1
|
Paoletti F. ATP binding to Nerve Growth Factor (NGF) and pro-Nerve Growth Factor (proNGF): an endogenous molecular switch modulating neurotrophins activity. Biochem Soc Trans 2024; 52:1293-1304. [PMID: 38716884 DOI: 10.1042/bst20231089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.
Collapse
Affiliation(s)
- Francesca Paoletti
- Institute of Crystallography - C.N.R. - Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| |
Collapse
|
2
|
Zhang X, Zhang H, Gong J, Yu H, Wu D, Hou J, Li M, Sun X. Aging affects the biological activity of fibroblast growth factor (FGF) in gastric epithelial cell, which is partially rescued by uridine. Bioengineered 2022; 13:3724-3738. [PMID: 35105283 PMCID: PMC8974118 DOI: 10.1080/21655979.2022.2029066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aging has become an irreversible trend in the world, the health problems caused by aging cannot be ignored. The physiological functions of human body begin to decline with aging, the decline of gastrointestinal function caused by aging is an important problem that needs to be resolved. In this work, we evaluated the anti-aging effect of uridine in the senescent gastric epithelial cell model, and found that the aging level of gastric epithelial cell was significantly down-regulated by uridine treatment, uridine could obviously down-regulate the ratio of the SA-β-gal-positive senescent cells. Furthermore, aging-related marker molecules (such as p16 and p21) were also significantly down-regulated under uridine treatment. Additionally, the levels of inflammation and oxidative stress were also significantly reduced by uridine treatment. Next, our further studies the effect of aging on FGF activity on gastric epithelial cell, and found that FGF/FGFR-mediated signaling pathways were significantly down-regulated. However, uridine treatment can not only alleviate the senescence of gastric epithelial cell, but also can partially restore the sensitivity of FGF signaling. Taken together, the current work indicates that uridine shows a good anti-aging effect, which lays a solid foundation for the related research in this filed.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huifeng Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Jingli Gong
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Di Wu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Junyu Hou
- School of Pharmacy, Beihua University, Jilin City, China
| | - Minghui Li
- School of Pharmacy, Beihua University, Jilin City, China
| | - Xin Sun
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| |
Collapse
|
3
|
Paoletti F, Lamba D. Small Endogenous Ligands Modulation of Nerve Growth Factor Bioactivity: A Structural Biology Overview. Cells 2021; 10:cells10123462. [PMID: 34943971 PMCID: PMC8700322 DOI: 10.3390/cells10123462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023] Open
Abstract
Experiments with cell cultures and animal models have provided solid support for the assumption that Nerve Growth Factor (NGF) plays a key role in the regulation of neuronal cell survival and death. Recently, endogenous ligands have been proposed as physiological modulators of NGF biological activity as part of this regulatory cascade. However, the structural and mechanistic determinants for NGF bioactivity remain to be elucidated. We recently unveiled, by an integrated structural biology approach, the ATP binding sites of NGF and investigated the effects on TrkA and p75NTR receptors binding. These results pinpoint ATP as a genuine endogenous modulator of NGF signaling, paving the way to the characterization of not-yet-identified chemical diverse endogenous biological active small molecules as novel modulators of NGF. The present review aims at providing an overview of the currently available 3D structures of NGF in complex with different small endogenous ligands, featuring the molecular footprints of the small molecules binding. This knowledge is essential for further understanding the functional role of small endogenous ligands in the modulation of neurotrophins signaling in physiological and pathological conditions and for better exploiting the therapeutic potentialities of NGF.
