1
|
García-Domínguez M. A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines 2025; 13:165. [PMID: 39857749 PMCID: PMC11762748 DOI: 10.3390/biomedicines13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Fibromyalgia represents a chronic pain disorder characterized by musculoskeletal pain, fatigue, and cognitive impairments. The exact mechanisms underlying fibromyalgia remain undefined; as a result, diagnosis and treatment present considerable challenges. On the other hand, the endogenous opioid system is believed to regulate pain intensity and emotional responses; hence, it might be expected to play a key role in the enhanced sensitivity experienced by fibromyalgia patients. One explanation for the emergence of disrupted pain modulation in individuals with fibromyalgia is a significant reduction in opioid receptor activity or an imbalance in the levels of endogenous opioid peptides. Further research is essential to clarify the complex details of the mechanisms underlying this abnormality. This complexity arises from the notion that an improved understanding could contribute to the development of innovative therapeutic strategies aimed at targeting the endogenous opioid system in the context of fibromyalgia. Although progress is being made, a complete understanding of these complexities remains a significant challenge. This paradigm has the potential to revolutionize the complex management of fibromyalgia, although its implementation may experience challenges. The effectiveness of this approach depends on multiple factors, but the implications could be profound. Despite the challenges involved in this transformation, the potential for improving patient care is considerable, as this condition has long been inadequately treated.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
2
|
Li C, Liao Q, Wang R, Zhang X, Ma M, Liu Y, Xiao L, Jiao Y, Wang N. An OPRM1-SNAP-tag/CMC method to directly identify drug components in sewage. Anal Bioanal Chem 2025; 417:615-625. [PMID: 39613988 DOI: 10.1007/s00216-024-05672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
The scourge of drug addiction and abuse poses a significant challenge to society. Opioid drugs acting on μ-opioid receptor (OPRM1) make it one of the pivotal targets for drug addiction. In the past decade, sewage analysis has become a prevalent method of drug monitoring. However, traditional methods of detecting drugs in sewage are cumbersome, and rapid detection methods are relatively lacking. To address this, an innovative OPRM1-SNAP-tag/CMC method to directly identify drug components in sewage was established. Cell membrane chromatography (CMC) is an affinity chromatography technique which effectively detects receptor affinity substances. Cells constructed with high expression of specific receptor could be used to screen for compounds acting on the receptor. CMC based on OPRM1 provides a potentially convenient and effective tool for the detection of targeted drug components in sewage. In this study, the selectivity, reproducibility, column lifetime, and carryover of the CMC column had been assessed. Initially, we eluted the collected domestic sewage with methanol and acetonitrile, and the retention peaks were observed on the CMC system. Subsequently, without any preliminary sample preparation, we directly injected filtered samples of suspicious sewage into the OPRM1-SNAP-tag/CMC system, where we observed retention peaks as well. The retained components were further identified as morphine by using UPLC-MS/MS. In conclusion, the OPRM1-SNAP-tag/CMC method stands out as a reliable and robust model for the detection of drug components in sewage. It provides a valuable analytical tool for frontline drug control efforts, enhancing our capacity to monitor and mitigate the impact of drug abuse on society.
Collapse
Affiliation(s)
- Chenjia Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Liao
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Wang
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
| | - Xinping Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengyang Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghong Liu
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
| | - Lei Xiao
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
| | - Ying Jiao
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China.
- Key Laboratory of Drugs Analysis & Intelligent Monitoring, Narcotics Technology Center of Shaanxi Provincial Public Security Department, Xi'an, 710115, China.
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Dabrowski KR, Daws SE. Morphine-Driven m6A Epitranscriptomic Neuroadaptations in Primary Cortical Cultures. Mol Neurobiol 2024; 61:10684-10704. [PMID: 38780720 PMCID: PMC11584444 DOI: 10.1007/s12035-024-04219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Opioid overdose is the leading cause of accidental death in the United States and remains a major public health concern, despite significant resources aimed at combating opioid misuse. Neurobiological research to elucidate molecular and cellular consequences of opioid exposure is required to define avenues to explore for reversal of opioid-induced neuroadaptations. Opioids impart well-documented regulation of the transcriptome and epigenetic modifications in the brain, but opioid-induced epitranscriptomic posttranscriptional regulation of RNA is vastly understudied. N6-methyladenosine (m6A) RNA methylation is significantly enriched in the brain and involved in learning, memory, and reward. m6A modifications have not been studied in opioid use disorder, despite being the most common RNA modification. We detected significant regulation of m6A-modifying enzymes in rat primary cortical cultures following morphine treatment, including AlkB Homolog 5 (Alkbh5). The m6a demethylase ALKBH5 functions as an m6A eraser, removing m6A modifications from mRNA. We hypothesized that chronic opioid treatment regulates m6A modifications through modulation of Alkbh5 and profiled m6A modifications in primary cortical cultures following chronic morphine treatment and Alkbh5 knock-down. We observed differential regulation of m6A modifications for a common set of transcripts following morphine or Alkbh5 knock-down, and the two treatments elicited concordant m6A epitranscriptomic profiles, suggesting that a subset of morphine-driven m6A modifications may be mediated through downregulation of Alkbh5 in cortical cultures. Gene Ontology terms of commonly regulated transcripts included serotonin secretion, synapse disassembly, neuron remodeling, and immune response. Thus, we conclude that morphine can drive epitranscriptomic changes, a subset of which may occur in an Alkbh5-dependent manner.
