1
|
Li H, Liu Q, Shan Q, Xu H, Wang J, Liu L, Wang Y. Identification of mitochondrial-related causal genes for major depression disorder via integrating multi-omics. J Affect Disord 2025; 382:540-548. [PMID: 40274126 DOI: 10.1016/j.jad.2025.04.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
CONTEXT Mitochondria dysfunction plays a pivotal role in major depressive disorder (MDD), but the causal link between mitochondria dysfunction and MDD remains unclear. AIMS This study aimed to explore the causal effects of mitochondrial-related genes (MRGs) on MDD by integrating multi-omics data. METHODS Summary statistics of DNA methylation, gene expression, and protein for MRGs were obtained from the corresponding quantitative trait loci in European ancestry individuals. GWAS summary statistics for MDD were sourced from the Psychiatric Genomics Consortium (PGC, discovery) and FinnGen R10 study (replication). Summary-data-based Mendelian Randomization (SMR) was performed to assess the association between DNA methylation, gene expression, and protein abundances of MRGs with the risk of MDD. Colocalization analysis was employed to assess the potential shared genetic variants between MRGs and MDD. Two-sample MR was conducted to assess the sensitivity of the SMR results. Single-nucleus RNA-sequencing (snRNA-seq) and bulk RNA-seq data were used to explore the candidate MRG expression. RESULTS We identified methylation levels of PPTC7 (cg08752433) and methylation levels of VRS2 (cg07945879, cg14935711, cg00244776, cg15848685, cg12457901, cg16958594) associated with a decreased risk of MDD. Conversely, the methylation levels of VRS2 (cg26784891, cg05853013, cg04966294) and MRPL46 (cg00200755) were associated with increased risk of MDD. High expression of COQ8A and TRMT10C were associated with an increased risk of MDD. Notably, COQ8A was predominantly expressed in both inhibitory and excitatory neurons in MDD patients. CONCLUSION This study established a causal relationship between mitochondrial dysfunction and MDD, identifying candidate MRGs, and providing potential diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Hongping Li
- Guizhou Medical University, Guiyang 551113, China; Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Neurology, The Second People's Hospital of Guiyang (Jinyang Hospital), The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550023, China
| | - Qing Liu
- Department of Neurology, The Second People's Hospital of Guiyang (Jinyang Hospital), The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550023, China
| | - Qing Shan
- Guizhou Medical University, Guiyang 551113, China
| | - Huasen Xu
- Guizhou Medical University, Guiyang 551113, China
| | - Junwen Wang
- Guizhou Medical University, Guiyang 551113, China; Department of Psychiatry, The Second People's Hospital of Guiyang (Jinyang Hospital), The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550023, China
| | - Longfei Liu
- Guizhou Medical University, Guiyang 551113, China
| | - Yiming Wang
- Guizhou Medical University, Guiyang 551113, China; Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
2
|
Adamczyk PM, Shaw A, Morella IM, More L. Neurobiology, molecular pathways, and environmental influences in antisocial traits and personality disorders. Neuropharmacology 2025; 269:110322. [PMID: 39864585 DOI: 10.1016/j.neuropharm.2025.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30%-60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors. Environmental factors, including childhood trauma and chronic stress, interact with genetic predispositions to induce epigenetic modifications like DNA methylation and histone modifications, contributing to PD development. Neurobiological research has identified structural and functional abnormalities in brain regions related to emotional regulation and social cognition, such as the amygdala, prefrontal cortex, and limbic system. These abnormalities are linked to impaired emotion processing and interpersonal functioning in PDs. This review focuses on how environmental factors shape maladaptive behaviours and endophenotypes central to many PDs. It explores the interaction between the Ras-ERK, p38, and mTOR molecular pathways in response to environmental stimuli, and examines the role of oxidative stress and mitochondrial metabolism in these processes. Also reviewed are various types of PDs and existing animal models that replicate key endophenotypes, highlighting changes in neurotransmitters and neurohormones. Identifying molecular biomarkers can lead to the development of "enviromimetic" drugs, which mimic environmental influences to activate molecular pathways, facilitating targeted, personalized treatments based on the molecular profiles of individuals with PDs. Ultimately, understanding the molecular mechanisms of PDs promises to enhance diagnostic accuracy, prognosis, and therapeutic outcomes for affected individuals.
Collapse
Affiliation(s)
- Patryk M Adamczyk
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK
| | - Andrew Shaw
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | - Ilaria M Morella
- University of Pavia, Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia, Italy; Cardiff University, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK.
| | - Lorenzo More
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK.
| |
Collapse
|
3
|
Liu Y, Tong J, Chen L, Chen W, Yang Y. Nutritional frailty and the incidence of depression and anxiety among middle-aged and older adults: A prospective cohort study. Clin Nutr 2025; 50:10-19. [PMID: 40359760 DOI: 10.1016/j.clnu.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/12/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND & AIMS Frailty has been linked to an increased risk of mental disorders. However, little is known about the impact of nutritional frailty, a crucial phenotype of frailty, on depression and anxiety. We aimed to examine the prospective associations between nutritional frailty and the incidence and progression of depression and anxiety among middle-aged and older adults. METHODS Data were obtained from a large prospective cohort study with over 500,000 participants. Nutritional frailty was defined as the copresence of physical frailty (assessed by weight loss, exhaustion, low physical activity level, slowness, and weakness) and nutritional imbalance (assessed by body mass index, skeletal muscle index, and sodium, potassium, and iron intake). Depression, anxiety, and their comorbidity were identified via the International Statistical Classification of Diseases and Related Health Problems, Ninth Revision and Tenth Revision, on the basis of the primary or secondary diagnosis. We performed Cox proportional hazards models to investigate the associations between nutritional frailty and incident depression, anxiety, and their comorbidity. Multistate models were used to examine how nutritional frailty influences transitions from a baseline state to single mental disorders, their comorbidity, and mortality. RESULTS We included 176,987 participants with a mean age of 56.1 years (SD 8.0), of whom 2648 (1.5%) had nutritional frailty at baseline. During a median follow-up of 12.2 years, 4794 (2.7%) developed depression, 6081 (3.4%) developed anxiety, and 1610 (0.9%) developed both conditions. Individuals with nutritional frailty had a significantly greater risk of developing depression, anxiety, and their comorbidity than robust individuals and those with physical frailty and nutritional imbalance (depression: nutritional frailty HR 3.21 [95% CI 2.77-3.73]; physical frailty 3.11 [2.70-3.58]; nutritional imbalance 1.19 [1.11-1.28]; anxiety: 2.25 [1.93-2.63], 2.17 [1.87-2.51], 1.20 [1.13-1.28]; comorbidity: 3.69 [2.92-4.66], 3.43 [2.74-4.28], 1.31 [1.15-1.50]), even after multivariable adjustment. Baseline nutritional frailty adversely impacts transitions from a baseline state to single mental disorders (depression: 2.89 [2.49-3.36], anxiety: 1.82 [1.54-2.16]) and death (1.95 [1.71-2.22]), from single mental disorders to their comorbidity (depression: 1.96 [1.32-2.89]; anxiety 1.78 [1.17-2.71]), and from comorbidity to death (2.04 [1.07-3.91]). CONCLUSIONS Nutritional frailty is an independent risk factor for incident depression, anxiety, and their comorbidity and adversely influences the progression of these conditions among middle-aged and older adults.
Collapse
Affiliation(s)
- Yan Liu
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Jiani Tong
- Department of Learning, Informatics, Management and Ethics, Karolinska Institute, 171 77 Stockholm, Sweden.