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
- Correspondence:
| | - Doriano Lamba
- Institute of Crystallography—C.N.R.—Trieste Outstation, Area Science Park—Basovizza, I-34149 Trieste, Italy;
- Interuniversity Consortium “Biostructures and Biosystems National Institute”, I-00136 Roma, Italy
| |
Collapse
|
4
|
Paoletti F, Merzel F, Cassetta A, Ogris I, Covaceuszach S, Grdadolnik J, Lamba D, Golič Grdadolnik S. Endogenous modulators of neurotrophin signaling: Landscape of the transient ATP-NGF interactions. Comput Struct Biotechnol J 2021; 19:2938-2949. [PMID: 34136093 PMCID: PMC8164016 DOI: 10.1016/j.csbj.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
High-resolution solution NMR structure of rhNGF has been determined. Quinary interactions characterize ATP binding to rhNGF. SPR, ITC and STD-NMR reveal ATP binding to rhNGF with mM affinity. NMR and MD analysis pinpoint to the presence of two binding sites of ATP on rhNGF. Stoichiometry of ATP-Mg2+ or Zn2+-rhNGF mixtures affects KD affinity to TrkA/p75NTR.
The Nerve Growth Factor (NGF) neurotrophin acts in the maintenance and growth of neuronal populations. Despite the detailed knowledge of NGF’s role in neuron physiology, the structural and mechanistic determinants of NGF bioactivity modulated by essential endogenous ligands are still lacking. We present the results of an integrated structural and advanced computational approach to characterize the extracellular ATP-NGF interaction. We mapped by NMR the interacting surface and ATP orientation on NGF and revealed the functional role of this interaction in the binding to TrkA and p75NTR receptors by SPR. The role of divalent ions was explored in conjunction with ATP. Our results pinpoint ATP as a likely transient molecular modulator of NGF signaling, in health and disease states.
Collapse
Key Words
- ARIA, Ambiguous Restraints for Iterative Assignment
- ATP modulation
- BDNF, Brain Derived Neurotrophic Factor
- CARA, Computer Aided Resonance Assignment
- CS-E, Chrondroitin Sulfate E
- CSP, Chemical Shift Perturbation
- DSF, Differential Scanning Fluorimetry
- EI-MS, Electron Ionization Mass Spectrometry
- Endogenous ligands
- FGF2, Fibroblast Growth Factor 2
- FT-IR, Fourier Transform Infrared Spectroscopy
- HBD, Heparin Binding Domain
- HSQC, Heteronuclear Single Quantum Coherence
- ITC, Isothermal Titration Calorimetry
- MALDI-TOF MS, Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry
- MD, Molecular Dynamics
- MS, Mass Spectrometry
- NGF interactions
- NGF, Nerve Growth Factor
- NMR, Nuclear Magnetic Resonance
- NOE, Nuclear Overhouser Effect
- NOESY, Nuclear Overhauser Effect Spectroscopy
- NT, NeuroTrophin
- Neurotrophins
- P20, Polysorbate 20
- PME, Particle Mesh Ewald
- RMSD, Root Mean Square Deviation
- SAR, Structure-Activity Relationship
- SPR, Surface Plasmon Resonance
- STD, Saturation-Transfer Difference
- TrkA, Tyrosine Kinase Receptor A
- TrkA, p75NTR receptors
- p75NTR, p75 NeuroTrophin Receptor
- proNGF, proNGF – NGF precursor
- rh-proNGF, recombinant human proNGF – NGF precursor
- rhNGF, recombinant human NGF
- rmNGF, recombinant mouse NGF
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Franci Merzel
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Alberto Cassetta
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| | - Iza Ogris
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Sonia Covaceuszach
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Doriano Lamba
- Institute of Crystallography - C.N.R.- Trieste Outstation. Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy.,Interuniversity Consortium "Biostructures and Biosystems National Institute", Viale delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
5
|
Vanzella C, Neves JD, Vizuete AF, Aristimunha D, Kolling J, Longoni A, Gonçalves CAS, Wyse AT, Netto CA. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behav Brain Res 2017; 334:78-85. [DOI: 10.1016/j.bbr.2017.07.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/30/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
6
|
|
7
|
Quaegebeur A, Segura I, Schmieder R, Verdegem D, Decimo I, Bifari F, Dresselaers T, Eelen G, Ghosh D, Davidson SM, Schoors S, Broekaert D, Cruys B, Govaerts K, De Legher C, Bouché A, Schoonjans L, Ramer MS, Hung G, Bossaert G, Cleveland DW, Himmelreich U, Voets T, Lemmens R, Bennett CF, Robberecht W, De Bock K, Dewerchin M, Ghesquière B, Fendt SM, Carmeliet P. Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism. Cell Metab 2016; 23:280-91. [PMID: 26774962 PMCID: PMC4880550 DOI: 10.1016/j.cmet.2015.12.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023]
Abstract
The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Annelies Quaegebeur
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Inmaculada Segura
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Roberta Schmieder
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ilaria Decimo
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Francesco Bifari
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Debapriva Ghosh
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra Schoors
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Carla De Legher
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Matt S Ramer
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; International Collaboration on Repair Discoveries, the University of British Columbia, Vancouver, Canada
| | - Gene Hung
- Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Goele Bossaert
- Leuven Statistics Research Centre (LStat), University of Leuven, Leuven, Belgium
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Medicine and Neuroscience, University of California, San Diego, La Jolla, CA 92093, USA
| | - Uwe Himmelreich
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Robin Lemmens
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Wim Robberecht
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium.
