1
|
Cerqueni G, Terenzi V, Preziuso A, Serfilippi T, Piccirillo S, Di Vincenzo M, Ambrogini P, Amoroso S, Orciani M, Lariccia V, Magi S. Identification of glutamate-related disease-dependent alterations in subventricular NSCs of the 3xTg Alzheimer's disease model, could they be involved in attempting damage repair? Cell Tissue Res 2025; 400:241-253. [PMID: 39960548 DOI: 10.1007/s00441-025-03954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 06/01/2025]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterised by several factors, such as impaired glutamate neurotransmission affecting crucial functions. Neural stem cells (NSCs) are present in the adult brains of all mammalian species and contribute to the continuous generation of neural cells throughout life. The disruption of glutamate levels during the development of AD could impact NSCs' functionality, influencing their response to the microenvironment. In this work, we isolated adult neural stem cells from both triple transgenic (3xTg)-AD mice and age-matched wild type (WT) mice in order to gather information on any differences between them, particularly concerning the potential mechanisms involved in the internalisation of glutamate and its utilisation for energy production. The 3xTg model offers the ability to recapitulate human pathology with both plaque and tangle hallmarks that are involved in the process of glutamate release. In vitro culture 3xTg NSCs showed a slight morphological difference compared to WT cells and a massive reduction of proliferation and viability. Furthermore, 3xTg NSCs displayed an increase in the expression of glutamate transporters and glutamine synthetase, while glutamate dehydrogenase did not show any reduction, which is typical in AD brains. Data obtained from this basic research study suggest a possible involvement of glutamate in the cellular energy balance, indicating an attempted response of NSCs to the cytotoxic microenvironment in the early stage of AD pathology. This finding is of great interest, as it corroborates the hypothesis that targeting the glutamatergic system could be an extremely promising strategy for new therapeutics in AD.
Collapse
Affiliation(s)
- Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy.
- Department of Life Science, Health, and Health Professions, Link Campus University, Via del Casale Di San Pio V, 00165, Rome, RM, Italy.
| | - Valentina Terenzi
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| | - Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Ca' Le Suore 2-4, 61029, Urbino, PU, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60126, Ancona, AN, Italy
| |
Collapse
|
2
|
Ni J, Zhao G, Liu Y, Yang Y, Song Z. Effect of metabotropic glutamate receptor 6 on cell morphology and melanosome transfer in melanocytes. Mol Cell Biochem 2025:10.1007/s11010-025-05287-y. [PMID: 40366612 DOI: 10.1007/s11010-025-05287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/06/2025] [Indexed: 05/15/2025]
Abstract
The melanosome transfer pathway from melanocytes to keratinocytes has been extensively investigated; however, the underlying molecular mechanisms remain unclear. Therefore, the function of metabotropic glutamate receptor 6 (mGluR6) in the control of melanocyte-to-keratinocyte melanosome transfer, intracellular calcium levels in melanocytes, and the formation of filopodia were explored in this study. Primary melanocytes and keratinocytes were isolated from human foreskin samples. mGluR6 expression was suppressed using lentiviral-mediated short hairpin RNA (shRNA). Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), flow cytometry, and western blot analyses were used to assess filopodia formation, cytoskeletal organization, and melanosome transfer. We found that melanocytes expressed mGluR6 and that mGluR6 knockdown influenced the establishment of dendritic formation, melanocyte filopodia, and microphthalmia-associated transcription factors. Similarly, the efficiency of melanosome transfer from melanocytes to keratinocytes was reduced. According to these findings, melanosome transfer between melanocytes and keratinocytes mostly occurs by filopodia delivery, and mGluR6 directly influences melanosome transfer by altering melanocyte morphology. Comprehensive knowledge of melanosome transfer is essential when developing therapies for skin illnesses characterized by hyperpigmentation or hypopigmentation.