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Chen
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Yang Yang
- School of Public Health, Imperial College London, London W12 0BZ, United Kingdom.
| |
Collapse
|
4
|
Cao T, Xu B, Li S, Qiu Y, Chen J, Wu H, Cai H. Bioenergetic biomarkers as predictive indicators and their relationship with cognitive function in newly diagnosed, drug-naïve patients with bipolar disorder. Transl Psychiatry 2025; 15:148. [PMID: 40229236 PMCID: PMC11997040 DOI: 10.1038/s41398-025-03367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Mitochondrial dysfunction and disrupted bioenergetic processes are critical in the pathogenesis of bipolar disorder (BD), with cognitive impairment being a prominent symptom linked to mitochondrial anomalies. The tricarboxylic acid (TCA) cycle, integral to mitochondrial energy production, may be implicated in this cognitive dysfunction, yet its specific association with BD remains underexplored. In this cross-sectional study, 144 first-episode, drug-naive BD patients and 51 healthy controls were assessed. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), serum TCA cycle metabolites were quantified, and cognitive function was evaluated through the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop color-word test. The study found that BD patients exhibited significantly elevated serum levels of several TCA metabolites compared to healthy controls, alongside lower cognitive function scores. Correlational analyses revealed that certain bioenergetic metabolites were significantly positively associated with anxiety and negatively correlated with cognitive performance in BD patients. Notably, succinic acid, α-Ketoglutaric acid (α-KG), and malic acid emerged as independent risk factors for BD, with their combined profile demonstrating diagnostic utility. These findings underscore the potential of serum bioenergetic metabolites as biomarkers for BD, providing insights into the mitochondrial dysfunction underlying cognitive impairment and offering a basis for early diagnosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - BaoYan Xu
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - SuJuan Li
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Qiu
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian, China
| | - JinDong Chen
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - HaiShan Wu
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China.
| |
Collapse
|
5
|
Zou M, Zhang Y, Du C, Yang B, Guo P, Liang H, Zhang Y, Tian W, Yang L, Liu D, Wu L, Sun C. Augmentation of Endogenous 2-Arachidonoylglycerol Mitigates Autistic Behaviors of BTBR Mice. Mol Neurobiol 2025; 62:5022-5038. [PMID: 39503811 DOI: 10.1007/s12035-024-04606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/28/2024] [Indexed: 03/05/2025]
Abstract
The lipid-based endocannabinoid (eCB) system regulates a host of developmental, physiological, and pathological processes in the mammalian brain, and recent studies have suggested that dysfunction of eCB system may contribute to the neuropathology of autism spectrum disorder (ASD). However, specific contributions to ASD-related developmental, cognitive, and behavioral phenotypes remain largely unexplored. The current study was designed to investigate if enhancing eCB signaling by blocking 2-arachidonoylglycerol (2-AG) hydrolase can mitigate ASD-like behaviors in a mouse model, and if such effects are associated with suppression of inflammatory signaling, oxidative stress, or neuronal apoptosis. Intraperitoneal injection of the 2-AG hydrolase monoacylglycerol lipase (MAGL) JZL184 (4, 16, or 40 mg/kg) elevated 2-AG and reversed eCB system metabolic enzymes and receptors expression deficits in BTBR T + ltpr3tf/J (BTBR) mouse model of ASD. Moreover, the hyperactivity, excessive stereotypy, impaired social behavior, and cognitive deficits characteristic of this animal model were significantly improved by JZL184. Concomitantly, JZL184 administration reversed the abnormal pro- and anti-inflammatory cytokine concentrations measured in the hippocampus of BTBR mice. In addition, JZL184 reversed the observed overexpression of pro-apoptotic Bax and underexpression of anti-apoptotic Bcl-2 in BTBR mice and enhanced neuronal numbers in hippocampal CA1 and CA3 regions. We also found that the behavioral test battery influenced eCB concentrations independently of JZL184 treatment. Collectively, these findings suggest that augmenting eCB signaling can mitigate ASD-related phenotypes by suppressing neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Yujue Zhang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Caiyao Du
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Bilin Yang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Peiwen Guo
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Huirong Liang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Yilin Zhang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Wenru Tian
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Lingyuan Yang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China
| | - Di Liu
- School of Marxism, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China.
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
6
|
Okeowo OM, Anadu VE, Ijomone OK, Aschner M, Ijomone OM. Combined Restraint Stress and Metal Exposure Paradigms in Rats: Unravelling Behavioural and Neurochemical Perturbations. Mol Neurobiol 2025; 62:4355-4376. [PMID: 39443350 DOI: 10.1007/s12035-024-04570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Accumulation of heavy metals (Mn and Ni) and prolonged exposure to stress are associated with adverse health outcomes. Various studies have shown the impacts of stress and metal exposures on brain function. However, no study has examined the effects of co-exposure to stress, Mn, and Ni on the brain. This study addresses this gap by evaluating oxidative and glial responses, apoptotic activity, as well as cognitive processes in a rat model. Adult Wistar rats were exposed to vehicle (control), restraint stress, 25 mg/kg of manganese (Mn) or nickel (Ni), or combined restraint stress plus Mn or Ni. Following treatment, rats were subjected to several behavioural paradigms to assess cognitive function. Enzyme activity, as well as ATPase levels, were evaluated. Thereafter, an immunohistochemical procedure was utilised to evaluate neurochemical markers of glial function, myelination, oxidative stress, and apoptosis in the hippocampus, prefrontal cortex (PFC), and striatum. Results showed that stress and metal exposure increased oxidative stress markers and reduced antioxidant levels. Further, combined stress and metal exposure reduced various forms of learning and memory ability in rats. In addition, there were alterations in Iba1 activity and Nrf2 levels, reduced Olig2 and myelin basic protein (MBP) levels, and increased caspase-3 expression. These neurotoxic outcomes were mostly exacerbated by co-exposure to stress and metals. Overall, our findings establish that stress and metal exposures impaired cognitive performance, induced oxidative stress and apoptosis, and led to demyelination effects which were worsened by combined stress and metal exposure.
Collapse
Affiliation(s)
- Oritoke M Okeowo
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria.
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria.
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Clairis N, Barakat A, Brochard J, Xin L, Sandi C. A neurometabolic mechanism involving dmPFC/dACC lactate in physical effort-based decision-making. Mol Psychiatry 2025; 30:899-913. [PMID: 39215184 PMCID: PMC11835727 DOI: 10.1038/s41380-024-02726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Motivation levels vary across individuals, yet the underlying mechanisms driving these differences remain elusive. The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) and the anterior insula (aIns) play crucial roles in effort-based decision-making. Here, we investigate the influence of lactate, a key metabolite involved in energy metabolism and signaling, on decisions involving both physical and mental effort, as well as its effects on neural activation. Using proton magnetic resonance spectroscopy and functional MRI in 63 participants, we find that higher lactate levels in the dmPFC/dACC are associated with reduced motivation for physical effort, a relationship mediated by neural activity within this region. Additionally, plasma and dmPFC/dACC lactate levels correlate, suggesting a systemic influence on brain metabolism. Supported by path analysis, our results highlight lactate's role as a modulator of dmPFC/dACC activity, hinting at a neurometabolic mechanism that integrates both peripheral and central metabolic states with brain function in effort-based decision-making.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Arthur Barakat
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jules Brochard
- Transdisciplinary Research Areas, Life and Health, University of Bonn, Bonn, Germany
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Enomoto Y, Shiromizu T, Yasojima S, Koiwa J, Kuroda Y, Ito H, Yuge M, Ohkawa M, Shibata R, Murakami H, Naruto T, Shiiya S, Omotani N, Nishimura Y, Kurosawa K. Two distinct phenotypes in Snijders Blok-Campeau syndrome and characterization of the behavioral phenotype in a zebrafish model. Eur J Hum Genet 2025:10.1038/s41431-025-01815-y. [PMID: 39988727 DOI: 10.1038/s41431-025-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Chromatin remodeling is an important system controlling gene expression. CHD3, which is a causative gene of Snijders Blok-Campeau syndrome (SNIBCPS), is a member of the chromodomain helicase DNA-binding (CHD) family related to chromatin remodeling. SNIBCPS is characterized by developmental delay (DD), intellectual disability (ID), macrocephaly, and facial features including a prominent forehead and hypertelorism. Hypersociability/overfriendliness is a notable behavioral feature in patients. Here, we describe five SNIBCPS patients with CHD3 variants from four families, including a sibling pair caused by parental gonosomal mosaicism. We observed two distinct phenotypes in our patients in accordance with previous observations. Phenotype 1: macrocephaly, hypertelorism, overgrowth, DD, and ID; and Phenotype 2: microcephaly, growth retardation, DD, and ID. Phenotype 1 was consistent with the typical SNIBCPS phenotype, while Phenotype 2 was distinct. To understand further the features of the patients with SNIBCPS, we generated chd3-knockout (KO) zebrafish using CRISPR-Cas9 genome editing. No morphological changes were observed in chd3-KO zebrafish. However, behavioral tests showed that chd3-KO zebrafish had strong and sustained interest in others, and were less aggressive toward others, suggesting a recapitulation of the hypersociability/overfriendliness phenotype in patients with SNIBCPS. Metabolomic analysis using whole brains showed changes in metabolites processed by specific mitochondrial enzymes in chd3-KO zebrafish. The administration of metformin, which reportedly ameliorates mitochondrial dysfunction and behavioral abnormalities, attenuated the abnormal behavior of chd3-KO zebrafish. Our study helps delineate the phenotypes of patients with SNIBCPS, provides insights into a characteristic behavior of the disease, and suggests a potential treatment to improve the behavioral symptoms of patients.