Collapse
Affiliation(s)
- Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Liu SX, Muelken P, Maxim ZL, Ramakrishnan A, Estill MS, LeSage MG, Smethells JR, Shen L, Tran PV, Harris AC, Gewirtz JC. Differential gene expression and chromatin accessibility in the medial prefrontal cortex associated with individual differences in rat behavioral models of opioid use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582799. [PMID: 38979145 PMCID: PMC11230220 DOI: 10.1101/2024.02.29.582799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Opioid use disorder (OUD) is a neuropsychological disease that has a devastating impact on public health. Substantial individual differences in vulnerability exist, the neurobiological substrates of which remain unclear. To address this question, we investigated genome-wide gene transcription (RNA-seq) and chromatin accessibility (ATAC-seq) in the medial prefrontal cortex (mPFC) of male and female rats exhibiting differential vulnerability in behavioral paradigms modeling different phases of OUD: Withdrawal-Induced Anhedonia (WIA), Demand, and Reinstatement. Ingenuity Pathway Analysis (IPA) of RNA-seq revealed greater changes in canonical pathways in Resilient (vs. Saline) rats in comparison to Vulnerable (vs. Saline) rats across 3 paradigms, suggesting brain adaptations that might contribute to resilience to OUD across its trajectory. Analyses of gene networks and upstream regulators implicated processes involved in oligodendrocyte maturation and myelination in WIA, neuroinflammation in Demand, and metabolism in Reinstatement. Motif analysis of ATAC-seq showed changes in chromatin accessibility to a small set of transcription factor (TF) binding sites as a function either of opioid exposure (i.e., morphine versus saline) generally or of individual vulnerability specifically. Some of these were shared across the 3 paradigms and others were unique to each. In conclusion, we have identified changes in biological pathways, TFs, and their binding motifs that vary with paradigm and OUD vulnerability. These findings point to the involvement of distinct transcriptional and epigenetic mechanisms in response to opioid exposure, vulnerability to OUD, and different stages of the disorder.
Collapse
|
5
|
Amodeo G, Magni G, Galimberti G, Riboldi B, Franchi S, Sacerdote P, Ceruti S. Neuroinflammation in osteoarthritis: From pain to mood disorders. Biochem Pharmacol 2024; 228:116182. [PMID: 38556026 DOI: 10.1016/j.bcp.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Osteoarthritis (OA) is the most common form of musculoskeletal disease, and its prevalence is increasing due to the aging of the population. Chronic pain is the most burdensome symptom of OA that significantly lowers patients' quality of life, also due to its frequent association with emotional comorbidities, such as anxiety and depression. In recent years, both chronic pain and mood alterations have been linked to the development of neuroinflammation in the peripheral nervous system, spinal cord and supraspinal brain areas. Thus, mechanisms at the basis of the development of the neuroinflammatory process may indicate promising targets for novel treatment for pain and affective comorbidities that accompany OA. In order to assess the key role of neuroinflammation in the maintenance of chronic pain and its potential involvement in development of psychiatric components, the monoiodoacetate (MIA) model of OA in rodents has been used and validated. In the present commentary article, we aim to summarize up-to-date results achieved in this experimental model of OA, focusing on glia activation and cytokine production in the sciatic nerve, dorsal root ganglia (DRGs), spinal cord and brain areas. The association of a neuroinflammatory state with the development of pain and anxiety- and depression-like behaviors are discussed. Results suggest that cells and molecules involved in neuroinflammation may represent novel targets for innovative pharmacological treatments of OA pain and mood comorbidities.
Collapse
Affiliation(s)
- Giada Amodeo
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Giulia Magni
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Giulia Galimberti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Benedetta Riboldi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Silvia Franchi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Paola Sacerdote
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy
| | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti, 9 -20133 Milan (IT), Italy.
| |
Collapse
|
6
|
Damiescu R, Elbadawi M, Dawood M, Klauck SM, Bringmann G, Efferth T. Aniquinazoline B, a Fungal Natural Product, Activates the μ-Opioid Receptor. ChemMedChem 2024; 19:e202400213. [PMID: 38781501 DOI: 10.1002/cmdc.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The development of new μ-opioid receptor (MOR) agonists without the undesirable side effects, such as addiction or respiratory depression, has been a difficult challenge over the years. In the search for new compounds, we screened our chemical database of over 40.000 substances and further assessed the best 100 through molecular docking. We selected the top 10 compounds and evaluated them for their biological activity and potential to influence cyclic adenosine monophosphate (cAMP) levels. From the tested compounds, compound 7, called aniquinazoline B, belonging to the quinazolinone alkaloids class and isolated from the marine fungus Aspergillus nidulans, showed promising results, by inhibiting cAMP levels and in vitro binding to MOR, verified through microscale thermophoresis. Transcriptomic data investigation profiled the genes affected by compound 7 and discovered activation of different pathways compared to opioids. The western blot analysis revealed compound 7 as a balanced ligand, activating both p-ERK1/2 and β-arrestin1/2 pathways, showing this is a favorable candidate to be further tested.