Collapse
Affiliation(s)
- Jing Ni
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Guangming Zhao
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yuejian Liu
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yi Yang
- Department of Medical Cosmetic Center, Peking University International Hospital of Beijing, Beijing, 102206, China
| | - Zhiqi Song
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
3
|
Andersen JV. The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances. J Neurochem 2025; 169:e70029. [PMID: 40066661 PMCID: PMC11894596 DOI: 10.1111/jnc.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis. The glutamate/GABA-glutamine cycle integrates multiple cellular processes, including neurotransmitter release, uptake, synthesis, and metabolism. All of these processes are deeply interdependent and closely coupled to cellular energy metabolism. Astrocytes display highly active mitochondrial oxidative metabolism and several unique metabolic features, including glycogen storage and pyruvate carboxylation, which are essential to sustain continuous glutamine release. However, new roles of oligodendrocytes and microglia in neurotransmitter recycling are emerging. Malfunction of the glutamate/GABA-glutamine cycle can lead to severe synaptic disruptions and may be implicated in several brain diseases. Here, I review central aspects and recent advances of the glutamate/GABA-glutamine cycle to highlight how the cycle is functionally connected to critical brain functions and metabolism. First, an overview of glutamate, GABA, and glutamine transport is provided in relation to neurotransmitter recycling. Then, central metabolic aspects of the glutamate/GABA-glutamine cycle are reviewed, with a special emphasis on the critical metabolic roles of glial cells. Finally, I discuss how aberrant neurotransmitter recycling is linked to neurodegeneration and disease, focusing on astrocyte metabolic dysfunction and brain lipid homeostasis as emerging pathological mechanisms. Instead of viewing the glutamate/GABA-glutamine cycle as individual biochemical processes, a more holistic and integrative approach is needed to advance our understanding of how neurotransmitter recycling modulates brain function in both health and disease.
Collapse
Affiliation(s)
- Jens V. Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Chao CK, Blecha J, Polvoy I, Nillo RM, Seo Y, Wilson DM, Forsayeth JR, VanBrocklin HF, Gerdes JM. First-in-human healthy volunteer dosimetry studies of the excitatory amino acid transporter 2 (EAAT2) PET imaging tracer methyl N 4-(7-[ 18F]fluoro-9H-fluoren-2-yl)asparaginate, [ 18F]RP-115. Nucl Med Biol 2025; 142-143:108992. [PMID: 39913962 DOI: 10.1016/j.nucmedbio.2025.108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 05/04/2025]
Abstract
OBJECTIVE AND BACKGROUND The objective of this first-in-human study was to investigate the radiosynthesis, and the preliminary safety, biodistribution, and organ radiation dosimetry of the positron emission tomography (PET) imaging tracer methyl N4-([18F]7-fluoro-9H-fluoren-2-yl)asparaginate, known as [18F]RP-115, in a small cohort (n=8) of healthy volunteers. The [18F]RP-115 tracer is a methyl ester prodrug and undergoes metabolic saponification in the central nervous system to generate the corresponding carboxylic acid form that selectively binds to the excitatory amino acid transporter 2 (EAAT2) protein. PROCEDURES AND METHODS A multi-step high molar activity tracer radiosynthesis was devised to produce doses. Eight healthy human participants (four male and four female), aged 56-75, received a bolus intravenous injection of [18F]RP-115 (administered activity range: 70.3-355 MBq) prior to a total of 94 min of PET-MR scanning performed as three sequential scanning sessions. Regional tissue volumes of interest were defined, time-integrated activity coefficients (TIAC) were derived, and then estimates of organ and tissue activities and effective doses (whole body) were calculated, with two versions of OLINDA software (1.1 and 2.0) that incorporated two tissue weighting factor sets (ICRP-60 and -103), respectively. MAIN FINDINGS Tracer was routinely produced in good radiochemical yields and as suitable high molar activity doses for injection. The [18F]RP-115 injections and PET-MR scans were well-tolerated and no adverse events were reported (≤48 h). Radioactivity was widely biodistributed with good organ uptake. TIACs and estimated radiation organ doses were determined, for which a few statistically significant estimated organ dose differences between males and females were noted. The kidneys were identified as the critical target organ. PRINCIPAL CONCLUSIONS Injection of [18F]RP-115 was considered safe. The estimated kidney radiation doses relative to administered radioactivity identified a more optimal human [18F]RP-115 tracer injected amount of <211 MBq. This more optimal [18F]RP-115 tracer injected activity definition is similar to the amounts used for other established [18F]labeled clinical PET tracers such as [18F]FDG, and it will be used in future RP-115 clinical PET imaging studies.
Collapse
Affiliation(s)
- Chih-Kai Chao
- Rio Pharmaceuticals, Inc., 18 Elsie St., San Francisco, CA 94110, USA.
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - Ilona Polvoy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA
| | - Ryan Michael Nillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - John R Forsayeth
- Rio Pharmaceuticals, Inc., 18 Elsie St., San Francisco, CA 94110, USA.