Collapse
Affiliation(s)
- Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Japan
| | - Sakyo Yasojima
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Junko Koiwa
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroaki Ito
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Momoka Ohkawa
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ryohei Shibata
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Shizuka Shiiya
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naoko Omotani
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan.
- Mie University Research Center for Cilia and Diseases, Tsu, Japan.
| | - Kenji Kurosawa
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan.
- Mie University Research Center for Cilia and Diseases, Tsu, Japan.
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.
- Department of Clinical Dysmorphology, Graduate School of Medicine, Mie University, Tsu, Japan.
| |
Collapse
|
9
|
Liu Y, Li Y, Li J, Rao H, Sun J, Xiu J, Wu N. Gypenosides alleviate oxidative stress in the hippocampus, promote mitophagy, and mitigate depressive-like behaviors induced by CUMS via SIRT1. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118823. [PMID: 39343109 DOI: 10.1016/j.jep.2024.118823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use and efficacy of Gynostemma [Gynostemma pentaphyllum (Thunb.) Makino], a versatile traditional Chinese herb, was first documented in the renowned pharmacopoeia, "Compendium of Materia Medica". Gypenosides (Gps), saponin components are the primary constituents responsible for its biological activities and clinical effects, which include antioxidant, immunoregulatory, antitumor, and neuroprotective properties. Pharmacological studies have shown that Gps has the potential to combat depression. However, the exact molecular mechanisms underlying its antidepressant effects remain unclear. AIM OF THE STUDY This study aims to elucidate the mechanisms underlying the antidepressant effects of Gps through antioxidative stress, utilizing an integrated approach that includes network pharmacology, molecular simulations, and experimental validation. MATERIALS AND METHODS Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS) and were orally administered doses of Gps (50 and 100 mg/kg) and fluoxetine (10 mg/kg). The regulatory effects of Gps on depression-like behaviors in CUMS rats and their impact on oxidative stress levels in the hippocampus region were evaluated. Network pharmacology was used to investigate the mechanisms by which Gps affects oxidative stress in depression, and was accompanied by molecular docking and dynamics simulations. CUMS rats were treated orally with Gps (100 mg/kg) and injected with EX527 for rescue experiments to validate the role of SIRT1 in antioxidative stress and evaluate the impact of Gps on mitophagy. RESULTS Gps ameliorated depression-like behaviors induced by CUMS in rats. The improvements observed included an increased sucrose preference, reduced immobility time in the tail suspension and forced swim tests, and an increased movement distance in the open-field test. Additionally, Gps effectively reduced reactive oxygen species, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine levels in the hippocampus, while increasing the contents of ATP, catalase, superoxide dismutase, and glutathione, indicating an increased capacity for antioxidative stress in the hippocampus. Furthermore, Gps increased the number of neuronal cells in the hippocampal CA1 region and the level of mitochondrial autophagy, with SIRT1 as a potential key target. Inhibition of SIRT1 expression by exposure to EX527 reversed the beneficial effects of Gps, further validating the critical role of SIRT1 in the regulation of oxidative stress and improving depression-like behavior. CONCLUSION Gps improved the antioxidative stress capacity of the hippocampus and promoted mitophagy in CUMS rats through SIRT1, thus protecting hippocampal neurons and improving depression-like behavior.
Collapse
Affiliation(s)
- Yuhang Liu
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yingfeng Li
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jingqi Li
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hui Rao
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jianfei Sun
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Jiangfan Xiu
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Ning Wu
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
10
|
Gao Y, Wang D, Wang Q, Wang J, Li S, Wang T, Hu X, Wan C. Causal Impacts of Psychiatric Disorders on Cognition and the Mediating Effect of Oxidative Stress: A Mendelian Randomization Study. Antioxidants (Basel) 2025; 14:162. [PMID: 40002349 PMCID: PMC11852177 DOI: 10.3390/antiox14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Many psychiatric disorders are associated with major cognitive deficits. However, it is uncertain whether these deficits develop as a result of psychiatric disorders and what shared risk factors might mediate this relationship. Here, we utilized the Mendelian randomization (MR) analysis to investigate the complex causal relationship between nine major psychiatric disorders and three cognitive phenotypes, while also examining the potential mediating role of oxidative stress as a shared biological underpinning. Schizophrenia (SZ), major depressive disorder (MDD), and attention deficit hyperactivity disorder (ADHD) showed a decreasing effect on cognitive performance, intelligence, and education, while bipolar disorder (BPD) increased educational attainment. MR-Clust results exhibit the shared genetic basis between SZ and other psychiatric disorders in relation to cognitive function. Furthermore, when oxidative stress was considered as a potential mediating factor, the associations between SZ and the three dimensions of cognition, as well as between MDD and intelligence and ADHD and intelligence, exhibited larger effect sizes than the overall. Mediation MR analysis also supported the causal effects between psychiatric disorders and cognition via oxidative stress traits, including carotene, vitamin E, bilirubin, and uric acid. Finally, summary-based MR identified 29 potential causal associations of oxidative stress genes with both cognitive performance and psychiatric disorders. Our findings highlight the importance of considering oxidative stress in understanding and potentially treating cognitive impairments associated with psychiatric conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.G.); (D.W.); (Q.W.); (J.W.); (S.L.); (T.W.)
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.G.); (D.W.); (Q.W.); (J.W.); (S.L.); (T.W.)
| |
Collapse
|
11
|
Jin S, Lu W, Zhang J, Zhang L, Tao F, Zhang Y, Hu X, Liu Q. The mechanisms, hallmarks, and therapies for brain aging and age-related dementia. Sci Bull (Beijing) 2024; 69:3756-3776. [PMID: 39332926 DOI: 10.1016/j.scib.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Age-related cognitive decline and dementia are significant manifestations of brain aging. As the elderly population grows rapidly, the health and socio-economic impacts of cognitive dysfunction have become increasingly significant. Although clinical treatment of dementia has faced considerable challenges over the past few decades, with limited breakthroughs in slowing its progression, there has been substantial progress in understanding the molecular mechanisms and hallmarks of age-related dementia (ARD). This progress brings new hope for the intervention and treatment of this disease. In this review, we categorize the latest findings in ARD biomarkers into four stages based on disease progression: Healthy brain, pre-clinical, mild cognitive impairment, and dementia. We then systematically summarize the most promising therapeutic approaches to prevent or slow ARD at four levels: Genome and epigenome, organelle, cell, and organ and organism. We emphasize the importance of early prevention and detection, along with the implementation of combined treatments as multimodal intervention strategies, to address brain aging and ARD in the future.
