Hospital Clinic Barcelona
| | - Monica Norvik
- Department of Linguistics and Scandinavian studies, University of Oslo
| | - Taiki Sugimoto
- Center for Psychometric Analyses of Aging and Neurodegeneration, Department of Medicine, University of Washington
| | | | - Nina Unger
- Department of Neurology, University Medicine Greifswald
| | - Ingvild E Winsnes
- Department of Linguistics and Scandinavian studies, University of Oslo
| | - Anna Volkmer
- Department of Psychology and Language Science, University College London
| |
Collapse
|
16
|
Ferrante FJ, Migeot J, Birba A, Amoruso L, Pérez G, Hesse E, Tagliazucchi E, Estienne C, Serrano C, Slachevsky A, Matallana D, Reyes P, Ibáñez A, Fittipaldi S, Campo CG, García AM. Multivariate word properties in fluency tasks reveal markers of Alzheimer's dementia. Alzheimers Dement 2024; 20:925-940. [PMID: 37823470 PMCID: PMC10916979 DOI: 10.1002/alz.13472] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Verbal fluency tasks are common in Alzheimer's disease (AD) assessments. Yet, standard valid response counts fail to reveal disease-specific semantic memory patterns. Here, we leveraged automated word-property analysis to capture neurocognitive markers of AD vis-à-vis behavioral variant frontotemporal dementia (bvFTD). METHODS Patients and healthy controls completed two fluency tasks. We counted valid responses and computed each word's frequency, granularity, neighborhood, length, familiarity, and imageability. These features were used for group-level discrimination, patient-level identification, and correlations with executive and neural (magnetic resonanance imaging [MRI], functional MRI [fMRI], electroencephalography [EEG]) patterns. RESULTS Valid responses revealed deficits in both disorders. Conversely, frequency, granularity, and neighborhood yielded robust group- and subject-level discrimination only in AD, also predicting executive outcomes. Disease-specific cortical thickness patterns were predicted by frequency in both disorders. Default-mode and salience network hypoconnectivity, and EEG beta hypoconnectivity, were predicted by frequency and granularity only in AD. DISCUSSION Word-property analysis of fluency can boost AD characterization and diagnosis. HIGHLIGHTS We report novel word-property analyses of verbal fluency in AD and bvFTD. Standard valid response counts captured deficits and brain patterns in both groups. Specific word properties (e.g., frequency, granularity) were altered only in AD. Such properties predicted cognitive and neural (MRI, fMRI, EEG) patterns in AD. Word-property analysis of fluency can boost AD characterization and diagnosis.
Collapse
Affiliation(s)
- Franco J. Ferrante
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Facultad de IngenieríaUniversidad de Buenos Aires (FIUBA)CABAArgentina
| | - Joaquín Migeot
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbáñezLas CondesChile
| | - Agustina Birba
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Instituto Universitario de NeurocienciaUniversidad de La LagunaLa LagunaTenerifeEspaña
- Cognitive Department of PsychologyUniversidad de La LagunaLa LagunaTenerifeEspaña
| | - Lucía Amoruso
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Basque Center on Cognition Brain and Language (BCBL)San SebastiánGipuzkoaEspaña
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Gonzalo Pérez
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Facultad de IngenieríaUniversidad de Buenos Aires (FIUBA)CABAArgentina
| | - Eugenia Hesse
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Departamento de Matemática y CienciasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Departamento de FísicaUniversidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA‐CONICET)CABAArgentina
| | - Claudio Estienne
- Instituto de Ingeniería BiomédicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Cecilia Serrano
- Unidad de Neurología CognitivaHospital César MilsteinCABAArgentina
| | - Andrea Slachevsky
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC)Physiopathology Department ‐ ICBMNeurocience and East Neuroscience DepartmentsFaculty of MedicineUniversity of ChileProvidenciaSantiagoChile
- Geroscience Center for Brain Health and Metabolism (GERO)Faculty of MedicineUniversity of ChileProvidenciaSantiagoChile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology DepartmentHospital del Salvador and Faculty of MedicineUniversity of ChileProvidenciaSantiagoChile
- Servicio de NeurologíaDepartamento de MedicinaClínica Alemana‐Universidad del DesarrolloLas CondesRegión MetropolitanaChile
| | - Diana Matallana
- Instituto de EnvejecimientoDepartment of PsychiatrySchool of MedicinePontifical Xaverian UniversityBogotáColombia
- Department of Mental HealthHospital Universitario Santa Fe de BogotáBogotáColombia
| | - Pablo Reyes
- Centro de Memoria y CogniciónIntellectus‐Hospital Universitario San IgnacioBogotáColombia
- Pontificia Universidad JaverianaDepartments of PhysiologyPsychiatry and Aging InstituteBogotáColombia
| | - Agustín Ibáñez
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, USATrinity College DublinDublinIreland
| | - Sol Fittipaldi
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, USATrinity College DublinDublinIreland
| | - Cecilia Gonzalez Campo
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - Adolfo M. García
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, USATrinity College DublinDublinIreland
- Departamento de Lingüística y LiteraturaFacultad de HumanidadesUniversidad de Santiago de ChileEstación CentralSantiagoChile
| |
Collapse
|
17
|