| |
Collapse
|
8
|
Structural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions. J Nucleic Acids 2012; 2012:392039. [PMID: 22919464 PMCID: PMC3420092 DOI: 10.1155/2012/392039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
In an ATP-dependent reaction, the Escherichia coli RecG helicase unwinds DNA junctions in vitro. We present evidence of a unique protein conformational change in the RecG helicase from an α-helix to a β-strand upon an ATP binding under dilute conditions using circular dichroism (CD) spectroscopy. In contrast, under molecular crowding conditions, the α-helical conformation was stable even upon an ATP binding. These distinct conformational behaviors were observed to be independent of Na+ and Mg2+. Interestingly, CD measurements demonstrated that the spectra of a frayed duplex decreased with increasing of the RecG concentration both under dilute and molecular crowding conditions in the presence of ATP, suggesting that RecG unwound the frayed duplex. Our findings raise the possibility that the α-helix and β-strand forms of RecG are a preactive and an active structure with the helicase activity, respectively.
Collapse
|
9
|
Nerve growth factor and brain-derived neurotrophic factor but not granulocyte colony-stimulating factor, nimodipine and dizocilpine, require ATP for neuroprotective activity after oxygen-glucose deprivation of primary neurons. Brain Res 2012; 1448:20-6. [PMID: 22386494 DOI: 10.1016/j.brainres.2012.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/31/2012] [Accepted: 02/07/2012] [Indexed: 11/21/2022]
Abstract
In previous work, we have demonstrated by radiolabeling, mass spectrometry and site-directed mutagenesis that nerve growth factor (NGF) as well as brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 2 (FGF2) are capable of ATP-binding and that this binding appears to be essential for their neuroprotective activity. In this study, we attempted to shed some light on the question whether ATP is a general prerequisite for neuroprotection. Therefore, we used the non-ATP-binding granulocyte colony-stimulating factor (GCSF), the calcium antagonist nimodipine and the NMDA antagonist dizocilpine to find out whether they need ATP for neuroprotection comparable to NGF and BDNF. However, ATP was not necessary for the neuroprotective effects of GCSF, nimodipine and dizocilpine on primary cultures of rat cortical neurons damaged by oxygen-glucose deprivation whereas neuroprotection was demonstrable for NGF and BDNF only when ATP was present in the culture medium at a concentration higher than ca. 0.4nmol/l. In circular dichroism studies ATP caused changes of the secondary structure of NGF but not of GCSF. Taken together, we suggest that ATP is not a general prerequisite for neuroprotectivity but some growth factors like NGF and BDNF can stimulate their receptors only if they have bound ATP.