Collapse
Affiliation(s)
- Shiyun Jin
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Wenping Lu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China.
| | - Ye Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Xianwen Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
12
|
Chioino A, Sandi C. The Emerging Role of Brain Mitochondria in Fear and Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39505817 DOI: 10.1007/7854_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The functional complexity of brain circuits underlies the broad spectrum of behaviors, cognitive functions, and their associated disorders. Mitochondria, traditionally known for their role in cellular energy metabolism, are increasingly recognized as central to brain function and behavior. This review examines how mitochondria are pivotal in linking cellular energy processes with the functioning of neural circuits that govern fear and anxiety. Following an introductory section in which we summarize current knowledge about fear and anxiety neural circuits, we provide a brief summary of mitochondria fundamental roles (e.g., from energy production and calcium buffering to their involvement in reactive oxygen species (ROS) generation, mitochondrial dynamics, and signaling), particularly emphasizing their contribution to synaptic plasticity, neurodevelopment, and stress response mechanisms. The review's core focuses on the current state of knowledge regarding how mitochondrial function and dysfunction impact the neural substrates of fear and anxiety. Furthermore, we explore the implications of mitochondrial alterations in the context of posttraumatic stress disorder (PTSD) and anxiety disorders, underscoring the potential of mitochondrial pathways as new therapeutic targets. Integrating insights from genetic, biochemical, neurobiological, behavioral, and clinical studies, we propose a model in which mitochondrial function is critical for regulating the neural circuits that underpin fear and anxiety behaviors, highlighting how mitochondrial dysfunction can lead to their pathological manifestations. This integration emphasizes the potential for developing novel treatments targeting the biological roots of fear, anxiety, and related disorders. By merging mitochondrial biology with behavioral and circuit neuroscience, we enrich our neurobiological understanding of fear and anxiety, uncovering promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Torres-Cuevas I, Ratcliffe E, Mouri D, Mignon V, Saubaméa B, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167272. [PMID: 38897257 DOI: 10.1016/j.bbadis.2024.167272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The functional integrity of the central nervous system relies on complex mechanisms in which the mitochondria are crucial actors because of their involvement in a multitude of bioenergetics and biosynthetic pathways. Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults and despite considerable efforts around the world there is still limited curative treatments. Harlequin mice correspond to a relevant model of recessive X-linked mitochondrial disease due to a proviral insertion in the first intron of the Apoptosis-inducing factor gene, resulting in an almost complete depletion of the corresponding protein. These mice exhibit progressive degeneration of the retina, optic nerve, cerebellum, and cortical regions leading to irremediable blindness and ataxia, reminiscent of what is observed in patients suffering from mitochondrial diseases. We evaluated the progression of cerebellar degeneration in Harlequin mice, especially for Purkinje cells and its relationship with bioenergetics failure and behavioral damage. For the first time to our knowledge, we demonstrated that Harlequin mice display cognitive and emotional impairments at early stage of the disease with further deteriorations as ataxia aggravates. These functions, corresponding to higher-order cognitive processing, have been assigned to a complex network of reciprocal connections between the cerebellum and many cortical areas which could be dysfunctional in these mice. Consequently, Harlequin mice become a suitable experimental model to test innovative therapeutics, via the targeting of mitochondria which can become available to a large spectrum of neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Isabel Torres-Cuevas
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Department of Physiology, University of Valencia, Vicent Andrés Estellés s/n, 46100 12 Burjassot, Spain
| | - Edward Ratcliffe
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Virginie Mignon
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France; Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Bruno Saubaméa
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
14
|
Geerts H, Bergeler S, Lytton WW, van der Graaf PH. Computational neurosciences and quantitative systems pharmacology: a powerful combination for supporting drug development in neurodegenerative diseases. J Pharmacokinet Pharmacodyn 2024; 51:563-573. [PMID: 37505397 DOI: 10.1007/s10928-023-09876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Successful clinical development of new therapeutic interventions is notoriously difficult, especially in neurodegenerative diseases, where predictive biomarkers are scarce and functional improvement is often based on patient's perception, captured by structured interviews. As a consequence, mechanistic modeling of the processes relevant to therapeutic interventions in CNS disorders has been lagging behind other disease indications, probably because of the perceived complexity of the brain. However in this report, we develop the argument that a combination of Computational Neurosciences and Quantitative Systems Pharmacology (QSP) modeling of molecular pathways is a powerful simulation tool to enhance the probability of successful drug development for neurodegenerative diseases. Computational Neurosciences aims to predict action potential dynamics and neuronal circuit activation that are ultimately linked to behavioral changes and clinically relevant functional outcomes. These processes can not only be affected by the disease state, but also by common genotype variants on neurotransmitter-related proteins and the psycho-active medications often prescribed in these patient populations. Quantitative Systems Pharmacology (QSP) modeling of molecular pathways allows to simulate key pathological drivers of dementia, such as protein aggregation and neuroinflammatory responses. They often impact neurotransmitter homeostasis and voltage-gated ion-channels or lead to mitochondrial dysfunction, ultimately leading to changes in action potential dynamics and clinical readouts. Combining these two modeling approaches can lead to better actionable understanding of the many non-linear pharmacodynamic processes active in the human diseased brain. Practical applications include a rational selection of the optimal doses in combination therapies, identification of subjects more likely to respond to treatment, a more balanced stratification of treatment arms in terms of comedications, disease status and common genotype variants and re-analysis of small clinical trials to uncover a possible clinical signal. Ultimately this will lead to a higher success rate of bringing new therapeutics to the right patient populations.
Collapse
Affiliation(s)
| | | | - William W Lytton
- Downstate Health Science University, State University of New York, Brooklyn, USA
| | | |
Collapse
|
15
|
Vafaei A, Vafaeian A, Iranmehr A, Nassireslami E, Hasannezhad B, Hosseini Y. Effects of β-sitosterol on anxiety in migraine-induced rats: The role of oxidative/nitrosative stress and mitochondrial function. CNS Neurosci Ther 2024; 30:e14892. [PMID: 39301958 PMCID: PMC11413762 DOI: 10.1111/cns.14892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Anxiety often coexists with migraine, and both conditions share a commonality in oxidative/nitrosative stress and mitochondrial dysfunction contributing to their pathogenesis. β-Sitosterol, a plant sterol, has shown promise in mitigating oxidative/nitrosative stress, enhancing mitochondrial function, and exerting neuroprotective effects. In this study, we investigated the impact of β-sitosterol on migraine-associated anxiety and whether this effect was associated with alleviation of oxidative/nitrosative stress and improvement in mitochondrial function. METHODS Nitroglycerin was used to induce migraine in adult male Wistar rats. β-Sitosterol treatment consisted of daily intraperitoneal injections (10 mg/kg) for 10 days following migraine induction. Anxiety levels were evaluated using open-field test (OFT) and hole-board test (HBT). Frontal cortex samples were analyzed for malondialdehyde (MDA), glutathione (GSH), reactive oxygen/nitrogen species, nitric oxide (NO) (markers of oxidative/nitrosative stress), and ATP (indicator of mitochondrial function). RESULTS Migraine induction led to impaired performance in both the OFT and the HBT. Concurrently, it elevated MDA, reactive oxygen/nitrogen species, and NO levels while diminishing GSH levels in the frontal cortex, signifying heightened oxidative/nitrosative stress. Moreover, ATP levels decreased, indicating mitochondrial dysfunction. Treatment with β-sitosterol significantly restored performance in both behavioral assays and normalized the levels of MDA, GSH, reactive oxygen/nitrogen species, NO, and ATP. CONCLUSION β-Sitosterol exerted anxiolytic effects in migraine, which can be attributed to its ability to ameliorate oxidative/nitrosative stress and enhance mitochondrial function.