Cai Y, Peng Z, He Q, Sun P. Behavioral variant frontotemporal dementia associated with GRN and ErbB4 gene mutations: a case report and literature review. BMC Med Genomics 2024; 17:43. [PMID: 38291418 PMCID: PMC10829211 DOI: 10.1186/s12920-024-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE To report the clinical manifestation and genetic characteristics of a patient having frontotemporal dementia (FTD) with abnormal behavior and unstable walking. METHODS The clinical and imaging features of a patient who was eventually diagnosed with FTD were analyzed. The patient's neuropsychological, PET-CT, electromyography, and genetic data were collected. Furthermore, the patient's blood samples were examined for FTD-related genes. RESULTS The patient was a 52-year-old man with hidden onset. The symptoms progressed gradually, presenting with abnormal behaviors, including repeated shopping, taking away other people's things, constantly eating snacks, and frequently calling friends at night. The patient also exhibited executive dysfunction, such as the inability to cook and multiple driving problems, e.g., constantly deviates from his lane while driving. In addition, the patient showed personality changes such as irritability, indifference, and withdrawal, as well as motor symptoms, including unstable walking and frequent falls when walking. Brain magnetic resonance imaging revealed hippocampal sclerosis along with widening and deepening of the bilateral temporal lobe sulcus. Brain metabolic imaging via PET-CT demonstrated decreased metabolism in the bilateral prefrontal lobe, with the abnormal energy metabolism indicating FTD. Lastly, blood sample analysis detected mutations in the amyotrophic lateral sclerosis (ALS)-related GRN gene c.1352C > T (p.P451L) and ErbB4 gene c.256 T > C (p.Y86H). CONCLUSION This is the first case of heterozygous mutations in the GRN and ErbB4 genes in FTD alone. The GRN and ErbB4 genes are likely to be important in the pathogenesis of FTD, expanding the common genetic profile of ALS and FTD.
Collapse
Affiliation(s)
- Youde Cai
- Department of Neurology, The Second People's Hospital of Guiyang, No. 547 Jinyang South Road, Guiyang, Guizhou Province, 550000, China
| | - Zhongyong Peng
- Department of Neurology, The Second People's Hospital of Guiyang, No. 547 Jinyang South Road, Guiyang, Guizhou Province, 550000, China
| | - Qiansong He
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550000, China
| | - Ping Sun
- Department of Neurology, The Second People's Hospital of Guiyang, No. 547 Jinyang South Road, Guiyang, Guizhou Province, 550000, China.
| |
Collapse
|
18
|
Toro-Hernández FD, Migeot J, Marchant N, Olivares D, Ferrante F, González-Gómez R, González Campo C, Fittipaldi S, Rojas-Costa GM, Moguilner S, Slachevsky A, Chaná Cuevas P, Ibáñez A, Chaigneau S, García AM. Neurocognitive correlates of semantic memory navigation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:15. [PMID: 38195756 PMCID: PMC10776628 DOI: 10.1038/s41531-024-00630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Cognitive studies on Parkinson's disease (PD) reveal abnormal semantic processing. Most research, however, fails to indicate which conceptual properties are most affected and capture patients' neurocognitive profiles. Here, we asked persons with PD, healthy controls, and individuals with behavioral variant frontotemporal dementia (bvFTD, as a disease control group) to read concepts (e.g., 'sun') and list their features (e.g., hot). Responses were analyzed in terms of ten word properties (including concreteness, imageability, and semantic variability), used for group-level comparisons, subject-level classification, and brain-behavior correlations. PD (but not bvFTD) patients produced more concrete and imageable words than controls, both patterns being associated with overall cognitive status. PD and bvFTD patients showed reduced semantic variability, an anomaly which predicted semantic inhibition outcomes. Word-property patterns robustly classified PD (but not bvFTD) patients and correlated with disease-specific hypoconnectivity along the sensorimotor and salience networks. Fine-grained semantic assessments, then, can reveal distinct neurocognitive signatures of PD.
Collapse
Affiliation(s)
- Felipe Diego Toro-Hernández
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Paulo, Brazil
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Joaquín Migeot
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nicolás Marchant
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Daniela Olivares
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Laboratorio de Neuropsicología y Neurociencias Clínicas, Universidad de Chile, Santiago, Chile
| | - Franco Ferrante
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raúl González-Gómez
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Cecilia González Campo
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Gonzalo M Rojas-Costa
- Department of Radiology, Clínica las Condes, Santiago, Chile
- Advanced Epilepsy Center, Clínica las Condes, Santiago, Chile
- Join Unit FISABIO-CIPF, Valencia, Spain
- School of Medicine, Finis Terrae University, Santiago, Chile
- Health Innovation Center, Clínica Las Condes, Santiago, Chile
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Center (CMYN), Neurology Department, Hospital del Salvador & Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopatology Program - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Neurology and Psychiatry Department, Clínica Alemana-Universidad Desarrollo, Santiago, Chile
| | - Pedro Chaná Cuevas
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Sergio Chaigneau
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Cognition Research, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Adolfo M García
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile.
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina.
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland.