Collapse
|
10
|
Ferenz KB, Rose K, König S, Krieglstein J. ATP-NGF-complex, but not NGF, is the neuroprotective ligand. Neurochem Int 2011; 59:989-95. [PMID: 21930174 DOI: 10.1016/j.neuint.2011.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 12/12/2022]
Abstract
We have shown previously that nerve growth factor (NGF) requires only low nanomolar ATP concentrations in the cell culture medium to protect cortical rat neurons (CRN) from cellular damage induced by staurosporine (STS). We have also demonstrated before that NGF and other growth factors form stable non-covalent complexes with ATP. Here we demonstrated that 8N(1)ATP-NGF, but not NGF, protected CRN against damage. The photo-reactive ATP derivative 8N(3)ATP was incubated with NGF and was trapped in its position by UV irradiation forming a covalent bond. The cross-link with a molar ratio of 1:1 (8N(1)ATP:NGF) was confirmed by mass spectrometry. Circular dichroism experiments revealed that 8N(1)ATP altered the secondary structure of NGF in the same way as ATP did. Covalently bound 8N(1)ATP-NGF was shown to be stable in the presence of the ATP-hydrolyzing enzyme alkaline phosphatase while the non-covalent ATP-NGF-complex dissociated with the removal of free ATP from the solution. 8N(1)ATP-NGF protected CRN against damage by STS independently of free ATP in the culture medium. These results suggest that the ATP-NGF-complex, but not NGF, is the active ligand.
Collapse
Affiliation(s)
- Katja Bettina Ferenz
- Institut für Pharmazeutische und Medizinische Chemie, Fachbereich Chemie und Pharmazie, Germany
| | | | | | | |
Collapse
|
11
|
Gast RE, König S, Rose K, Ferenz KB, Krieglstein J. Binding of ATP to vascular endothelial growth factor isoform VEGF-A165 is essential for inducing proliferation of human umbilical vein endothelial cells. BMC BIOCHEMISTRY 2011; 12:28. [PMID: 21619628 PMCID: PMC3125245 DOI: 10.1186/1471-2091-12-28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/27/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND ATP binding is essential for the bioactivity of several growth factors including nerve growth factor, fibroblast growth factor-2 and brain-derived neurotrophic factor. Vascular endothelial growth factor isoform 165 (VEGF-A(165)) induces the proliferation of human umbilical vein endothelial cells, however a dependence on ATP-binding is currently unknown. The aim of the present study was to determine if ATP binding is essential for the bioactivity of VEGF-A(165). RESULTS We found evidence that ATP binding to VEGF-A(165) induced a conformational change in the secondary structure of the growth factor. This binding appears to be significant at the biological level, as we found evidence that nanomolar levels of ATP (4-8 nm) are required for the VEGF-A(165)-induced proliferation of human umbilical vein endothelial cells. At these levels, purinergic signaling by ATP via P2 receptors can be excluded. Addition of alkaline phosphate to cell culture lowered the ATP concentration in the cell culture medium to 1.8 nM and inhibited cell proliferation. CONCLUSIONS We propose that proliferation of endothelial cells is induced by a VEGF-A(165)-ATP complex, rather than VEGF-A(165) alone.
Collapse
Affiliation(s)
- Ronald E Gast
- Institut für Pharmazeutische und Medizinische Chemie, Hittorfstrasse 58-62, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
12
|
Interaction of ATP with fibroblast growth factor 2: biochemical characterization and consequence for growth factor stability. BMC BIOCHEMISTRY 2011; 12:14. [PMID: 21447157 PMCID: PMC3072325 DOI: 10.1186/1471-2091-12-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/29/2011] [Indexed: 11/30/2022]
Abstract
Background Fibroblast growth factor 2, a well-characterized heparin-binding growth factor, is involved in many biological processes like embryogenesis, cell proliferation and angiogenesis. However, this growth factor is very unstable and shows rapid degradation in aqueous solution. Beside the well-known stabilization of FGF2 by heparin or heparan sulphate, the recently discovered binding to ATP also shows a stabilizing and protective effect on this growth factor. Results Here we determined the dissociation constant of ATP on FGF2 by equilibrium microdialysis (KD: 59.8 μM) and analyzed the impact of this binding on secondary structure by CD-spectroscopy. ATP-binding to FGF2 significantly changed the secondary structure of this growth factor with a shift to random coil structure elements. We also analyzed the influence of this binding on the stability of FGF2 in aqueous solution over a period of 2 h. While the amount of untreated FGF2 is reduced drastically over this period of time, ATP-binding reduces the degradation considerably. Conclusions Taken together, our data suggest an important role of ATP in FGF2-stabilization beside the well known-role of heparin and heparan sulphate.