Collapse
Affiliation(s)
- Roxana Damiescu
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Mohamed Elbadawi
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Mona Dawood
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ, University Hospital Heidelberg, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Thomas Efferth
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| |
Collapse
|
7
|
Hodge K, Buck DJ, Das S, Davis RL. The effects of chronic, continuous β-funaltrexamine pre-treatment on lipopolysaccharide-induced inflammation and behavioral deficits in C57BL/6J mice. J Inflamm (Lond) 2024; 21:33. [PMID: 39223594 PMCID: PMC11367784 DOI: 10.1186/s12950-024-00407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Inflammation and neuroinflammation are integral to the progression and severity of many diseases and are strongly associated with cardiovascular disease, cancer, autoimmune disorders, neurodegenerative disease, and neuropsychiatric disorders. These diseases can be difficult to treat without addressing the underlying inflammation, and, as such, a growing need has arisen for pharmaceutical treatments that target inflammatory mediators and signaling pathways. Our lab has investigated the therapeutic potential of the irreversible µ-opioid antagonist β-funaltrexamine (β-FNA) and discovered that acute treatment ameliorates inflammation in astrocytes in vitro and inhibits central and peripheral inflammation and reduces anxiety- and sickness-like behavior in male C57BL/6J mice. Now, our investigation has expanded to investigate the chronic pre-treatment effects of β-FNA on lipopolysaccharide (LPS)-induced inflammation and behavior in male C57BL/6J mice. RESULTS Micro-osmotic drug pumps were surgically inserted into the subcutaneous intrascapular space of male C57BL/6J mice. β-FNA or saline vehicle was continuously administered for seven days. On the sixth day, mice were given intraperitoneal injections of LPS or saline. An elevated plus maze test, followed by a forced swim test, were administered 24 h post-injection to measure sickness-, anxiety- and depressive-like behavior. Immediately after testing, frontal cortex, hippocampus, spleen, and plasma were collected. Levels of inflammatory chemokines C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 10 (CXCL10) were measured in tissues by enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to assess expression of the enzyme indoleamine 2, 3-dioxygenase 1 (IDO1) and the NLR family pyrin domain-containing protein 3 (NRLP3) inflammasome in frontal cortex and spleen tissues. Chronic pre-treatment robustly decreased inflammation in the hippocampus, frontal cortex, and spleen and reduced or abolished anxiety- and sickness-like behavior (e.g., increased time spent motionless, increased time spent in a contracted position, and reduced distance moved). However, treatment with β-FNA alone increased both inflammation in the frontal cortex and anxiety-like behavior. CONCLUSION These findings provide novel insights into the anti-inflammatory and behavior-modifying effects of chronic β-FNA pre-treatment and continue to support the therapeutic potential of β-FNA under inflammatory conditions.
Collapse
Affiliation(s)
- Karissa Hodge
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA
| | - Daniel J Buck
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA
| | - Subhas Das
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA
| | - Randall L Davis
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA.
| |
Collapse
|
8
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Huang L, Zhang T, Wang K, Chang B, Fu D, Chen X. Postoperative Multimodal Analgesia Strategy for Enhanced Recovery After Surgery in Elderly Colorectal Cancer Patients. Pain Ther 2024; 13:745-766. [PMID: 38836984 PMCID: PMC11254899 DOI: 10.1007/s40122-024-00619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Enhanced Recovery After Surgery (ERAS) protocols have substantially proven their merit in diminishing recuperation durations and mitigating postoperative adverse events in geriatric populations undergoing colorectal cancer procedures. Despite this, the pivotal aspect of postoperative pain control has not garnered the commensurate attention it deserves. Typically, employing a multimodal analgesia regimen that weaves together nonsteroidal anti-inflammatory drugs, opioids, local anesthetics, and nerve blocks stands paramount in curtailing surgical complications and facilitating reduced convalescence within hospital confines. Nevertheless, this integrative pain strategy is not devoid of pitfalls; the specter of organ dysfunction looms over the geriatric cohort, rooted in the abuse of analgesics or the complex interplay of polypharmacy. Revolutionary research is delving into alternative delivery and release modalities, seeking to allay the inadvertent consequences of analgesia and thereby potentially elevating postoperative outcomes for the elderly post-colorectal cancer surgery populace. This review examines the dual aspects of multimodal analgesia regimens by comparing their established benefits with potential limitations and offers insight into the evolving strategies of drug administration and release.