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Ivanova O, Martínez-Nicolás I, Meilán JJG. Speech changes in old age: Methodological considerations for speech-based discrimination of healthy ageing and Alzheimer's disease. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:13-37. [PMID: 37140204 DOI: 10.1111/1460-6984.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Recent evidence suggests that speech substantially changes in ageing. As a complex neurophysiological process, it can accurately reflect changes in the motor and cognitive systems underpinning human speech. Since healthy ageing is not always easily discriminable from early stages of dementia based on cognitive and behavioural hallmarks, speech is explored as a preclinical biomarker of pathological itineraries in old age. A greater and more specific impairment of neuromuscular activation, as well as a specific cognitive and linguistic impairment in dementia, unchain discriminating changes in speech. Yet, there is no consensus on such discriminatory speech parameters, neither on how they should be elicited and assessed. AIMS To provide a state-of-the-art on speech parameters that allow for early discrimination between healthy and pathological ageing; the aetiology of these parameters; the effect of the type of experimental stimuli on speech elicitation and the predictive power of different speech parameters; and the most promising methods for speech analysis and their clinical implications. METHODS & PROCEDURES A scoping review methodology is used in accordance with the PRISMA model. Following a systematic search of PubMed, PsycINFO and CINAHL, 24 studies are included and analysed in the review. MAIN CONTRIBUTION The results of this review yield three key questions for the clinical assessment of speech in ageing. First, acoustic and temporal parameters are more sensitive to changes in pathological ageing and, of these two, temporal variables are more affected by cognitive impairment. Second, different types of stimuli can trigger speech parameters with different degree of accuracy for the discrimination of clinical groups. Tasks with higher cognitive load are more precise in eliciting higher levels of accuracy. Finally, automatic speech analysis for the discrimination of healthy and pathological ageing should be improved for both research and clinical practice. CONCLUSIONS & IMPLICATIONS Speech analysis is a promising non-invasive tool for the preclinical screening of healthy and pathological ageing. The main current challenges of speech analysis in ageing are the automatization of its clinical assessment and the consideration of the speaker's cognitive background during evaluation. WHAT THIS PAPER ADDS What is already known on the subject Societal aging goes hand in hand with the rising incidence of ageing-related neurodegenerations, mainly Alzheimer's disease (AD). This is particularly noteworthy in countries with longer life expectancies. Healthy ageing and early stages of AD share a set of cognitive and behavioural characteristics. Since there is no cure for dementias, developing methods for accurate discrimination of healthy ageing and early AD is currently a priority. Speech has been described as one of the most significantly impaired features in AD. Neuropathological alterations in motor and cognitive systems would underlie specific speech impairment in dementia. Since speech can be evaluated quickly, non-invasively and inexpensively, its value for the clinical assessment of ageing itineraries may be particularly high. What this paper adds to existing knowledge Theoretical and experimental advances in the assessment of speech as a marker of AD have developed rapidly over the last decade. Yet, they are not always known to clinicians. Furthermore, there is a need to provide an updated state-of-the-art on which speech features are discriminatory to AD, how they can be assessed, what kind of results they can yield, and how such results should be interpreted. This article provides an updated overview of speech profiling, methods of speech measurement and analysis, and the clinical power of speech assessment for early discrimination of AD as the most common cause of dementia. What are the potential or actual clinical implications of this work? This article provides an overview of the predictive potential of different speech parameters in relation to AD cognitive impairment. In addition, it discusses the effect that the cognitive state, the type of elicitation task and the type of assessment method may have on the results of the speech-based analysis in ageing.
Collapse
Affiliation(s)
- Olga Ivanova
- Spanish Language Department, Faculty of Philology, University of Salamanca, Salamanca, Spain
- Institute of Neuroscience of Castilla y León, Salamanca, Spain
| | - Israel Martínez-Nicolás
- Department of Basic Psychology, Psychobiology and Behavioral Science Methodology, Faculty of Psychology, University of Salamanca, Salamanca, Spain
- Institute of Neuroscience of Castilla y León, Salamanca, Spain
| | - Juan José García Meilán
- Department of Basic Psychology, Psychobiology and Behavioral Science Methodology, Faculty of Psychology, University of Salamanca, Salamanca, Spain
- Institute of Neuroscience of Castilla y León, Salamanca, Spain
| |
Collapse
|
20
|
García AM, de Leon J, Tee BL, Blasi DE, Gorno-Tempini ML. Speech and language markers of neurodegeneration: a call for global equity. Brain 2023; 146:4870-4879. [PMID: 37497623 PMCID: PMC10690018 DOI: 10.1093/brain/awad253] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
In the field of neurodegeneration, speech and language assessments are useful for diagnosing aphasic syndromes and for characterizing other disorders. As a complement to classic tests, scalable and low-cost digital tools can capture relevant anomalies automatically, potentially supporting the quest for globally equitable markers of brain health. However, this promise remains unfulfilled due to limited linguistic diversity in scientific works and clinical instruments. Here we argue for cross-linguistic research as a core strategy to counter this problem. First, we survey the contributions of linguistic assessments in the study of primary progressive aphasia and the three most prevalent neurodegenerative disorders worldwide-Alzheimer's disease, Parkinson's disease, and behavioural variant frontotemporal dementia. Second, we address two forms of linguistic unfairness in the literature: the neglect of most of the world's 7000 languages and the preponderance of English-speaking cohorts. Third, we review studies showing that linguistic dysfunctions in a given disorder may vary depending on the patient's language and that English speakers offer a suboptimal benchmark for other language groups. Finally, we highlight different approaches, tools and initiatives for cross-linguistic research, identifying core challenges for their deployment. Overall, we seek to inspire timely actions to counter a looming source of inequity in behavioural neurology.