Collapse
Affiliation(s)
- Ali Vafaei
- Toxicology Research CenterAJA University of Medical SciencesTehranIran
| | | | - Arad Iranmehr
- Neurosurgery Department, Sina HospitalTehran University of Medical SciencesTehranIran
- Gammaknife Center, Yas HospitalTehran University of Medical SciencesTehranIran
| | | | - Behnam Hasannezhad
- Cognitive and Behavioral Research CenterAJA University of Medical SciencesTehranIran
| | - Yasaman Hosseini
- Cognitive and Behavioral Research CenterAJA University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Subba R, Fasciolo G, Geremia E, Muscari Tomajoli MT, Petito A, Carrella S, Mondal AC, Napolitano G, Venditti P. Simultaneous induction of systemic hyperglycaemia and stress impairs brain redox homeostasis in the adult zebrafish. Arch Biochem Biophys 2024; 759:110101. [PMID: 39029645 DOI: 10.1016/j.abb.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
For diabetic patients it is crucial to constantly monitor blood glucose levels to mitigate complications due to hyperglycaemia, including neurological issues and cognitive impairments. This activity leads to psychological stress, called "diabetes distress," a problem for most patients living with diabetes. Diabetes distress can exacerbate the hyperglycaemia effects on brain and negatively impact the quality of life, but the underlying mechanisms remain poorly explored. We simulated diabetes distress in adult zebrafish by modelling hyperglycaemia, through exposure to dextrose solution, along with chronic unpredictable mild stress (CUMS), and evaluated brain redox homeostasis by assessing reactive oxygen species (ROS) content, the antioxidant system, and effects on mitochondrial biogenesis and fission/fusion processes. We also evaluated the total, cytosolic and nuclear content of nuclear factor erythroid 2-related factor 2 (NRF2), a critical regulator of redox balance, in the whole brain and total NRF2 in specific brain emotional areas. The combined CUMS + Dextrose challenge, but not the individual treatments, reduced total NRF2 levels in the entire brain, but strongly increased its levels in the nuclear fraction. Compensatory upregulation of antioxidant genes appeared inadequate to combat elevated levels of ROS, leading to lowering of the reduced glutathione content and total antioxidant capacity. CUMS + Dextrose treatment also upregulated transcription factors implicated in mitochondrial biogenesis and dynamics with a predominance of fission, which is consistent with increased oxidative stress. In conclusion, this study highlights the close interplay between hyperglycaemia and psychological distress causing overriding oxidative stress in the brain, rendering the organism vulnerable to the development of disease complications.
Collapse
Affiliation(s)
- Rhea Subba
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples, Italy; Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, Napoli, 80133, Italy
| | - Eugenio Geremia
- International PhD Programme, UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, 80143, Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- International PhD Programme, UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, 80143, Naples, Italy
| | - Adriana Petito
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabrina Carrella
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, Napoli, 80133, Italy
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067.
| | - Gaetana Napolitano
- International PhD Programme, UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, 80143, Naples, Italy.
| | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
17
|
Tseilikman VE, Tseilikman OB, Yegorov ON, Brichagina AA, Karpenko MN, Tseilikman DV, Shatilov VA, Zhukov MS, Novak J. Resveratrol: A Multifaceted Guardian against Anxiety and Stress Disorders-An Overview of Experimental Evidence. Nutrients 2024; 16:2856. [PMID: 39275174 PMCID: PMC11396965 DOI: 10.3390/nu16172856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The medicinal properties of resveratrol have garnered increasing attention from researchers. Extensive data have been accumulated on its use in treating cardiovascular diseases, immune system disorders, cancer, neurological diseases, and behavioral disorders. The protective mechanisms of resveratrol, particularly in anxiety-related stress disorders, have been well documented. However, less attention has been given to the side effects of resveratrol. This review explores not only the mechanisms underlying the anxiolytic effects of resveratrol but also the mechanisms that may lead to increased anxiety following resveratrol treatment. Understanding these mechanisms is crucial for enhancing the efficacy of resveratrol in managing anxiety disorders associated with stress and PTSD.
Collapse
Affiliation(s)
- Vadim E Tseilikman
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Olga B Tseilikman
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Oleg N Yegorov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Alina A Brichagina
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Marina N Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - David V Tseilikman
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Vladislav A Shatilov
- Scientific and Educational Center 'Biomedical Technologies', School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Maxim S Zhukov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Jurica Novak
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
18
|
Vannelli A, Mariano V, Bagni C, Kanellopoulos AK. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci 2024; 25:8787. [PMID: 39201473 PMCID: PMC11354613 DOI: 10.3390/ijms25168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
Collapse
Affiliation(s)
- Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | |
Collapse
|
19
|
Sahay S, Pulvender P, Rami Reddy MVSR, McCullumsmith RE, O’Donovan SM. Metabolic Insights into Neuropsychiatric Illnesses and Ketogenic Therapies: A Transcriptomic View. Int J Mol Sci 2024; 25:8266. [PMID: 39125835 PMCID: PMC11312282 DOI: 10.3390/ijms25158266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The disruption of brain energy metabolism, leading to alterations in synaptic signaling, neural circuitry, and neuroplasticity, has been implicated in severe mental illnesses such as schizophrenia, bipolar disorder, and major depressive disorder. The therapeutic potential of ketogenic interventions in these disorders suggests a link between metabolic disturbances and disease pathology; however, the precise mechanisms underlying these metabolic disturbances, and the therapeutic effects of metabolic ketogenic therapy, remain poorly understood. In this study, we conducted an in silico analysis of transcriptomic data to investigate perturbations in metabolic pathways in the brain across severe mental illnesses via gene expression profiling. We also examined dysregulation of the same pathways in rodent or cell culture models of ketosis, comparing these expression profiles to those observed in the disease states. Our analysis revealed significant perturbations across all metabolic pathways, with the greatest perturbations in glycolysis, the tricarboxylic acid (TCA) cycle, and the electron transport chain (ETC) across all three disorders. Additionally, we observed some discordant gene expression patterns between disease states and ketogenic intervention studies, suggesting a potential role for ketone bodies in modulating pathogenic metabolic changes. Our findings highlight the importance of understanding metabolic dysregulation in severe mental illnesses and the potential therapeutic benefits of ketogenic interventions in restoring metabolic homeostasis. This study provides insights into the complex relationship between metabolism and neuropsychiatric disorders and lays the foundation for further experimental investigations aimed at appreciating the implications of the present transcriptomic findings as well as developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Priyanka Pulvender
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | | | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Neuroscience Institute, ProMedica, Toledo, OH 43614, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
20
|
Gary NC, Misganaw B, Hammamieh R, Gautam A. Exploring metabolomic dynamics in acute stress disorder: amino acids, lipids, and carbohydrates. Front Genet 2024; 15:1394630. [PMID: 39119583 PMCID: PMC11306072 DOI: 10.3389/fgene.2024.1394630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute Stress Disorder (ASD) is a psychiatric condition that can develop shortly after trauma exposure. Although molecular studies of ASD are only beginning, groups of metabolites have been found to be significantly altered with acute stress phenotypes in various pre-clinical and clinical studies. ASD implicated metabolites include amino acids (β-hydroxybutyrate, glutamate, 5-aminovalerate, kynurenine and aspartate), ketone bodies (β-hydroxybutyrate), lipids (cortisol, palmitoylethanomide, and N-palmitoyl taurine) and carbohydrates (glucose and mannose). Network and pathway analysis with the most prominent metabolites shows that Extracellular signal-regulated kinases and c-AMP response element binding (CREB) protein can be crucial players. After highlighting main recent findings on the role of metabolites in ASD, we will discuss potential future directions and challenges that need to be tackled. Overall, we aim to showcase that metabolomics present a promising opportunity to advance our understanding of ASD pathophysiology as well as the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nicholas C. Gary
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Culmen International, Alexandria, VA, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
21
|
Mitz AR, Boccuto L, Thurm A. Evidence for common mechanisms of pathology between SHANK3 and other genes of Phelan-McDermid syndrome. Clin Genet 2024; 105:459-469. [PMID: 38414139 PMCID: PMC11025605 DOI: 10.1111/cge.14503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Chromosome 22q13.3 deletion (Phelan-McDermid) syndrome (PMS, OMIM 606232) is a rare genetic condition that impacts neurodevelopment. PMS most commonly results from heterozygous contiguous gene deletions that include the SHANK3 gene or likely pathogenic variants of SHANK3 (PMS-SHANK3 related). Rarely, chromosomal rearrangements that spare SHANK3 share the same general phenotype (PMS-SHANK3 unrelated). Very recent human and model system studies of genes that likely contribute to the PMS phenotype point to overlap in gene functions associated with neurodevelopment, synaptic formation, stress/inflammation and regulation of gene expression. In this review of recent findings, we describe the functional overlaps between SHANK3 and six partner genes of 22q13.3 (PLXNB2, BRD1, CELSR1, PHF21B, SULT4A1, and TCF20), which suggest a model that explains the commonality between PMS-SHANK3 related and PMS-SHANK3 unrelated classes of PMS. These genes are likely not the only contributors to neurodevelopmental impairments in the region, but they are the best documented to date. The review provides evidence for the overlapping and likely synergistic contributions of these genes to the PMS phenotype.