Collapse
Affiliation(s)
- Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Ministry of Education, Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Wuhan, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Ministry of Education, Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Wuhan, China.
| |
Collapse
|
10
|
Ummadisetty O, Akhilesh, Gadepalli A, Chouhan D, Patil U, Singh SP, Singh S, Tiwari V. Dermorphin [D-Arg2, Lys4] (1-4) Amide Alleviates Frostbite-Induced Pain by Regulating TRP Channel-Mediated Microglial Activation and Neuroinflammation. Mol Neurobiol 2024; 61:6089-6100. [PMID: 38277118 DOI: 10.1007/s12035-024-03949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Cold injury or frostbite is a common medical condition that causes serious clinical complications including sensory abnormalities and chronic pain ultimately affecting overall well-being. Opioids are the first-choice drug for the treatment of frostbite-induced chronic pain; however, their notable side effects, including sedation, motor incoordination, respiratory depression, and drug addiction, present substantial obstacle to their clinical utility. To address this challenge, we have exploited peripheral mu-opioid receptors as potential target for the treatment of frostbite-induced chronic pain. In this study, we investigated the effect of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripheral mu-opioid receptor agonist, on frostbite injury and hypersensitivity induced by deep freeze magnet exposure in rats. Animals with frostbite injury displayed significant hypersensitivity to mechanical, thermal, and cold stimuli which was significant ameliorated on treatment with different doses of DALDA (1, 3, and 10 mg/kg) and ibuprofen (100 mg/kg). Further, molecular biology investigations unveiled heightened oxido-nitrosative stress, coupled with a notable upregulation in the expression of TRP channels (TRPA1, TRPV1, and TRPM8), glial cell activation, and neuroinflammation (TNF-α, IL-1β) in the sciatic nerve, dorsal root ganglion (DRG), and spinal cord of frostbite-injured rats. Treatment with DALDA leads to substantial reduction in TRP channels, microglial activation, and suppression of the inflammatory cascade in the ipsilateral L4-L5 DRG and spinal cord of rats. Overall, findings from the present study suggest that activation of peripheral mu-opioid receptors mitigates chronic pain in rats by modulating the expression of TRP channels and suppressing glial cell activation and neuroinflammation.
Collapse
Affiliation(s)
- Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Utkarsh Patil
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjay Singh
- Baba Saheb Bhim Rao Ambedkar Central University (BBAU), Lucknow, Uttar Pradesh, 226025, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Wu Y, Song X, Ji Y, Chen G, Zhao L. A synthetic peptide exerts nontolerance-forming antihyperalgesic and antidepressant effects in mice. Neurotherapeutics 2024; 21:e00377. [PMID: 38777742 PMCID: PMC11284537 DOI: 10.1016/j.neurot.2024.e00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic pain is a prevalent and persistent ailment that affects individuals worldwide. Conventional medications employed in the treatment of chronic pain typically demonstrate limited analgesic effectiveness and frequently give rise to debilitating side effects, such as tolerance and addiction, thereby diminishing patient compliance with medication. Consequently, there is an urgent need for the development of efficacious novel analgesics and innovative methodologies to address chronic pain. Recently, a growing body of evidence has suggested that multireceptor ligands targeting opioid receptors (ORs) are favorable for improving analgesic efficacy, decreasing the risk of adverse effects, and occasionally yielding additional advantages. In this study, the intrathecal injection of a recently developed peptide (VYWEMEDKN) at nanomolar concentrations decreased pain sensitivity in naïve mice and effectively reduced pain-related behaviors in nociceptive pain model mice with minimal opioid-related side effects. Importantly, the compound exerted significant rapid-acting antidepressant effects in both the forced swim test and tail suspension test. It is possible that the rapid antihyperalgesic and antidepressant effects of the peptide are mediated through the OR pathway. Overall, this peptide could both effectively provide pain relief and alleviate depression with fewer side effects, suggesting that it is a potential agent for chronic pain and depression comorbidities from the perspective of pharmaceutical development.
Collapse
Affiliation(s)
- Yongjiang Wu
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Xiaofei Song
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - YanZhe Ji
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| | - Long Zhao
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China.