Collapse
Affiliation(s)
- Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires B1644BID, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Latin American Brain Health (BrainLat) Institute, Universidad Adolfo Ibáñez, Avenida Diagonal Las Torres 2640 (7941169), Santiago, Peñalolén, Región Metropolitana, Chile
| | - Jessica de Leon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Damián E Blasi
- Data Science Initiative, Harvard University, Cambridge, MA 02138, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Robin J, Xu M, Kaufman LD, Simpson W, McCaughey S, Tatton N, Wolfus C, Ward M. Development of a Speech-based Composite Score for Remotely Quantifying Language Changes in Frontotemporal Dementia. Cogn Behav Neurol 2023; 36:237-248. [PMID: 37878468 PMCID: PMC10683975 DOI: 10.1097/wnn.0000000000000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/07/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Changes to speech and language are common symptoms across different subtypes of frontotemporal dementia (FTD). These changes affect the ability to communicate, impacting everyday functions. Accurately assessing these changes may help clinicians to track disease progression and detect response to treatment. OBJECTIVE To determine which aspects of speech show significant change over time and to develop a novel composite score for tracking speech and language decline in individuals with FTD. METHOD We recruited individuals with FTD to complete remote digital speech assessments based on a picture description task. Speech samples were analyzed to derive acoustic and linguistic measures of speech and language, which were tested for longitudinal change over the course of the study and were used to compute a novel composite score. RESULTS Thirty-six (16 F, 20 M; M age = 61.3 years) individuals were enrolled in the study, with 27 completing a follow-up assessment 12 months later. We identified eight variables reflecting different aspects of language that showed longitudinal decline in the FTD clinical syndrome subtypes and developed a novel composite score based on these variables. The resulting composite score demonstrated a significant effect of change over time, high test-retest reliability, and a correlation with standard scores on various other speech tasks. CONCLUSION Remote digital speech assessments have the potential to characterize speech and language abilities in individuals with FTD, reducing the burden of clinical assessments while providing a novel measure of speech and language abilities that is sensitive to disease and relevant to everyday function.
Collapse
Affiliation(s)
- Jessica Robin
- Winterlight Labs, Incorporated, Toronto, Ontario, Canada
| | - Mengdan Xu
- Winterlight Labs, Incorporated, Toronto, Ontario, Canada
| | | | - William Simpson
- Winterlight Labs, Incorporated, Toronto, Ontario, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | - Michael Ward
- Alector, Incorporated, San Francisco, California
| |
Collapse
|
22
|
Cabrera-Martín MN, Nespral P, Valles-Salgado M, Bascuñana P, Delgado-Alonso C, Delgado-Álvarez A, Fernández-Romero L, López-Carbonero JI, Díez-Cirarda M, Gil-Moreno MJ, Matías-Guiu J, Matias-Guiu JA. FDG-PET-based neural correlates of Addenbrooke's cognitive examination III scores in Alzheimer's disease and frontotemporal degeneration. Front Psychol 2023; 14:1273608. [PMID: 38034292 PMCID: PMC10687370 DOI: 10.3389/fpsyg.2023.1273608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The Addenbrooke's Cognitive Examination III (ACE-III) is a brief test useful for neuropsychological assessment. Several studies have validated the test for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD). In this study, we aimed to examine the metabolic correlates associated with the performance of ACE-III in AD and behavioral variant FTD. Methods We enrolled 300 participants in a cross-sectional study, including 180 patients with AD, 60 with behavioral FTD (bvFTD), and 60 controls. An 18F-Fluorodeoxyglucose positron emission tomography study was performed in all cases. Correlation between the ACE-III and its domains (attention, memory, fluency, language, and visuospatial) with the brain metabolism was estimated. Results The ACE-III showed distinct neural correlates in bvFTD and AD, effectively capturing the most relevant regions involved in these disorders. Neural correlates differed for each domain, especially in the case of bvFTD. Lower ACE-III scores were associated with more advanced stages in both disorders. The ACE-III exhibited high discrimination between bvFTD vs. HC, and between AD vs. HC. Additionally, it was sensitive to detect hypometabolism in brain regions associated with bvFTD and AD. Conclusion Our study contributes to the knowledge of the brain regions associated with ACE-III, thereby facilitating its interpretation, and highlighting its suitability for screening and monitoring. This study provides further validation of ACE-III in the context of AD and FTD.
Collapse
Affiliation(s)
- María Nieves Cabrera-Martín
- Department of Neurology, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Pedro Nespral
- Department of Neurology, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Maria Valles-Salgado
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Pablo Bascuñana
- Department of Neurology, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Alfonso Delgado-Álvarez
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Lucía Fernández-Romero
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Juan Ignacio López-Carbonero
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - María Díez-Cirarda
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - María José Gil-Moreno
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Jorge Matías-Guiu
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| | - Jordi A. Matias-Guiu
- Department of Nuclear Medicine, San Carlos Institute for Health Research (IdISSC), Universidad Complutense, Madrid, Spain
| |
Collapse
|
23
|
Parsapoor M. AI-based assessments of speech and language impairments in dementia. Alzheimers Dement 2023; 19:4675-4687. [PMID: 37578167 DOI: 10.1002/alz.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023]
Abstract
Recent advancements in the artificial intelligence (AI) domain have revolutionized the early detection of cognitive impairments associated with dementia. This has motivated clinicians to use AI-powered dementia detection systems, particularly systems developed based on individuals' and patients' speech and language, for a quick and accurate identification of patients with dementia. This paper reviews articles about developing assessment tools using machine learning and deep learning algorithms trained by vocal and textual datasets.