Collapse
|
13
|
Rose K, Gast RE, Seeger A, Krieglstein J, Klumpp S. ATP-dependent stabilization and protection of fibroblast growth factor 2. J Biotechnol 2010; 145:54-9. [PMID: 19836424 DOI: 10.1016/j.jbiotec.2009.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 10/02/2009] [Accepted: 10/08/2009] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor 2 (FGF2) plays a pivotal role in cell proliferation, angiogenesis and neuroprotection. Several clinical trials using this growth factor in bone regeneration, wound healing and cardioprotection are initiated but the inadequate stability of FGF2 after application is one major problem. Binding of ATP to FGF2 and other growth factors has been demonstrated recently. Here we report that ATP, other nucleoside triphosphates and sodium triphosphate protect FGF2 from trypsin, plasmin and neutrophile elastase digestion in vitro. A molar ratio of 2:1 (ligand/FGF2) is sufficient for these protective effects. ADP shows only little, AMP no stabilizing effect on FGF2 indicating that the number of phosphate residues is important. Protection of FGF2 by ATP can be abolished by the addition of alkaline phosphatase hydrolyzing free and FGF2-bound ATP. The mutant FGF2 (K128A/R129A/K134A/K144A) with strongly reduced ATP-binding capacity revealed no detectable protease resistance after incubation with ATP. Furthermore, a stabilizing effect of ATP on FGF2 could also be demonstrated in cell culture experiments. ATP bound to FGF2 increased FGF2-dependent human umbilical vein endothelial cells proliferation when the growth factor was treated with neutrophile elastase or heat. For the first time these data demonstrate protection of FGF2 by bound ATP, other nucleoside triphosphates or sodium triphosphate from rapid protease digestion. Our data provide new evidence that nucleoside triphosphates are capable of protecting FGF2 and favours such stabilization for various, especially medical applications.
Collapse
Affiliation(s)
- Karsten Rose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.
| | | | | | | | | |
Collapse
|
14
|
Klumpp S, Ma NT, Bäumer N, Bechmann G, Krieglstein J. Relevance of glycine and cysteine residues as well as N- and C-terminals for the activity of protein histidine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:206-11. [DOI: 10.1016/j.bbapap.2009.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/02/2009] [Accepted: 10/07/2009] [Indexed: 01/08/2023]
|
15
|
Hasche A, Ferenz KB, Rose K, König S, Humpf HU, Klumpp S, Krieglstein J. Binding of ATP to nerve growth factor: characterization and relevance for bioactivity. Neurochem Int 2009; 56:276-84. [PMID: 19897001 DOI: 10.1016/j.neuint.2009.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/20/2009] [Accepted: 10/28/2009] [Indexed: 11/15/2022]
Abstract
Growth factors and their mechanisms of action have been studied extensively. However, it remained widely unrecognized that binding of ATP to growth factors is a prerequisite for their bioactivity. Here we demonstrated the binding of ATP to nerve growth factor (NGF) as well as its relevance for neuroprotection. By using mass spectrometry-based methodology we identified one or two molecules of ATP as being bound to NGF. To test neuroprotective activity of NGF we used primary cultures of rat cortical neurons damaged by staurosporine. ATP was indispensable for the neuroprotective effect of NGF. When the ATP concentration in the culture medium was reduced below approximately 2 nM by adding alkaline phosphatase (AP) or ATPase the neuroprotective activity of NGF was abolished. Site-directed mutagenesis within the heparin-binding domain (HBD) of NGF abolished ATP-binding and the neuroprotective effect. Thus, NGF has to bind ATP to be capable of protecting neurons.