| |
Collapse
|
12
|
Makvand M, Mirtorabi SD, Campbell A, Zali A, Ahangari G. Exploring neuroadaptive cellular pathways in chronic morphine exposure: An in-vitro analysis of cabergoline and Mdivi-1 co-treatment effects on the autophagy-apoptosis axis. J Cell Biochem 2024; 125:e30558. [PMID: 38577900 DOI: 10.1002/jcb.30558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
The complex impacts of prolonged morphine exposure continue to be a significant focus in the expanding area of addiction studies. This research investigates the effectiveness of a combined treatment using Cabergoline and Mdivi-1 to counteract the neuroadaptive changes caused by in vitro morphine treatment. The impact of Methadone, Cabergoline, and a combination of Cabergoline and Mdivi-1 on the cellular and molecular responses associated with Morphine-induced changes was studied in human Neuroblastoma (SK-N-MC) and Glioblastoma (U87-MG) cell lines that were exposed to prolong Morphine treatment. Cabergoline and Mdivi-1 combined treatment effectively influenced the molecular alterations associated with neuroadaptation in chronic morphine-exposed neural cells. This combination therapy normalized autophagy and reduced oxidative stress by enhancing total-antioxidant capacity, mitigating apoptosis, restoring BDNF expression, and balancing apoptotic elements. Our research outlines morphine's dual role in modulating mitochondrial dynamics via the dysregulation of the autophagy-apoptosis axis. This emphasizes the significant involvement of DRP1 activity in neurological adaptation processes, as well as disturbances in the dopaminergic pathway during in vitro chronic exposure to morphine in neural cells. This study proposes a novel approach by recommending the potential effectiveness of combining Cabergoline and Mdivi-1 to modulate the neuroadaptations caused by morphine. Additionally, we identified BDNF and PCNA in neural cells as potential neuroprotective markers for assessing the effectiveness of drugs against opioid toxicity, emphasizing the need for further validation. The study uncovers diverse effects observed in pretreated morphine glioblastoma cells under treatment with Cabergoline and methadone. This highlights the potential for new treatments in the DRD2 pathway and underscores the importance of investigating the interplay between autophagy and apoptosis to advance research in managing cancer-related pain. The study necessitates an in-depth investigation into the relationship between autophagy and apoptosis, with a specific emphasis on protein interactions and the dynamics of cell signaling.
Collapse
Affiliation(s)
- Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
13
|
Yu R, Kong DL, Liao C, Yu YJ, He ZW, Wang Y. Natural products as the therapeutic strategies for addiction. Biomed Pharmacother 2024; 175:116687. [PMID: 38701568 DOI: 10.1016/j.biopha.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
World Drug Report 2023 concluded that 296 million people abused drugs, 39.5 million became addiction and 494,000 died as a direct or indirect result of addiction. Addiction has become a growing problem that affects individuals, their families, societies, countries and even the world. However, treatment for addiction is only limited to some developed countries because of the high cost, difficult implementation, and time consuming. Therefore, there is an urgent need to develop a low-cost, effective drug for the development of addiction treatment in more countries, which is essential for the stability and sustainable development of the world. In this review, it provided an overview of the abuse of common addictive drugs, related disorders, and current therapeutic regimen worldwide, and summarized the mechanisms of drug addiction as reward circuits, neuroadaptation and plasticity, cognitive decision-making, genetics, and environment. According to their chemical structure, 43 natural products and 5 herbal combinations with potential to treat addiction were classified, and their sources, pharmacological effects and clinical trials were introduced. It was also found that mitragine, ibogine, L-tetrahydropalmatine and crocin had greater potential for anti-addiction.
Collapse
Affiliation(s)
- Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
15
|
Acuña AM, Park C, Leyrer-Jackson JM, Olive MF. Promising immunomodulators for management of substance and alcohol use disorders. Expert Opin Pharmacother 2024; 25:867-884. [PMID: 38803314 PMCID: PMC11216154 DOI: 10.1080/14656566.2024.2360653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The neuroimmune system has emerged as a novel target for the treatment of substance use disorders (SUDs), with immunomodulation producing encouraging therapeutic benefits in both preclinical and clinical settings. AREAS COVERED In this review, we describe the mechanism of action and immune response to methamphetamine, opioids, cocaine, and alcohol. We then discuss off-label use of immunomodulators as adjunctive therapeutics in the treatment of neuropsychiatric disorders, demonstrating their potential efficacy in affective and behavioral disorders. We then discuss in detail the mechanism of action and recent findings regarding the use of ibudilast, minocycline, probenecid, dexmedetomidine, pioglitazone, and cannabidiol to treat (SUDs). These immunomodulators are currently being investigated in clinical trials described herein, specifically for their potential to decrease substance use, withdrawal severity, central and peripheral inflammation, comorbid neuropsychiatric disorder symptomology, as well as their ability to improve cognitive outcomes. EXPERT OPINION We argue that although mixed, findings from recent preclinical and clinical studies underscore the potential benefit of immunomodulation in the treatment of the behavioral, cognitive, and inflammatory processes that underlie compulsive substance use.