Collapse
Affiliation(s)
- Mahboobeh Parsapoor
- Centre de Recherche Informatique de Montréal: CRIM, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Samra K, MacDougall AM, Bouzigues A, Bocchetta M, Cash DM, Greaves CV, Convery RS, van Swieten JC, Jiskoot L, Seelaar H, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tiraboschi P, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Rohrer JD, Russell LL. Prodromal language impairment in genetic frontotemporal dementia within the GENFI cohort. J Neurol Sci 2023; 451:120711. [PMID: 37348248 DOI: 10.1016/j.jns.2023.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE To identify whether language impairment exists presymptomatically in genetic frontotemporal dementia (FTD), and if so, the key differences between the main genetic mutation groups. METHODS 682 participants from the international multicentre Genetic FTD Initiative (GENFI) study were recruited: 290 asymptomatic and 82 prodromal mutation carriers (with C9orf72, GRN, and MAPT mutations) as well as 310 mutation-negative controls. Language was assessed using items from the Progressive Aphasia Severity Scale, as well as the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency task. Participants also underwent a 3 T volumetric T1-weighted MRI from which regional brain volumes within the language network were derived and compared between the groups. RESULTS 3% of asymptomatic (4% C9orf72, 4% GRN, 2% MAPT) and 48% of prodromal (46% C9orf72, 42% GRN, 64% MAPT) mutation carriers had impairment in at least one language symptom compared with 13% of controls. In prodromal mutation carriers significantly impaired word retrieval was seen in all three genetic groups whilst significantly impaired grammar/syntax and decreased fluency was seen only in C9orf72 and GRN mutation carriers, and impaired articulation only in the C9orf72 group. Prodromal MAPT mutation carriers had significant impairment on the category fluency task and the BNT whilst prodromal C9orf72 mutation carriers were impaired on the category fluency task only. Atrophy in the dominant perisylvian language regions differed between groups, with earlier, more widespread volume loss in C9orf72, and later focal atrophy in the temporal lobe in MAPT mutation carriers. CONCLUSIONS Language deficits exist in the prodromal but not asymptomatic stages of genetic FTD across all three genetic groups. Improved understanding of the language phenotype prior to phenoconversion to fully symptomatic FTD will help develop outcome measures for future presymptomatic trials.
Collapse
Affiliation(s)
- Kiran Samra
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amy M MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lize Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alexandre de Mendonça
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK; Department of Brain Sciences, Imperial College London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences rares ou Précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND)
| | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, France; Inserm 1172, Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
25
|
Roelofs A. Cerebral atrophy as a cause of aphasia: From Pick to the modern era. Cortex 2023; 165:101-118. [PMID: 37276800 DOI: 10.1016/j.cortex.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
In his epoch-making monograph, Wernicke (1874) claimed that atrophy of the brain cannot cause aphasia. Refuting this claim, Pick (1892, 1898, 1901, 1904a) documented in increasing detail several cases of aphasia with circumscribed atrophy of the left temporal lobe, frontal lobe, or both, which persuaded Wernicke (1906). To explain why the atrophy is circumscribed and leads to focal symptoms, Pick (1908a) advanced a functional network account. Behavioral, neuroanatomical, and histopathological studies by Dejerine and Sérieux, Fischer, Alzheimer, Altman, Gans, Onari and Spatz, and Stertz further illuminated the clinical syndromes, the exact spatial distributions of the atrophy, the underlying disease, and its laminar specificity. Unaware of these seminal studies, research from the 1970s until now has independently rediscovered all key findings, and also supports Pick's forgotten functional account of the distribution of atrophy and the focal symptoms. His frontal and temporal forms of aphasia foreshadowed what are now called the nonfluent/agrammatic and semantic variants of primary progressive aphasia. Moreover, aphasic symptoms may occur with frontal degeneration (what used to be called "Pick's disease") that yields personality changes and behavioral disturbances, now called the behavioral variant of frontotemporal dementia.
Collapse
Affiliation(s)
- Ardi Roelofs
- Donders Centre for Cognition, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
26
|
Mancano M, Papagno C. Concrete and Abstract Concepts in Primary Progressive Aphasia and Alzheimer's Disease: A Scoping Review. Brain Sci 2023; 13:765. [PMID: 37239237 PMCID: PMC10216362 DOI: 10.3390/brainsci13050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The concreteness effect (CE), namely a better performance with concrete compared to abstract concepts, is a constant feature in healthy people, and it usually increases in persons with aphasia (PWA). However, a reversal of the CE has been reported in patients affected by the semantic variant of Primary Progressive Aphasia (svPPA), a neurodegenerative disease characterized by anterior temporal lobe (ATL) atrophy. The present scoping review aims at identifying the extent of evidence regarding the abstract/concrete contrast in Alzheimer's disease (AD) and svPPA and associated brain atrophy. Five online databases were searched up to January 2023 to identify papers where both concrete and abstract concepts were investigated. Thirty-one papers were selected and showed that while in patients with AD, concrete words were better processes than abstract ones, in most svPPA patients, there was a reversal of the CE, with five studies correlating the size of this effect with ATL atrophy. Furthermore, the reversal of CE was associated with category-specific impairments (living things) and with a selective deficit of social words. Future work is needed to disentangle the role of specific portions of the ATL in concept representation.