Collapse
Affiliation(s)
- Anja Hasche
- Institut für Pharmazeutische und Medizinische Chemie, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Rose K, Litterscheid S, Klumpp S, Krieglstein J. Fibroblast growth factor 2 requires complex formation with ATP for neuroprotective activity. Neuroscience 2009; 164:1695-700. [PMID: 19782732 DOI: 10.1016/j.neuroscience.2009.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/25/2009] [Accepted: 09/21/2009] [Indexed: 11/30/2022]
Abstract
The neurotrophic and neuroprotective activity of fibroblast growth factor (FGF2) is well documented. In this study, we attempted to demonstrate that binding of ATP to FGF2 is essential for its neuroprotective effect. Incubation of primary cultures of rat embryonic (E18) cortical neurons with alkaline phosphatase decreased the ATP concentration in the culture medium from about 8 to 0.3 nM measured luminometrically. Reduction of ATP concentration below 1 nM abolished the neuroprotective effect of FGF2. However, when the more stable nucleotide triphosphate gammaS-ATP was used which could not be cleaved by alkaline phosphatase, FGF2 still protected the cultured cortical neurons against damage. In control experiments alkaline phosphatase alone did not influence neuroprotection. In addition, also ATPase and apyrase were used as ATP cleaving enzymes. Added to the culture medium, both enzymes were capable of decreasing ATP below the critical level of approximately 1 nM, and the neuroprotective activity of FGF2 was abolished. Thus, our results demonstrate for the first time that the FGF2/ATP complex but not FGF2 alone mediates neuroprotection.
Collapse
Affiliation(s)
- K Rose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms Universität, Hittorfstrabetae 58-62, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
17
|
Jantas D, Szymanska M, Budziszewska B, Lason W. An involvement of BDNF and PI3-K/Akt in the anti-apoptotic effect of memantine on staurosporine-evoked cell death in primary cortical neurons. Apoptosis 2009; 14:900-12. [DOI: 10.1007/s10495-009-0370-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Yamada T, Sawada R, Tsuchiya T. The effect of sulfated hyaluronan on the morphological transformation and activity of cultured human astrocytes. Biomaterials 2008; 29:3503-13. [PMID: 18533253 DOI: 10.1016/j.biomaterials.2008.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
We demonstrated the effect of synthesized sulfated hyaluronan (SHya), which is composed of a sulfated group and hyaluronan, and basic fibroblast growth factor 2 (FGF-2) on normal human astrocytes (NHA) activity and its morphological transformation in vitro study. Astrocyte is a kind of glial cell and stellated astrocyte (activating astrocyte) supports axons network, neurons survival and synaptic plasticity. Treatment of SHya hardly affected NHA proliferation. However combination treatment of SHya and FGF-2 increased NHA proliferation. Treatment of SHya promoted transformation of normal astrocyte into a stella morphology (stellation) and combination treatment of SHya and FGF-2 promoted stellation than that of SHya only. Treatment of SHya increased glial fibrillary acidic protein (GFAP), nestin mRNA and GFAP protein expression in the stellated NHA. The cell-cell adhesion of NHA increased by treatment of SHya. Treatment of SHya increased heparin-binding trophic factors FGF-2, midkine, and some other trophic factors mRNA level in the NHA. These results suggested that the treatment of SHya promoted NHA activity due to enhancing neurotrophins production and the morphological transformation of NHA and the effect of SHya on astrocytes partly involved FGF-2 activity. These findings indicate that SHya may be involved in the astrocyte activity and support neurons survivals.