Collapse
Affiliation(s)
- Andrew R. Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Interdisciplinary Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Wei W, Cheng B, Zhao Y, He D, Chu X, Qin X, Zhang N, Shi S, Cai Q, Hui J, Wen Y, Liu H, Jia Y, Zhang F. Exploring the Interplay between Mitochondrial DNA and Lifestyle Factors in the Pathogenesis of Psychiatric Disorders. Depress Anxiety 2024; 2024:4914777. [PMID: 40226710 PMCID: PMC11918510 DOI: 10.1155/2024/4914777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/15/2025] Open
Abstract
The objectives of this study were to investigate the interaction of mitochondrial DNA (mtDNA) and lifestyle factors in the development of psychiatric disorders and to gain greater insight into their pathogenesis and comorbidity. We analyzed data from approximately 150,000 individuals from the UK Biobank. Mitochondrial gene-by-environment interaction studies (mtGEIS) were performed to assess the relationships between mtDNA and psychiatric disorders, such as anxiety, depression, and self-harm. These disorders were defined using diagnostic and severity indicators derived from the General Anxiety Disorder (GAD-7) and Patient Health Questionnaire (PHQ-9). Smoking and drinking behaviors were characterized based on UK Biobank criteria. For the mtGEIS, logistic and linear regression models from PLINK 2.0 were employed, accounting for covariates like age, sex, PC1-10, Townsend Deprivation Index (TDI), and educational attainment. We also conducted sex-stratified analyses to detect any gender-specific effects. Our findings highlighted significant associations between mtDNA and three psychiatric disorders. Moreover, the interplay between mtDNA and lifestyle factors showed significant associations with psychiatric disorders (all P values < 0.05). Specifically, two mutant loci, T5004C (B Anx_self = -0.0026, B Dep_self = -0.0024, B Self-harm = -0.0018) and G9123A (B Anx_self = -0.0030, B Dep_self = -0.0024, B Self-harm = -0.0017), were found to reduce the risk of three disorders after interacting with alcohol. Sex-specific differences were also observed. In summary, the expression of mitochondrial genes could be modulated by lifestyle factors like smoking and drinking, potentially affecting psychiatric disorders. These habits might influence mitochondrial respiratory chain activity and the replication and transcriptional regulation of mitochondrial genes, culminating in changes in mitochondrial functionality and subsequently psychiatric disorders.
Collapse
Affiliation(s)
- Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Curtis PJ, van der Velpen V, Berends L, Jennings A, Haag L, Minihane AM, Chandra P, Kay CD, Rimm EB, Cassidy A. Chronic and postprandial effect of blueberries on cognitive function, alertness, and mood in participants with metabolic syndrome - results from a six-month, double-blind, randomized controlled trial. Am J Clin Nutr 2024; 119:658-668. [PMID: 38432713 PMCID: PMC10972710 DOI: 10.1016/j.ajcnut.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Anthocyanin and blueberry intakes positively associated with cognitive function in population-based studies and cognitive benefits in randomized controlled trials of adults with self-perceived or clinical cognitive dysfunction. To date, adults with metabolic syndrome (MetS) but without cognitive dysfunction are understudied. OBJECTIVES Cognitive function, mood, alertness, and sleep quality were assessed as secondary end points in MetS participants, postprandially (>24 h) and following 6-mo blueberry intake. METHODS A double-blind, randomized controlled trial was conducted, assessing the primary effect of consuming freeze-dried blueberry powder, compared against an isocaloric placebo, on cardiometabolic health >6 mo and a 24 h postprandial period (at baseline). In this secondary analysis of the main study, data from those completing mood, alertness, cognition, and sleep assessments are presented (i.e., n = 115 in the 6 mo study, n = 33 in the postprandial study), using the following: 1) Bond-Lader self-rated scores, 2) electronic cognitive battery (i.e., testing attention, working memory, episodic memory, speed of memory retrieval, executive function, and picture recognition), and 3) the Leeds Sleep Evaluation Questionnaire. Urinary and serum anthocyanin metabolites were quantified, and apolipoprotein E genotype status was determined. RESULTS Postprandial self-rated calmness significantly improved after 1 cup of blueberries (P = 0.01; q = 0.04; with an 11.6% improvement compared with baseline between 0 and 24 h for the 1 cup group), but all other mood, sleep, and cognitive function parameters were unaffected after postprandial and 6-mo blueberries. Across the ½ and 1 cup groups, microbial metabolites of anthocyanins and chlorogenic acid (i.e., hydroxycinnamic acids, benzoic acids, phenylalanine derivatives, and hippuric acids) and catechin were associated with favorable chronic and postprandial memory, attention, executive function, and calmness. CONCLUSIONS Although self-rated calmness improved postprandially, and significant cognition-metabolite associations were identified, our data did not support strong cognitive, mood, alertness, or sleep quality improvements in MetS participants after blueberry intervention. This trial was registered at clinicaltrials.gov as NCT02035592.
Collapse
Affiliation(s)
- Peter J Curtis
- Nutrition and Preventive Medicine Group, Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, United Kingdom
| | - Vera van der Velpen
- Nutrition and Preventive Medicine Group, Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, United Kingdom
| | - Lindsey Berends
- Nutrition and Preventive Medicine Group, Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, United Kingdom
| | - Amy Jennings
- Institute for Global Food Security, Nutrition and Preventive Medicine, School of Biological Sciences, Queen's University Belfast, Northern Ireland
| | - Laura Haag
- Nutrition and Preventive Medicine Group, Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, United Kingdom
| | - Anne-Marie Minihane
- Nutrition and Preventive Medicine Group, Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, United Kingdom
| | - Preeti Chandra
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Colin D Kay
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Eric B Rimm
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, and Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Aedín Cassidy
- Institute for Global Food Security, Nutrition and Preventive Medicine, School of Biological Sciences, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
24
|
McDermott CE, Salowe RJ, Di Rosa I, O’Brien JM. Stress, Allostatic Load, and Neuroinflammation: Implications for Racial and Socioeconomic Health Disparities in Glaucoma. Int J Mol Sci 2024; 25:1653. [PMID: 38338933 PMCID: PMC10855412 DOI: 10.3390/ijms25031653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glaucoma is the leading cause of irreversible blindness, and its pathophysiology includes neuroinflammatory changes. The present therapies for glaucoma target pressure-lowering mechanisms with limited success, making neuroinflammation a target for future interventions. This review summarizes the neuroinflammatory pathways seen in glaucoma and their interplay with stress. Glucocorticoids have been shown to activate proinflammatory glial cells, contributing to the neuroinflammation in glaucoma. Glucocorticoids have also been shown to increase the IOP directly. Stress-associated autonomic dysfunction can affect the vascular homeostasis in the retina and create oxidative stress. Diabetes, hyperglycemic-mediated endothelial damage, and vascular inflammation also play important roles in the neuroinflammation in glaucoma and diabetic retinopathy. Psychosocial stress has been implicated in an increased IOP and glaucoma outcomes. People who experience maladaptive chronic stress suffer from a condition known as allostatic load, which describes pathologic neuroendocrine dysregulation. The effects of allostatic load and chronic stress have been studied in patients affected by a lower socioeconomic status (SES) and marginalized racial identities. A lower SES is associated with higher rates of glaucoma and also affects the access to care and screening. Additionally, people of African ancestry are disproportionately affected by glaucoma for reasons that are multifactorial. In conclusion, this review explores neuroinflammation in glaucoma, highlighting opportunities for future investigation.