Collapse
Affiliation(s)
- Martina Mancano
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy;
| | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy;
- CISMed Interdepartmental Center for Medical Sciences, University of Trento, 38122 Trento, Italy
| |
Collapse
|
27
|
Samra K, MacDougall AM, Bouzigues A, Bocchetta M, Cash DM, Greaves CV, Convery RS, van Swieten JC, Seelaar H, Jiskoot L, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tiraboschi P, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Rohrer JD, Russell LL. Language impairment in the genetic forms of behavioural variant frontotemporal dementia. J Neurol 2023; 270:1976-1988. [PMID: 36538154 PMCID: PMC10025186 DOI: 10.1007/s00415-022-11512-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Behavioural variant fronto-temporal dementia (bvFTD) is characterised by a progressive change in personality in association with atrophy of the frontal and temporal lobes. Whilst language impairment has been described in people with bvFTD, little is currently known about the extent or type of linguistic difficulties that occur, particularly in the genetic forms. METHODS Participants with genetic bvFTD along with healthy controls were recruited from the international multicentre Genetic FTD Initiative (GENFI). Linguistic symptoms were assessed using items from the Progressive Aphasia Severity Scale (PASS). Additionally, participants undertook the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency test. Participants underwent a 3T volumetric T1-weighted MRI, with language network regional brain volumes measured and compared between the genetic groups and controls. RESULTS 76% of the genetic bvFTD cohort had impairment in at least one language symptom: 83% C9orf72, 80% MAPT and 56% GRN mutation carriers. All three genetic groups had significantly impaired functional communication, decreased fluency, and impaired sentence comprehension. C9orf72 mutation carriers also had significantly impaired articulation and word retrieval as well as dysgraphia whilst the MAPT mutation group also had impaired word retrieval and single word comprehension. All three groups had difficulties with naming, semantic knowledge and verbal fluency. Atrophy in key left perisylvian language regions differed between the groups, with generalised involvement in the C9orf72 group and more focal temporal and insula involvement in the other groups. Correlates of language symptoms and test scores also differed between the groups. CONCLUSIONS Language deficits exist in a substantial proportion of people with familial bvFTD across all three genetic groups. Significant atrophy is seen in the dominant perisylvian language areas and correlates with language impairments within each of the genetic groups. Improved understanding of the language phenotype in the main genetic bvFTD subtypes will be helpful in future studies, particularly in clinical trials where accurate stratification and monitoring of disease progression is required.
Collapse
Affiliation(s)
- Kiran Samra
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Amy M MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lize Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Neurology Service, University Hospitals Leuven, Louvain, Belgium
- Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Alexandre de Mendonça
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau-ICM, Inserm U1127, CNRS UMR 7225, AP-HP-Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP-Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP-Hôpital Pitié-Salpêtrière, Paris, France
- Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | | |
Collapse
|
28
|
Roelofs A. Word production and comprehension in frontotemporal degeneration: A neurocognitive computational Pickian account. Cortex 2023; 163:42-56. [PMID: 37058880 DOI: 10.1016/j.cortex.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Over a century ago, Arnold Pick reported deterioration of word production and comprehension in frontotemporal degeneration, now a common finding. Individuals with semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD) present with word retrieval difficulty, while their comprehension is less affected. Computational models have illuminated naming and comprehension in poststroke and progressive aphasias, including SD, but there are no simulations for bvFTD. Here, the WEAVER++/ARC model, previously applied to poststroke and progressive aphasias, is extended to bvFTD. Simulations tested the hypothesis of a loss of activation capacity in semantic memory in SD and bvFTD, caused by network atrophy (Pick, 1908a). The outcomes revealed that capacity loss explains 97% of the variance in naming and comprehension of 100 individual patients. Moreover, capacity loss correlates with individual ratings of atrophy in the left anterior temporal lobe. These results support a unified account of word production and comprehension in SD and bvFTD.