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St., Suite 350, San Francisco, CA 94107, USA.
| | - John M Gerdes
- Rio Pharmaceuticals, Inc., 18 Elsie St., San Francisco, CA 94110, USA.
| |
Collapse
|
5
|
Lee HR, Jee HJ, Jung YS. Neuroprotective Effect of β-Lapachone against Glutamate-Induced Injury in HT22 Cells. Biomol Ther (Seoul) 2025; 33:286-296. [PMID: 39933959 PMCID: PMC11893500 DOI: 10.4062/biomolther.2024.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
While glutamate, a key neurotransmitter in the central nervous system, is fundamental to neuronal viability and normal brain function, its excessive accumulation leads to oxidative stress, contributing to neuronal damage and neurodegenerative diseases. In this study, we investigated the effect of β-lapachone (β-Lap), a naturally occurring naphthoquinone, on glutamate-induced injury in HT22 cells and explored the underlying mechanism involved. Our results show that β-Lap significantly improved cell viability in a dose-dependent manner. Additionally, β-Lap exhibited a significant antioxidant activity, reducing intracellular reactive oxygen species levels and restoring glutathione levels. The antioxidant capacity of β-Lap was further demonstrated through 2,2-Diphenyl- 1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Western blot analysis revealed that β-Lap upregulated brain-derived neurotrophic factor (BDNF) and promoted the phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular signal-regulated kinase (ERK), and cAMP response elementbinding protein (CREB), which were downregulated by glutamate. Furthermore, β-Lap enhanced the cellular antioxidant molecules, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). In conclusion, β-Lap can protect HT22 cells against glutamate-induced injury by activating the BDNF/TrkB/ERK/CREB and ERK/Nrf2/HO-1 signaling pathways, suggesting its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hae Rim Lee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Jin Jee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Yi-Sook Jung
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou university, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Kamiński K, Socała K, Abram M, Jakubiec M, Reeb KL, Temmermand R, Zagaja M, Maj M, Kolasa M, Faron‐Górecka A, Andres‐Mach M, Szewczyk A, Hameed MQ, Fontana ACK, Rotenberg A, Kamiński RM. Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept. Ann Neurol 2025; 97:344-357. [PMID: 39512205 PMCID: PMC11740271 DOI: 10.1002/ana.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models. METHODS (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents. The effect of (R)-AS-1 on glutamate uptake was assessed in COS-7 cells expressing the transporter. WAY 213613, a selective competitive EAAT2 inhibitor, was used to probe the reversal of the enhanced glutamate uptake in the same transporter expression system. Confocal microscopy and Western blotting analyses were used to study a potential influence of (R)-AS-1 on GLT-1 expression in mice. RESULTS (R)-AS-1 showed robust protection in a panel of animal models of seizures and epilepsy, including the maximal electroshock- and 6 Hz-induced seizures, corneal kindling, mesial temporal lobe epilepsy, lamotrigine-resistant amygdala kindling, as well as seizures induced by pilocarpine or Theiler's murine encephalomyelitis virus. Importantly, (R)-AS-1 displayed a favorable adverse effect profile in the rotarod, the minimal motor impairment, and the Irwin tests. (R)-AS-1 enhanced glutamate uptake in vitro and this effect was abolished by WAY 213613, while no influence on GLT-1 expression in vivo was observed after repeated treatment. INTERPRETATION Collectively, our results show that (R)-AS-1 has favorable tolerability and provides robust preclinical efficacy against seizures. Thus, allosteric enhancement of EAAT2 function could offer a novel therapeutic strategy for treatment of epilepsy and potentially other neurological disorders associated with glutamate excitotoxicity. ANN NEUROL 2025;97:344-357.