Collapse
Affiliation(s)
- Takashi Yamada
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | |
Collapse
|
19
|
Rose K, Pallast S, Klumpp S, Krieglstein J. ATP-binding on fibroblast growth factor 2 partially overlaps with the heparin-binding domain. J Biochem 2008; 144:343-7. [PMID: 18511454 DOI: 10.1093/jb/mvn072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2), an intensively studied heparin-binding cytokine, is an important modulator of cell growth and differentiation under both physiological and pathophysiological conditions. It has been shown recently that ATP binds to FGF2 and that this binding is crucial for its biological function. In this study we demonstrated that divalent cations were not necessary for binding of ATP to FGF2, but it could be demonstrated that heparin blocked the labelling of FGF2 with ATP indicating an involvement of the heparin-binding domain (aa 128-144) in ATP-binding. FGF2, bound to Heparin Sepharose, could be eluted with ATP and GTP, but not with cAMP, AMP or ADP. Successive mutation of positively charged amino acid residues located in the heparin-binding domain drastically reduced the signal intensity of [gamma-(32)P]ATP labelled FGF2 indicating that this domain is not only important for heparin binding to FGF2 but also for ATP-binding.
Collapse
Affiliation(s)
- Karsten Rose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Hittorfstr. 58-62, 48149 Münster, Germany
| | | | | | | |
Collapse
|
20
|
König S, Hasche A, Pallast S, Krieglstein J, Klumpp S. Detection of ATP-binding to growth factors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:91-95. [PMID: 18055212 DOI: 10.1016/j.jasms.2007.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/20/2007] [Accepted: 10/16/2007] [Indexed: 05/25/2023]
Abstract
It was shown in previous work that the interaction of growth factors (GFs) with adenosine triphosphate (ATP) is essential for their neuroprotective effect. Here we investigated the nature of the association of human basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) with ATP. It was demonstrated that this interaction involves the formation of non-covalent ATP-GF complexes that are labile at low pH and that could be selectively purified and subjected to electrospray and MALDI-TOF mass spectrometry. The results obtained with these techniques indicated that the stability of the complexes is high. Main features of the procedure used here are: (1) reversed-phase purification of nucleotide-protein non-covalent complexes, (2) their detection with MALDI-TOF-MS using acid-free matrix, and/or (3) their measurement with ESI-MS using soft desolvation conditions. The methodology was successful in providing proof for the presence of various nucleotide-GF complexes. It was extended to other nucleotide-binding proteins (ribonuclease A) as well as proteins that do not exhibit nucleotide binding (lysozyme) as positive and negative control, respectively. Thus, the method demonstrated its general use for the investigation of a wide range of proteins interacting with nucleotides as long as their complexes are sufficiently stable to accommodate the experimental conditions.
Collapse
Affiliation(s)
- Simone König
- Integrated Functional Genomics, Interdisciplinary Center of Clinical Research, University of Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|
21
|
Rose K, Kriha D, Pallast S, Junker V, Klumpp S, Krieglstein J. Basic fibroblast growth factor: lysine 134 is essential for its neuroprotective activity. Neurochem Int 2007; 51:25-31. [PMID: 17524524 DOI: 10.1016/j.neuint.2007.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 01/24/2023]
Abstract
Basic fibroblast growth factor (bFGF) is a heparin-binding growth factor known to cause cell proliferation, angiogenesis and neuroprotection. We have performed site-directed mutagenesis to identify the amino acids that are essential for heparin/growth factor interaction and for neuroprotection. Binding to heparin-acrylic beads was markedly reduced when lysine in position 134 of bFGF was replaced by alanine. Wildtype (wt)-bFGF was shown to protect rat primary cultures of embryonic hippocampal neurons against damage caused by staurosporine and to reduce the infarct size in mice after focal cerebral ischemia. These neuroprotective effects of wt-bFGF could not be shown for the mutant bFGF(K134A). Furthermore, phosphorylation of Akt and ERK1/2 was significantly reduced in cultured neurons treated with bFGF(K134A) indicating diminished intracellular signaling compared to neurons treated with wt-bFGF. In conclusion, lysine at position 134 of bFGF is essential for bFGF to bind heparin, then to interact with its receptor and, subsequently, to protect neurons against damage.