Collapse
|
29
|
Ramanan S, El-Omar H, Roquet D, Ahmed RM, Hodges JR, Piguet O, Lambon Ralph MA, Irish M. Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia. Brain Commun 2023; 5:fcac344. [PMID: 36687395 PMCID: PMC9847565 DOI: 10.1093/braincomms/fcac344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two common clinical variants of frontotemporal dementia are the behavioural variant frontotemporal dementia, presenting with behavioural and personality changes attributable to prefrontal atrophy, and semantic dementia, displaying early semantic dysfunction primarily due to anterior temporal degeneration. Despite representing independent diagnostic entities, mounting evidence indicates overlapping cognitive-behavioural profiles in these syndromes, particularly with disease progression. Why such overlap occurs remains unclear. Understanding the nature of this overlap, however, is essential to improve early diagnosis, characterization and management of those affected. Here, we explored common cognitive-behavioural and neural mechanisms contributing to heterogeneous frontotemporal dementia presentations, irrespective of clinical diagnosis. This transdiagnostic approach allowed us to ascertain whether symptoms not currently considered core to these two syndromes are present in a significant proportion of cases and to explore the neural basis of clinical heterogeneity. Sixty-two frontotemporal dementia patients (31 behavioural variant frontotemporal dementia and 31 semantic dementia) underwent comprehensive neuropsychological, behavioural and structural neuroimaging assessments. Orthogonally rotated principal component analysis of neuropsychological and behavioural data uncovered eight statistically independent factors explaining the majority of cognitive-behavioural performance variation in behavioural variant frontotemporal dementia and semantic dementia. These factors included Behavioural changes, Semantic dysfunction, General Cognition, Executive function, Initiation, Disinhibition, Visuospatial function and Affective changes. Marked individual-level overlap between behavioural variant frontotemporal dementia and semantic dementia was evident on the Behavioural changes, General Cognition, Initiation, Disinhibition and Affective changes factors. Compared to behavioural variant frontotemporal dementia, semantic dementia patients displayed disproportionate impairment on the Semantic dysfunction factor, whereas greater impairment on Executive and Visuospatial function factors was noted in behavioural variant frontotemporal dementia. Both patient groups showed comparable magnitude of atrophy to frontal regions, whereas severe temporal lobe atrophy was characteristic of semantic dementia. Whole-brain voxel-based morphometry correlations with emergent factors revealed associations between fronto-insular and striatal grey matter changes with Behavioural, Executive and Initiation factor performance, bilateral temporal atrophy with Semantic dysfunction factor scores, parietal-subcortical regions with General Cognitive performance and ventral temporal atrophy associated with Visuospatial factor scores. Together, these findings indicate that cognitive-behavioural overlap (i) occurs systematically in frontotemporal dementia; (ii) varies in a graded manner between individuals and (iii) is associated with degeneration of different neural systems. Our findings suggest that phenotypic heterogeneity in frontotemporal dementia syndromes can be captured along continuous, multidimensional spectra of cognitive-behavioural changes. This has implications for the diagnosis of both syndromes amidst overlapping features as well as the design of symptomatic treatments applicable to multiple syndromes.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Hashim El-Omar
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Daniel Roquet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
30
|
A low-dimensional cognitive-network space in Alzheimer's disease and frontotemporal dementia. Alzheimers Res Ther 2022; 14:199. [PMID: 36581943 PMCID: PMC9798659 DOI: 10.1186/s13195-022-01145-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and frontotemporal dementia (FTD) show network dysfunctions linked with cognitive deficits. Within this framework, network abnormalities between AD and FTD show both convergent and divergent patterns. However, these functional patterns are far from being established and their relevance to cognitive processes remains to be elucidated. METHODS We investigated the relationship between cognition and functional connectivity of major cognitive networks in these diseases. Twenty-three bvFTD (age: 71±10), 22 AD (age: 72±6), and 20 controls (age: 72±6) underwent cognitive evaluation and resting-state functional MRI. Principal component analysis was used to describe cognitive variance across participants. Brain network connectivity was estimated with connectome analysis. Connectivity matrices were created assessing correlations between parcels within each functional network. The following cognitive networks were considered: default mode (DMN), dorsal attention (DAN), ventral attention (VAN), and frontoparietal (FPN) networks. The relationship between cognition and connectivity was assessed using a bootstrapping correlation and interaction analyses. RESULTS Three principal cognitive components explained more than 80% of the cognitive variance: the first component (cogPC1) loaded on memory, the second component (cogPC2) loaded on emotion and language, and the third component (cogPC3) loaded on the visuo-spatial and attentional domains. Compared to HC, AD and bvFTD showed impairment in all cogPCs (p<0.002), and bvFTD scored worse than AD in cogPC2 (p=0.031). At the network level, the DMN showed a significant association in the whole group with cogPC1 and cogPC2 and the VAN with cogPC2. By contrast, DAN and FPN showed a divergent pattern between diagnosis and connectivity for cogPC2. We confirmed these results by means of a multivariate analysis (canonical correlation). CONCLUSIONS A low-dimensional representation can account for a large variance in cognitive scores in the continuum from normal to pathological aging. Moreover, cognitive components showed both convergent and divergent patterns with connectivity across AD and bvFTD. The convergent pattern was observed across the networks primarily involved in these diseases (i.e., the DMN and VAN), while a divergent FC-cognitive pattern was mainly observed between attention/executive networks and the language/emotion cognitive component, suggesting the co-existence of compensatory and detrimental mechanisms underlying these components.