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and BiotechnologyMaria Curie‐Skłodowska UniversityLublinPoland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Katelyn L. Reeb
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Rhea Temmermand
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Mirosław Zagaja
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Maciej Maj
- Department of BiopharmacyMedical University of LublinLublinPoland
| | - Magdalena Kolasa
- Department of PharmacologyMaj Institute of Pharmacology Polish Academy of SciencesKrakowPoland
| | - Agata Faron‐Górecka
- Department of PharmacologyMaj Institute of Pharmacology Polish Academy of SciencesKrakowPoland
| | - Marta Andres‐Mach
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Aleksandra Szewczyk
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Mustafa Q. Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Neurology, F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Andréia C. K. Fontana
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Neurology, F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rafał M. Kamiński
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
7
|
Martinez-Lozada Z, Guillem AM, Song I, Gonzalez MV, Takano H, Parikh E, Rothstein JD, Putt ME, Robinson MB. Identification of a Subpopulation of Astrocyte Progenitor Cells in the Neonatal Subventricular Zone: Evidence that Migration is Regulated by Glutamate Signaling. Neurochem Res 2025; 50:77. [PMID: 39789409 PMCID: PMC11717811 DOI: 10.1007/s11064-024-04326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes. The eGFP mice have been used to define mechanisms of transcriptional regulation using astrocytes cultured from cortex of 1-3 day old mice. Using the same cultures, we were never able to induce tdT+ expression. We hypothesized that these cells might not have migrated into the cortex by this age. In this study, we characterized the ontogeny of tdT+ cells, performed single-cell RNA sequencing (scRNA-seq), and tracked their migration in organotypic slice cultures. At postnatal day (PND) 1, tdT+ cells were observed in the subventricular zone and striatum but not in the cortex, and they did not express eGFP. At PND7, tdT+ cells begin to appear in the cortex with their numbers increasing with age. At PND1, scRNA-seq demonstrates that the tdT+ cells are molecularly heterogeneous, with a subpopulation expressing astrocytic markers, subsequently validated with immunofluorescence. In organotypic slices, tdT+ cells migrate into the cortex, and after 7 days they express GLT1, NF1A, and eGFP. An ionotropic glutamate receptor (iGluR) antagonist reduced by 50% the distance tdT+ cells migrate from the subventricular zone into the cortex. The pan-glutamate transport inhibitor, TFB-TBOA, increased, by sixfold, the number of tdT+ cells in the cortex. In conclusion, although tdT is expressed by non-glial cells at PND1, it is also expressed by glial progenitors that migrate into the cortex postnatally. Using this fluorescent labeling, we provide novel evidence that glutamate signaling contributes to the control of glial precursor migration.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
- Department of Neuroscience, College of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| | - Alain M Guillem
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
| | - Isabella Song
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
| | - Michael V Gonzalez
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hajime Takano
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Esha Parikh
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
| |
Collapse
|
8
|
Wang X, Ma W, Wang Y, Ren F, Wang K, Li N. Norlignans and Phenolics from Curculigo capitulata and Their Neuroprotection Against Glutamate-Induced Oxidative Injury in SH-SY5Y Cells. Molecules 2024; 29:5648. [PMID: 39683807 DOI: 10.3390/molecules29235648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The herb Curculigo capitulata (Lour.) Ktze is widely distributed in southern and southwestern China. The Curculigo genus and its primary chemical constituents exhibit remarkable antidepressant activities. To investigate the chemical constituents and potential health benefits of C. capitulata, a phytochemical study was conducted. In this study, seven new compounds (capitugenin A-G), including three new norlignans (1-3), a new chalcone dimer (4), a new hemiacetal (5), two novel pyrrolidine-based compounds (6 and 7), including one identified as a natural product (7), and nineteen known compounds (8-26), were isolated from C. capitulata. The chemical structures and absolute configurations of Compounds 1-7 were elucidated via comprehensive spectroscopic data analyses. The neuroprotective effects of Compounds 1-26 against glutamate-induced cell death were tested in the human neuroblastoma cell line SH-SY5Y. Compounds 1, 3, 6, 8, 11, and 17 showed significant neuroprotective effects, with protection rates ranging from 29.4 to 52.8% at concentrations ranging from 5 to 40 μM. Western blot analysis indicated that Compound 3 exerted a protective effect by regulating the expression of Nrf2/HO-1.
Collapse
Affiliation(s)
- Xueru Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Ma
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fucai Ren
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Kaijin Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Andrew PM, MacMahon JA, Bernardino PN, Tsai YH, Hobson BA, Porter VA, Huddleston SL, Luo AS, Bruun DA, Saito NH, Harvey DJ, Brooks-Kayal A, Chaudhari AJ, Lein PJ. Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate. J Neuroinflammation 2024; 21:285. [PMID: 39497181 PMCID: PMC11533402 DOI: 10.1186/s12974-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS+ proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1+ microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3+ pro-inflammatory and S100A10+ anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.