Collapse
Affiliation(s)
- Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| | - Connor Park
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Jonna M. Leyrer-Jackson
- Department of Biomedical Sciences, Creighton University School of Medicine – Phoenix, Phoenix, Arizona, USA
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
16
|
Karimi H, Patel J, Olmos M, Kanter M, Hernandez NS, Silver RE, Liu P, Riesenburger RI, Kryzanski J. Spinal Anesthesia Reduces Perioperative Polypharmacy and Opioid Burden in Patients Over 65 Who Undergo Transforaminal Lumbar Interbody Fusion. World Neurosurg 2024; 185:e758-e766. [PMID: 38432509 DOI: 10.1016/j.wneu.2024.02.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Polypharmacy and opioid administration are thought to increase the risk of postoperative cognitive dysfunction and delirium in elderly patients. Spinal anesthesia (SA) holds potential to reduce perioperative polypharmacy in spine surgery. As more geriatric patients undergo spine surgery, understanding how SA can reduce polypharmacy and opioid administration is warranted. We aim to compare the perioperative polypharmacy and dose of administered opioids in patients ≥65 years who undergo transforaminal lumbar interbody fusion (TLIF) under SA versus general anesthesia (GA). METHODS A retrospective analysis of 200 patients receiving a single-surgeon TLIF procedure at a single academic center (2014-2021) was performed. Patients underwent the procedure with SA (n = 120) or GA (n = 80). Demographic, procedural, and medication data were extracted from the medical record. Opioid consumption was quantified as morphine milligram equivalents (MME). Statistical analyses included χ2 or Student's t-test. RESULTS Patients receiving SA were administered 7.45 medications on average versus 12.7 for GA patients (P < 0.001). Average perioperative opioid consumption was 5.17 MME and 20.2 MME in SA and GA patients, respectively (P < 0.001). The number of patients receiving antiemetics and opioids remained comparable postoperatively, with a mean of 32.2 MME in the GA group versus 27.5 MME in the SA group (P = 0.14). Antiemetics were administered less often as a prophylactic in the SA group (32%) versus 86% in the GA group (P < 0.001). CONCLUSIONS SA reduces perioperative polypharmacy in patients ≥65 years undergoing TLIF procedures. Further research is necessary to determine if this reduction correlates to a decrease the incidence of postoperative cognitive dysfunction and delirium.
Collapse
Affiliation(s)
- Helen Karimi
- Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA.
| | - Jainith Patel
- Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michelle Olmos
- Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Matthew Kanter
- Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas S Hernandez
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| | - Rachel E Silver
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA; Energy Metabolism Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Penny Liu
- Department of Anesthesiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ron I Riesenburger
- Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James Kryzanski
- Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Martínez-Cuevas FL, Cruz SL, González-Espinosa C. Methadone Requires the Co-Activation of μ-Opioid and Toll-Like-4 Receptors to Produce Extracellular DNA Traps in Bone-Marrow-Derived Mast Cells. Int J Mol Sci 2024; 25:2137. [PMID: 38396814 PMCID: PMC10889600 DOI: 10.3390/ijms25042137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Methadone is an effective and long-lasting analgesic drug that is also used in medication-assisted treatment for people with opioid use disorders. Although there is evidence that methadone activates μ-opioid and Toll-like-4 receptors (TLR-4s), its effects on distinct immune cells, including mast cells (MCs), are not well characterized. MCs express μ-opioid and Toll-like receptors (TLRs) and constitute an important cell lineage involved in allergy and effective innate immunity responses. In the present study, murine bone-marrow-derived mast cells (BMMCs) were treated with methadone to evaluate cell viability by flow cytometry, cell morphology with immunofluorescence and scanning electron microscopy, reactive oxygen species (ROS) production, and intracellular calcium concentration ([Ca2+]i) increase. We found that exposure of BMMCs to 0.5 mM or 1 mM methadone rapidly induced cell death by forming extracellular DNA traps (ETosis). Methadone-induced cell death depended on ROS formation and [Ca2+]i. Using pharmacological approaches and TLR4-defective BMMC cultures, we found that µ-opioid receptors were necessary for both methadone-induced ROS production and intracellular calcium increase. Remarkably, TLR4 receptors were also involved in methadone-induced ROS production as it did not occur in BMMCs obtained from TLR4-deficient mice. Finally, confocal microscopy images showed a significant co-localization of μ-opioid and TLR4 receptors that increased after methadone treatment. Our results suggest that methadone produces MCETosis by a mechanism requiring a novel crosstalk pathway between μ-opioid and TLR4 receptors.