Collapse
|
31
|
Díaz-Rivera MN, Birba A, Fittipaldi S, Mola D, Morera Y, de Vega M, Moguilner S, Lillo P, Slachevsky A, González Campo C, Ibáñez A, García AM. Multidimensional inhibitory signatures of sentential negation in behavioral variant frontotemporal dementia. Cereb Cortex 2022; 33:403-420. [PMID: 35253864 PMCID: PMC9837611 DOI: 10.1093/cercor/bhac074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Mariano N Díaz-Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), C1425FQD, Godoy Cruz 2370, Buenos Aires, Argentina
| | - Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Débora Mola
- Instituto de Investigaciones Psicológicas, CONICET, 5000, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yurena Morera
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel de Vega
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Patricia Lillo
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, 8380000, Santiago, Chile.,Unidad de Neurología, Hospital San José, 8380000, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, Neuroscience and East Neuroscience Departments, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, 8380000, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, 7500000, Santiago, Chile.,Departamento de Medicina, Servicio de Neurología, Clínica Alemana-Universidad del Desarrollo, 7550000, Santiago, Chile
| | - Cecilia González Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 7550000, Santiago, Chile
| |
Collapse
|
32
|
Perez SD, Phillips JS, Norise C, Kinney NG, Vaddi P, Halpin A, Rascovsky K, Irwin DJ, McMillan CT, Xie L, Wisse LE, Yushkevich PA, Kallogjeri D, Grossman M, Cousins KA. Neuropsychological and Neuroanatomical Features of Patients with Behavioral/Dysexecutive Variant Alzheimer’s disease (AD): A Comparison to Behavioral Variant Frontotemporal Dementia and Amnestic AD Groups. J Alzheimers Dis 2022; 89:641-658. [PMID: 35938245 PMCID: PMC10117623 DOI: 10.3233/jad-215728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: An understudied variant of Alzheimer’s disease (AD), the behavioral/dysexecutive variant of AD (bvAD), is associated with progressive personality, behavior, and/or executive dysfunction and frontal atrophy. Objective: This study characterizes the neuropsychological and neuroanatomical features associated with bvAD by comparing it to behavioral variant frontotemporal dementia (bvFTD), amnestic AD (aAD), and subjects with normal cognition. Methods: Subjects included 16 bvAD, 67 bvFTD, and 18 aAD patients, and 26 healthy controls. Neuropsychological assessment and MRI data were compared between these groups. Results: Compared to bvFTD, bvAD showed more significant visuospatial impairments (Rey Figure copy and recall), more irritability (Neuropsychological Inventory), and equivalent verbal memory (Philadelphia Verbal Learning Test). Compared to aAD, bvAD indicated more executive dysfunction (F-letter fluency) and better visuospatial performance. Neuroimaging analysis found that bvAD showed cortical thinning relative to bvFTD posteriorly in left temporal-occipital regions; bvFTD had cortical thinning relative to bvAD in left inferior frontal cortex. bvAD had cortical thinning relative to aAD in prefrontal and anterior temporal regions. All patient groups had lower volumes than controls in both anterior and posterior hippocampus. However, bvAD patients had higher average volume than aAD patients in posterior hippocampus and higher volume than bvFTD patients in anterior hippocampus after adjustment for age and intracranial volume. Conclusion: Findings demonstrated that underlying pathology mediates disease presentation in bvAD and bvFTD.
Collapse
Affiliation(s)
- Sophia Dominguez Perez
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Jeffrey S. Phillips
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Norise
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolas G. Kinney
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prerana Vaddi
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Halpin
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Maine, Orono, ME, USA
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Irwin
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Long Xie
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Lab & Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura E.M. Wisse
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Lab & Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Paul A. Yushkevich
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Lab & Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorina Kallogjeri
- Department of Otolaryngology, Washington University, St. Louis, MO, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A.Q. Cousins
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Functional connectivity correlates of reduced goal-directed behaviors in behavioural variant frontotemporal dementia. Brain Struct Funct 2022; 227:2971-2989. [PMID: 35751676 DOI: 10.1007/s00429-022-02519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
We explored the resting state functional connectivity correlates of apathy assessed as a multidimensional construct, using behavioral metrics, in behavioral variant frontotemporal dementia (bvFTD). We recorded the behavior of 20 bvFTD patients and 16 healthy controls in a close-to-real-life situation including a free phase (FP-in which actions were self-initiated) and a guided phase (GP-in which initiation of actions was facilitated by external guidance). We investigated the activity time and walking episode features as quantifiers of apathy. We used the means ((FP + GP)/2) and the differences (FP-GP) calculated for these metrics as well as measures by questionnaires to extract apathy dimensions by factor analysis. We assessed two types of fMRI-based resting state connectivity measures (local activity and seed-based connectivity) and explored their relationship with extracted apathy dimensions. Apathy in bvFTD was associated with lower time spent in activity combined with walking episodes of higher frequency, lower acceleration and higher duration. Using these behavioral metrics and apathy measures by questionnaires, we disentangled two dimensions: the global reduction of goal-directed behaviors and the specific deficit of self-initiation. Global apathy was associated with lower resting state activity within prefrontal cortex and lower connectivity of salience network hubs while the decrease in self-initiation was related to increased connectivity of parietal default-mode network hubs. Through a novel dimensional approach, we dissociated the functional connectivity correlates of global apathy and self-initiation deficit. We discussed in particular the role of the modified connectivity of lateral parietal cortex in the volitional process.
Collapse
|
34
|
García AM, Ibáñez A, Miller B, Gorno Tempini ML. Editorial: The Unusual Suspects: Linguistic Deficits in Non-Language-Dominant Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:861041. [PMID: 35250552 PMCID: PMC8888668 DOI: 10.3389/fnagi.2022.861041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adolfo M. García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States; and Trinity College Dublin, Dublin, Ireland
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibáñez
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States; and Trinity College Dublin, Dublin, Ireland
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Bruce Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Luisa Gorno Tempini
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|