Collapse
Affiliation(s)
- Colleen E. McDermott
- Department of Surgery, University of Utah, Salt Lake City, UT 84101, USA
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| | - Rebecca J. Salowe
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| | - Isabel Di Rosa
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| | - Joan M. O’Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| |
Collapse
|
25
|
Strekalova T, Svirin E, Gorlova A, Sheveleva E, Burova A, Khairetdinova A, Sitdikova K, Zakharova E, Dudchenko AM, Lyundup A, Morozov S. Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model. Biomolecules 2023; 13:1782. [PMID: 38136653 PMCID: PMC10741640 DOI: 10.3390/biom13121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Wuerzburg, Germany
| | - Evgeniy Svirin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Anna Gorlova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elizaveta Sheveleva
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alisa Burova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Adel Khairetdinova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Kseniia Sitdikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Elena Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Alexander M. Dudchenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| | - Aleksey Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, Moscow 117036, Russia;
- Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia (A.G.); (E.S.); (A.B.); (A.K.); (K.S.); (E.Z.); (A.M.D.); (S.M.)
| |
Collapse
|
26
|
Watt G, Karl T, Chesworth R. Light phase does not affect operant sucrose self-administration in adult male C57BL/6JAbr mice. Behav Brain Res 2023; 454:114650. [PMID: 37640271 DOI: 10.1016/j.bbr.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Circadian rhythm can have significant impacts on several physiological domains relevant to the expression of behaviour in mice, including body temperature, corticosterone levels, hormones and immune function. Mice are nocturnal; yet many behavioural studies are performed during the light phase, when mice are naturally inactive. Not surprisingly, the time of day when mice are behaviourally tested can significantly impact on domains such as locomotor activity, e.g. dark phase testing results in higher locomotion rates than light phase testing. However, effects on other behavioural domains, such as cognition, are not well-established, with inconsistent reports on improved cognition during dark phase testing compared to light phase testing in mice. Importantly, the impact of circadian rhythm on operant responding, a common task relevant to research into drug abuse and cognitive disorders, has rarely been investigated in mice. Here we evaluated if testing adult male C57BL/6JAbr mice in operant chambers during the light or dark phase affects acquisition of lever responding, lever discrimination under different fixed ratio (FR) schedules (FR1, FR2, FR4), and/or motivation under a progressive ratio schedule for 10% oral sucrose. We found no effect of circadian rhythm on levels of active and inactive lever pressing, or lever discrimination for oral sucrose at any stage of the experiment. These results may be due to high levels of motivation for sucrose under food restriction and low levels of task complexity limiting detection of any effect of light phase on operant behaviour.
Collapse
Affiliation(s)
- Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| |
Collapse
|
27
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
28
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
29
|
Sun L, Li W, Qiu Q, Hu Y, Yang Z, Xiao S. Anxiety adds the risk of cognitive progression and is associated with axon/synapse degeneration among cognitively unimpaired older adults. EBioMedicine 2023; 94:104703. [PMID: 37429081 PMCID: PMC10435838 DOI: 10.1016/j.ebiom.2023.104703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Mental symptoms have been shown to be associated with dementia. As the most common neuropsychiatric disorder, it is unclear whether and why anxiety increases the risk of cognitive progression in elderly. METHODS The aim of this study was to investigate the longitudinal effects of anxiety on cognitive impairment in non-dementia elderly and to explore the underlying biological processes using multi-omics including microarray-based transcriptomics, mass spectrometry-based proteomics and metabolomics, cerebrospinal fluid (CSF) biochemical markers, and brain diffusion tensor imaging (DTI). The Alzheimer's Disease Neuroimaging Initiative (ADNI), Chinese Longitudinal Healthy Longevity Survey (CLHLS) and Shanghai Mental Health Centre (SMHC) cohorts were included. FINDINGS Anxiety was found to increase the risk of subsequent cognitive progression in the ADNI, and a similar result was observed in the CLHLS cohort. Enrichment analysis indicated activated axon/synapse pathways and suppressed mitochondrial pathways in anxiety, the former confirmed by deviations in frontolimbic tract morphology and altered levels of axon/synapse markers, and the latter supported by decreased levels of carnitine metabolites. Mediation analysis revealed that anxiety's effect on the longitudinal cognition was mediated by brain tau burden. Correlations of mitochondria-related expressed genes with axon/synapse proteins, carnitine metabolites, and cognitive changes were found. INTERPRETATION This study provides cross-validated epidemiological and biological evidence that anxiety is a risk factor for cognitive progression in non-dementia elderly, and that axon/synapse damage in the context of energy metabolism imbalance may contribute to this phenomenon. FUNDING The National Natural Science Foundation of China (82271607, 81971682, and 81830059) for data analysis and data collection.
Collapse
Affiliation(s)
- Lin Sun
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Wei Li
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qi Qiu
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Institute of Psychological and Behavioural Science, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, PR China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, PR China.
| | - Shifu Xiao
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
30
|
Da Silva IO, Crespo-Lopez ME, Augusto-Oliveira M, Arrifano GDP, Ramos-Nunes NR, Gomes EB, da Silva FRP, de Sousa AA, Leal ALAB, Damasceno HC, de Oliveira ACA, Souza-Monteiro JR. What We Know about Euterpe Genus and Neuroprotection: A Scoping Review. Nutrients 2023; 15:3189. [PMID: 37513607 PMCID: PMC10384735 DOI: 10.3390/nu15143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The Euterpe genus (mainly Euterpe oleracea Martius, Euterpe precatoria Martius, and Euterpe edulis Martius) has recently gained commercial and scientific notoriety due to the high nutritional value of its fruits, which are rich in polyphenols (phenolic acids and anthocyanins) and have potent antioxidant activity. These characteristics have contributed to the increased number of neuropharmacological evaluations of the three species over the last 10 years, especially açaí of the species Euterpe oleracea Martius. The fruits of the three species exert neuroprotective effects through the modulation of inflammatory and oxidative pathways and other mechanisms, including the inhibition of the mTOR pathway and protection of the blood-brain barrier, all of them intimately involved in several neuropathologies. Thus, a better understanding of the neuropharmacological properties of these three species may open new paths for the development of therapeutic tools aimed at preventing and treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Ilano Oliveira Da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Natália Raphaela Ramos-Nunes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Elielton Barreto Gomes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Felipe Rodolfo Pereira da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Aline Andrade de Sousa
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Alessandro Luiz Araújo Bentes Leal
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Helane Conceição Damasceno
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Ana Carolina Alves de Oliveira
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - José Rogério Souza-Monteiro
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| |
Collapse
|
31
|
Srinivasan R, Lin X, Suganthy N, Shanmuganathan B, Somanath K. Editorial: Investigating the role of biological pathways involved in brain disorder and infection. Front Pharmacol 2023; 14:1217333. [PMID: 37292148 PMCID: PMC10244752 DOI: 10.3389/fphar.2023.1217333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Ramanathan Srinivasan
- Centre for Research, Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Xiangmin Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Natarajan Suganthy
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Kundu Somanath
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
32
|
Xiao S, Zhang Y, Liu Z, Li A, Tong W, Xiong X, Nie J, Zhong N, Zhu G, Liu J, Liu Z. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury. CNS Neurosci Ther 2023; 29:1094-1108. [PMID: 36627822 PMCID: PMC10018110 DOI: 10.1111/cns.14085] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A growing body of research shows that drug monomers from traditional Chinese herbal medicines have antineuroinflammatory and neuroprotective effects that can significantly improve the recovery of motor function after spinal cord injury (SCI). Here, we explore the role and molecular mechanisms of Alpinetin on activating microglia-mediated neuroinflammation and neuronal apoptosis after SCI. METHODS Stimulation of microglia with lipopolysaccharide (LPS) to simulate neuroinflammation models in vitro, the effect of Alpinetin on the release of pro-inflammatory mediators in LPS-induced microglia and its mechanism were detected. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of Alpinetin on activating microglia-mediated neuronal apoptosis. Finally, rat spinal cord injury models were used to study the effects on inflammation, neuronal apoptosis, axonal regeneration, and motor function recovery in Alpinetin. RESULTS Alpinetin inhibits microglia-mediated neuroinflammation and activity of the JAK2/STAT3 pathway. Alpinetin can also reverse activated microglia-mediated reactive oxygen species (ROS) production and decrease of mitochondrial membrane potential (MMP) in PC12 neuronal cells. In addition, in vivo Alpinetin significantly inhibits the inflammatory response and neuronal apoptosis, improves axonal regeneration, and recovery of motor function. CONCLUSION Alpinetin can be used to treat neurodegenerative diseases and is a novel drug candidate for the treatment of microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zihao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anan Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weilai Tong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangbo Nie