Collapse
Affiliation(s)
- Frida L. Martínez-Cuevas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico;
| | - Silvia L. Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico;
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico;
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios, No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico
| |
Collapse
|
18
|
Molavinia S, Nikravesh M, Pashmforoosh M, Vardanjani HR, Khodayar MJ. Zingerone Alleviates Morphine Tolerance and Dependence in Mice by Reducing Oxidative Stress-Mediated NLRP3 Inflammasome Activation. Neurochem Res 2024; 49:415-426. [PMID: 37864024 DOI: 10.1007/s11064-023-04043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Morphine (MPH) is widely used for pain management; however, long-term MPH therapy results in antinociceptive tolerance and physical dependence, limiting its clinical use. Zingerone (ZIN) is a natural phenolic compound with neuroprotective effects. We investigated the effects of single and repeated doses of ZIN on MPH-induced tolerance, dependence, and underlying biochemical mechanisms. After a dose-response experiment, tolerance was developed to MPH (10 mg/kg, i.p.) for seven days. In the single-dose study, ZIN was administered on day seven. In the repeated-dose study, ZIN was administered for seven days. Naloxone (5 mg/kg, i.p., 120 min after MPH) was injected to assess withdrawal signs on day seven. The levels of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), total thiol (TT), and glutathione peroxidase (GPx) were measured in the prefrontal cortex. The protein levels of interleukin-1 beta (IL-1β) and NLRP3-ASC-Caspase-1 axis were assessed by ELISA and Western blotting, respectively. Results showed that ZIN (100 mg/kg) had no antinociceptive activity, and subsequent experiments were performed at this dose. Repeated ZIN reversed MPH antinociceptive tolerance, whereas single ZIN did not. Single and repeated ZIN attenuated naloxone-induced jumping. In addition, repeated ZIN significantly inhibited weight loss. Repeated ZIN suppressed the MPH-induced increase in TBARS, NO, IL-1β, NLRP3, ASC, and Caspase-1. It also inhibited MPH-induced TT and GPx reduction. In contrast, single ZIN had no effect. Findings suggest that ZIN reduces MPH-induced tolerance and dependence by suppressing oxidative stress and NLRP3 inflammasome activation. This study provides a novel therapeutic approach to reduce the side effects of MPH.
Collapse
Affiliation(s)
- Shahrzad Molavinia
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrad Nikravesh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hossein Rajabi Vardanjani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
19
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
20
|
Taboun ZS, Sadeghi J. The bidirectional relationship between opioids and the gut microbiome: Implications for opioid tolerance and clinical interventions. Int Immunopharmacol 2023; 125:111142. [PMID: 37918085 DOI: 10.1016/j.intimp.2023.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Opioids are widely used in treating patients with acute and chronic pain; however, this class of drugs is also commonly abused. Opioid use disorder and associated overdoses are becoming more prevalent as the opioid crisis continues. Chronic opioid use is associated with tolerance, which decreases the efficacy of opioids over time, but also puts individuals at risk of fatal overdoses. Therefore, it is essential to identify strategies to reduce opioid tolerance in those that use these agents. The gut microbiome has been found to play a critical role in opioid tolerance, with opioids causing dysbiosis of the gut, and changes in the gut microbiome impacting opioid tolerance. These changes in turn have a detrimental effect on the gut microbiome, creating a positive feedback cycle. We review the bidirectional relationship between the gut microbiome and opioid tolerance, discuss the role of modulation of the gut microbiome as a potential therapeutic option in opioid-induced gut dysbiosis, and suggest opportunities for further research and clinical interventions.
Collapse
Affiliation(s)
- Zahra S Taboun
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Javad Sadeghi
- School of Engineering, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
| |
Collapse
|
21
|
Amodeo G, Franchi S, D’Agnelli S, Galimberti G, Baciarello M, Bignami EG, Sacerdote P. Supraspinal neuroinflammation and anxio-depressive-like behaviors in young- and older- adult mice with osteoarthritis pain: the effect of morphine. Psychopharmacology (Berl) 2023; 240:2131-2146. [PMID: 37530884 PMCID: PMC10506934 DOI: 10.1007/s00213-023-06436-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Asteoarthritis (OA) is a leading cause of chronic pain in the elderly population and is often associated with emotional comorbidities such as anxiety and depression. Despite age is a risk factor for both OA and mood disorders, preclinical studies are mainly conducted in young adult animals. OBJECTIVES Here, using young adult (11-week-old) and older adult (20-month-old) mice, we evaluate in a monosodium-iodoacetate-(MIA)-induced OA model the development of anxio-depressive-like behaviors and whether brain neuroinflammation may underlie the observed changes. We also test whether an effective pain treatment may prevent behavioral and biochemical alterations. METHODS Mechanical allodynia was monitored throughout the experimental protocol, while at the end of protocol (14 days), anxio-depressive-like behaviors and cognitive dysfunction were assessed. Neuroinflammatory condition was evaluated in prefrontal cortex, hippocampus and hypothalamus. Serum IFNγ levels were also measured. Moreover, we test the efficacy of a 1-week treatment with morphine (2.5 mg/kg) on pain, mood alterations and neuroinflammation. RESULTS We observed that young adult and older adult controls (CTRs) mice had comparable allodynic thresholds and developed similar allodynia after MIA injection. Older adult CTRs were characterized by altered behavior in the tests used to assess the presence of depression and cognitive impairment and by elevated neuroinflammatory markers in brain areas compared to younger ones. The presence of pain induced depressive-like behavior and neuroinflammation in adult young mice, anxiety-like behavior in both age groups and worsened neuroinflammation in older adult mice. Morphine treatment counteracted pain, anxio-depressive behaviors and neuroinflammatory activation in both young adult and older adult mice. CONCLUSIONS Here, we demonstrated that the presence of chronic pain in young adult mice induces mood alterations and supraspinal biochemical changes and aggravates the alterations already evident in older adult animals. A treatment with morphine, counteracting the pain, prevents the development of anxio-depressive disorders and reduces neuroinflammation.