Collapse
Affiliation(s)
- Karsten Rose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität, Hittorfstr. 58-62, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Bella AJ, Lin G, Tantiwongse K, Garcia M, Lin CS, Brant W, Lue TF. Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part I. J Sex Med 2006; 3:815-820. [PMID: 16942526 DOI: 10.1111/j.1743-6109.2006.00291.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Identification of the molecular mechanism of cavernous nerve regeneration is essential for future development of neuroprotective and regenerative strategies. AIM To identify specific signal transduction pathway(s) associated with brain-derived neurotrophic factor (BDNF) enhanced cavernous nerve regeneration in an in vitro model. MATERIALS AND METHODS Using 6-month-old male Fisher rats, inhibitors of four candidate signaling pathways were added to BDNF-treated explant cultures of major pelvic ganglia with attached cavernous nerve fragments. Study groups comprised of controls, BDNF alone at 50 ng/mL, or BDNF 50 ng/mL and inhibitors against MEK, PI3-K, PKA, and JAK/STAT pathways at increasing concentrations. MAIN OUTCOME MEASURE The maximal neurite length for each tissue culture was measured and the mean maximal length +/- standard deviation was determined for all groups at 24, 36, and 48 hours. RESULTS The JAK/STAT specific inhibitor AG490 significantly reduced BDNF-enhanced neurite growth. Maximum neurite lengths at 24, 36, and 48 hours for BDNF 50 ng/mL treated groups were 182.3, 348.1, and 528.1 microm, compared with AG490 at 25 microM (86.4, 165.1, 278.3 microm), 50 microM (78.8, 151.7, 235.3 microm), and 100 microM (71.83, 107.0, 219.6 microm) (P < 0.05). Neurite measures for BDNF with 25 and 50 microM U0126 (MEK pathway) were reduced to 402.0 and 424.3 microm at 48 hours, respectively (P < 0.05), likely reflecting an accessory molecular pathway. A similar observation was made for 100 uM LY294002 (PI3-K). No difference was observed for PKA inhibition. CONCLUSION The JAK/STAT pathway is the major signal-transduction pathway of BDNF-enhanced cavernous nerve growth in an in vitro rat model.
Collapse
Affiliation(s)
- Anthony J Bella
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| | - Guiting Lin
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Kavirach Tantiwongse
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Maurice Garcia
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Ching-Schwun Lin
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - William Brant
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Tom F Lue
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Radak Z, Toldy A, Szabo Z, Siamilis S, Nyakas C, Silye G, Jakus J, Goto S. The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem Int 2006; 49:387-92. [PMID: 16564605 DOI: 10.1016/j.neuint.2006.02.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 11/18/2022]
Abstract
In the current investigation we tested how swimming training (T) (8 week, 5 times/week, 2 h/day), and detraining (DT) affects brain functions and oxidative stress markers in rat brain. The free radical concentration, measured by electron paramagnetic resonance, decreased in brain of T and DT rats compared to controls (C). The level of brain-derived neurotrophic factor (BDNF) increased as a result of training, but decreased below the control level after 6 weeks of detraining. In addition, the concentration of nerve growth factor (NGF) also declined with DT. The passive avoidance test was used to assess the memory of rats, and training-induced improvement was observed but the enhancement disappeared with detraining. When the content of mitochondrial electron transport complexes, as a potent free radical generator, was evaluated by the blue native gel method, no significant alterations were observed. The repair of nuclear and mitochondrial 8-oxodeoxyguanosine, as measured by the activity of OGG1, showed no significant difference. Therefore, the results suggest that regular exercise training improves memory, decreases the level of reactive oxygen species, and increase the production of BDNF and NGF. On the other hand, it appears that the beneficial effects of training are reversible in the brain, since detraining down-regulates the neurotrophin level, and memory. It is suggested that exercise training is more likely to beneficially effect the production of reactive oxygen species and the related oxidative damage.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, Faculty of Physical Education and Sport Sciences, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|