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nanshan Zhong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoqing Zhu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaming Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Toh P, Seale LA, Berry MJ, Torres DJ. Prolonged maternal exposure to glucocorticoids alters selenoprotein expression in the developing brain. Front Mol Neurosci 2023; 16:1115993. [PMID: 37033382 PMCID: PMC10080067 DOI: 10.3389/fnmol.2023.1115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Aberrant activation of the stress-response system in early life can alter neurodevelopment and cause long-term neurological changes. Activation of the hypothalamic-pituitary-adrenal axis releases glucocorticoids into the bloodstream, to help the organism adapt to the stressful stimulus. Elevated glucocorticoid levels can promote the accumulation of reactive oxygen species, and the brain is highly susceptible to oxidative stress. The essential trace element selenium is obtained through diet, is used to synthesize antioxidant selenoproteins, and can mitigate glucocorticoid-mediated oxidative damage. Glucocorticoids can impair antioxidant enzymes in the brain, and could potentially influence selenoprotein expression. We hypothesized that exposure to high levels of glucocorticoids would disrupt selenoprotein expression in the developing brain. C57 wild-type dams of recently birthed litters were fed either a moderate (0.25 ppm) or high (1 ppm) selenium diet and administered corticosterone (75 μg/ml) via drinking water during postnatal days 1 to 15, after which the brains of the offspring were collected for western blot analysis. Glutathione peroxidase 1 and 4 levels were increased by maternal corticosterone exposure within the prefrontal cortex, hippocampus, and hypothalamus of offspring. Additionally, levels of the glucocorticoid receptor were decreased in the hippocampus and selenoprotein W was elevated in the hypothalamus by corticosterone. Maternal consumption of a high selenium diet independently decreased glucocorticoid receptor levels in the hippocampus of offspring of both sexes, as well as in the prefrontal cortex of female offspring. This study demonstrates that early life exposure to excess glucocorticoid levels can alter selenoprotein levels in the developing brain.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
34
|
Sebastian MJ, Khan SKA, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes 2023; 14:92-109. [PMID: 36926658 PMCID: PMC10011899 DOI: 10.4239/wjd.v14.i2.92] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Several epidemiological studies have clearly identified diabetes mellitus (DM) as a major risk factor for cognitive dysfunction, and it is going to be a major public health issue in the coming years because of the alarming rise in diabetes prevalence across the world. Brain and neural tissues predominantly depend on glucose as energy substrate and hence, any alterations in carbohydrate meta-bolism can directly impact on cerebral functional output including cognition, executive capacity, and memory. DM affects neuronal function and mental capacity in several ways, some of which include hypoperfusion of the brain tissues from cerebrovascular disease, diabetes-related alterations of glucose transporters causing abnormalities in neuronal glucose uptake and metabolism, local hyper- and hypometabolism of brain areas from insulin resistance, and recurrent hypoglycemic episodes inherent to pharmacotherapy of diabetes resulting in neuronal damage. Cognitive decline can further worsen diabetes care as DM is a disease largely self-managed by patients. Therefore, it is crucial to understand the pathobiology of cognitive dysfunction in relation to DM and its management for optimal long-term care plan for patients. A thorough appraisal of normal metabolic characteristics of the brain, how alterations in neural metabolism affects cognition, the diagnostic algorithm for patients with diabetes and dementia, and the management and prognosis of patients when they have this dangerous combination of illnesses is imperative in this context. This evidence-based narrative with the back-up of latest clinical trial reviews elaborates the current understanding on diabetes and cognitive function to empower physicians to manage their patients in day-to-day clinical practice.
Collapse
Affiliation(s)
| | - Shahanas KA Khan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Mohammad Sadiq Jeeyavudeen
- Department of Endocrinology and Metabolism, University Hospitals of Edinburgh, Edinburgh EH16 4SA, United Kingdom
| |
Collapse
|
35
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
36
|
Huang Y, Wang J, Liu F, Wang C, Xiao Z, Zhou W. Liuwei Dihuang formula ameliorates chronic stress-induced emotional and cognitive impairments in mice by elevating hippocampal O-GlcNAc modification. Front Neurosci 2023; 17:1134176. [PMID: 37152609 PMCID: PMC10157057 DOI: 10.3389/fnins.2023.1134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
A substantial body of evidence has indicated that intracerebral O-linked N-acetyl-β-D-glucosamine (O-GlcNAc), a generalized post-translational modification, was emerging as an effective regulator of stress-induced emotional and cognitive impairments. Our previous studies showed that the Liuwei Dihuang formula (LW) significantly improved the emotional and cognitive dysfunctions in various types of stress mouse models. In the current study, we sought to determine the effects of LW on intracerebral O-GlcNAc levels in chronic unpredictable mild stress (CUMS) mice. The dynamic behavioral tests showed that anxiety- and depression-like behaviors and object recognition memory of CUMS mice were improved in a dose-dependent manner after LW treatment. Moreover, linear discriminate analysis (LEfSe) of genera abundance revealed a significant difference in microbiome among the study groups. LW showed a great impact on the relative abundance of these gut microbiota in CUMS mice and reinstated them to control mouse levels. We found that LW potentially altered the Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis process, and the abundance of O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT) in CUMS mice, which was inferred using PICRUSt analysis. We further verified advantageous changes in hippocampal O-GlcNAc modification of CUMS mice following LW administration, as well as changes in the levels of OGA and OGT. In summary, LW intervention increased the levels of hippocampal O-GlcNAc modification and ameliorated the emotional and cognitive impairments induced by chronic stress in CUMS mice. LW therefore could be considered a potential prophylactic and therapeutic agent for chronic stress.
Collapse
Affiliation(s)
- Yan Huang
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Zhiyong Xiao,
| | - Wenxia Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- Wenxia Zhou,
| |
Collapse
|
37
|
Homeostasis of carbohydrates and reactive oxygen species is critically changed in the brain of middle-aged mice: molecular mechanisms and functional reasons. BBA ADVANCES 2023; 3:100077. [PMID: 37082254 PMCID: PMC10074963 DOI: 10.1016/j.bbadva.2023.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
The brain is an organ that consumes a lot of energy. In the brain, energy is required for synaptic transmission, numerous biosynthetic processes and axonal transport in neurons, and for many supportive functions of glial cells. The main source of energy in the brain is glucose and to a lesser extent lactate and ketone bodies. ATP is formed at glucose catabolism via glycolysis and oxidative phosphorylation in mitochondrial electron transport chain (ETC) within mitochondria being the main source of ATP. With age, brain's energy metabolism is disturbed, involving a decrease in glycolysis and mitochondrial dysfunction. The latter is accompanied by intensified generation of reactive oxygen species (ROS) in ETC leading to oxidative stress. Recently, we have found that crucial changes in energy metabolism and intensity of oxidative stress in the mouse brain occur in middle age with minor progression in old age. In this review, we analyze the metabolic changes and functional causes that lead to these changes in the aging brain.
Collapse
|
38
|
Bobba-Alves N, Juster RP, Picard M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 2022; 146:105951. [PMID: 36302295 PMCID: PMC10082134 DOI: 10.1016/j.psyneuen.2022.105951] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Chronic psychosocial stress increases disease risk and mortality, but the underlying mechanisms remain largely unclear. Here we outline an energy-based model for the transduction of chronic stress into disease over time. The energetic model of allostatic load (EMAL) emphasizes the energetic cost of allostasis and allostatic load, where the "load" is the additional energetic burden required to support allostasis and stress-induced energy needs. Living organisms have a limited capacity to consume energy. Overconsumption of energy by allostatic brain-body processes leads to hypermetabolism, defined as excess energy expenditure above the organism's optimum. In turn, hypermetabolism accelerates physiological decline in cells, laboratory animals, and humans, and may drive biological aging. Therefore, we propose that the transition from adaptive allostasis to maladaptive allostatic states, allostatic load, and allostatic overload arises when the added energetic cost of stress competes with longevity-promoting growth, maintenance, and repair. Mechanistically, the energetic restriction of growth, maintenance and repair processes leads to the progressive wear-and-tear of molecular and organ systems. The proposed model makes testable predictions around the physiological, cellular, and sub-cellular energetic mechanisms that transduce chronic stress into disease risk and mortality. We also highlight new avenues to quantify allostatic load and its link to health across the lifespan, via the integration of systemic and cellular energy expenditure measurements together with classic allostatic load biomarkers.
Collapse
Affiliation(s)
- Natalia Bobba-Alves
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Center on Sex⁎Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, Montreal, QC, Canada; Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|