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Silvia Franchi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Galimberti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paola Sacerdote
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
22
|
Borisova B, Nocheva H, Gérard S, Laronze-Cochard M, Dobrev S, Angelova S, Petrin S, Danalev D. Synthesis, In Silico Log p Study, and In Vitro Analgesic Activity of Analogs of Tetrapeptide FELL. Pharmaceuticals (Basel) 2023; 16:1183. [PMID: 37631098 PMCID: PMC10458596 DOI: 10.3390/ph16081183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The inflammatory process represents a specific response of the organism's immune system. More often, it is related to the rising pain in the affected area. Independently of its origin, pain represents a complex and multidimensional acute or chronic subjective unpleasant perception. Currently, medical doctors prescribe various analgesics for pain treatment, but unfortunately, many of them have adverse effects or are not strong enough to suppress the pain. Thus, the search for new pain-relieving medical drugs continues. METHODS New tetrapeptide analogs of FELL with a generaanalgesic-Glu-X3-X4-Z, where X = Nle, Ile, or Val and Z = NH2 or COOH, containing different hydrophobic amino acids at positions 3 and 4, were synthesized by means of standard solid-phase peptide synthesis using the Fmoc/OtBu strategy in order to study the influence of structure and hydrophobicity on the analgesic activity. The purity of all compounds was monitored by HPLC, and their structures were proven by ESI-MS. Logp values (partition coefficient in octanol/water) for FELL analogs were calculated. Analgesic activity was examined by the Paw-pressure test (Randall-Selitto test). RESULTS The obtained results reveal that Leu is the best choice as a hydrophobic amino acid in the FELL structure. CONCLUSIONS The best analgesic activity is found in the parent compound FELL and its C-terminal amide analog.
Collapse
Affiliation(s)
- Boryana Borisova
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (B.B.); (S.P.)
| | - Hristina Nocheva
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Sofia, Sv. Georgi Sofiyski Blvd. 1, 1431 Sofia, Bulgaria;
| | - Stéphane Gérard
- Institut de Chimie Moléculaire de Reims (ICMR)-UMR CNRS 7312, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France; (S.G.); (M.L.-C.)
| | - Marie Laronze-Cochard
- Institut de Chimie Moléculaire de Reims (ICMR)-UMR CNRS 7312, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France; (S.G.); (M.L.-C.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia, Bulgaria; (S.D.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia, Bulgaria; (S.D.); (S.A.)
| | - Stoyko Petrin
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (B.B.); (S.P.)
| | - Dancho Danalev
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (B.B.); (S.P.)
| |
Collapse
|
23
|
Cuitavi J, Andrés-Herrera P, Meseguer D, Campos-Jurado Y, Lorente JD, Caruana H, Hipólito L. Focal mu-opioid receptor activation promotes neuroinflammation and microglial activation in the mesocorticolimbic system: Alterations induced by inflammatory pain. Glia 2023; 71:1906-1920. [PMID: 37017183 DOI: 10.1002/glia.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Microglia participates in the modulation of pain signaling. The activation of microglia is suggested to play an important role in affective disorders that are related to a dysfunction of the mesocorticolimbic system (MCLS) and are commonly associated with chronic pain. Moreover, there is evidence that mu-opioid receptors (MORs), expressed in the MCLS, are involved in neuroinflammatory events, although the way by which they do it remains to be elucidated. In this study, we propose that MOR pharmacological activation within the MCLS activates and triggers the local release of proinflammatory cytokines and this pattern of activation is impacted by the presence of systemic inflammatory pain. To test this hypothesis, we used in vivo microdialysis coupled with flow cytometry to measure cytokines release in the nucleus accumbens and immunofluorescence of IBA1 in areas of the MCLS on a rat model of inflammatory pain. Interestingly, the treatment with DAMGO, a MOR agonist locally in the nucleus accumbens, triggered the release of the IL1α, IL1β, and IL6 proinflammatory cytokines. Furthermore, MOR pharmacological activation in the ventral tegmental area (VTA) modified the levels of IBA1-positive cells in the VTA, prefrontal cortex, the nucleus accumbens and the amygdala in a dose-dependent way, without impacting mechanical nociception. Additionally, MOR blockade in the VTA prevents DAMGO-induced effects. Finally, we observed that systemic inflammatory pain altered the IBA1 immunostaining derived from MOR activation in the MSCLS. Altogether, our results indicate that the microglia-MOR relationship could be pivotal to unravel some inflammatory pain-induced comorbidities related to MCLS dysfunction.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, 46100, Spain
| | - Paula Andrés-Herrera
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, 46100, Spain
| | - David Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Jesús D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Hannah Caruana
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, 46100, Spain
| |
Collapse
|