Collapse
Affiliation(s)
- Peter M Andrew
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Valerie A Porter
- Department of Biomedical Engineering, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Sydney L Huddleston
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Audrey S Luo
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
- Department of Radiology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Findley CA, McFadden SA, Hill T, Peck MR, Quinn K, Hascup KN, Hascup ER. Sexual dimorphism, altered hippocampal glutamatergic neurotransmission, and cognitive impairment in APP knock-in mice. J Alzheimers Dis 2024; 102:491-505. [PMID: 39543985 PMCID: PMC11639043 DOI: 10.3233/jad-240795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND It is well established that glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies indicate that glutamate dynamics shift with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. OBJECTIVE In this study, we characterized hippocampal glutamatergic signaling with age and disease progression in a knock-in mouse model of AD (APPNL-F/NL--F). METHODS At 2-4 and 18+ months old, male and female APPNL/NL, APPNL-F/NL-F, and C57BL/6 mice underwent cognitive assessment using Morris water maze (MWM) and Novel Object Recognition (NOR). Then, basal and 70 mM KCl stimulus-evoked glutamate release was measured in the dentate gyrus (DG), CA3, and CA1 regions of the hippocampus using a glutamate-selective microelectrode in anesthetized mice. RESULTS Glutamate recordings support elevated stimulus-evoked glutamate release in the DG and CA3 of young APPNL-F/NL-F male mice that declined with age compared to age-matched control mice. Young female APPNL-F/NL-F mice exhibited increased glutamate clearance in the CA1 that slowed with age compared to age-matched control mice. Male and female APPNL-F/NL-F mice exhibited decreased CA1 basal glutamate levels, while males also showed depletion in the CA3. Cognitive assessment demonstrated impaired spatial cognition in aged male and female APPNL-F/NL-F mice, but only aged females displayed recognition memory deficits compared to age-matched control mice. CONCLUSIONS These findings confirm a sex-dependent hyper-to-hypoactivation glutamatergic paradigm in APPNL-F/NL-F mice. Further, data illustrate a sexually dimorphic biological aging process resulting in a more severe cognitive phenotype for female APPNL-F/NL-F mice than their male counterparts. Research outcomes mirror that of human AD pathology and provide further evidence of divergent AD pathogenesis between sexes.
Collapse
Affiliation(s)
- Caleigh A. Findley
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel A. McFadden
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Tiarra Hill
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Mackenzie R. Peck
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kathleen Quinn
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
11
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
12
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
13
|
Chujan S, Cholpraipimolrat W, Satayavivad J. Integrated Transcriptomics and Network Analysis Identified Altered Neural Mechanisms in Frontal Aging Brain-Associated Alzheimer's Disease. Biochem Genet 2024; 62:2382-2398. [PMID: 37934339 DOI: 10.1007/s10528-023-10549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The late stage of AD typically develops after 60 years of age and AD pathogenesis can be detected predominately in the frontal lobe, which is responsible for memory. Multiple alterations in cellular mechanisms have been associated with AD, but there is no clear information on AD pathogenesis during brain aging. This study aimed to explore the differentially expressed genes (DEGs) in the frontal lobe of aging brains and to identify shared crucial mechanisms in the aging brain linked to AD pathogenesis. Three datasets were downloaded from the Gene Expression Omnibus (GEO). Biological function analysis was performed by DAVID and KEGG databases. An AD patient's cohort (GSE150696) was collected for verification of the enriched pathway. The results demonstrated that multiple neurochemical synapsis and regulation of the cytoskeleton are linked to AD pathogenesis during aging. Taken together, this study contributes to our further understanding of neural alterations during aging in AD that could be used to develop therapeutics for early intervention to prevent or slow progression.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | | | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
Findley CA, McFadden S.A, Hill T, Peck MR, Quinn K, Hascup KN, Hascup ER. Sexual Dimorphism, Altered Hippocampal Glutamatergic Neurotransmission and Cognitive Impairment in APP Knock-In Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.570100. [PMID: 38106074 PMCID: PMC10723272 DOI: 10.1101/2023.12.05.570100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background It is well established that glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies indicate that glutamate dynamics shift with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. Objective In this study, we characterized hippocampal glutamatergic signaling with age and disease progression in a knock-in mouse model of AD (APPNL-F/NL-F). Methods At 2-4 and 18+ months old, male and female APPNL/NL, APPNL-F/NL-F, and C57BL/6 mice underwent cognitive assessment using Morris water maze (MWM) and Novel Object Recognition (NOR). Then, basal and 70 mM KCl stimulus-evoked glutamate release was measured in the dentate gyrus (DG), CA3, and CA1 regions of the hippocampus using a glutamate-selective microelectrode in anesthetized mice. Results Glutamate recordings support elevated stimulus-evoked glutamate release in the DG and CA3 of young APPNL-F/NL-F male mice that declined with age compared to age-matched control mice. Young female APPNL-F/NL-F mice exhibited increased glutamate clearance in the CA1 that slowed with age compared to age-matched control mice. Male and female APPNL-F/NL-F mice exhibited decreased CA1 basal glutamate levels, while males also showed depletion in the CA3. Cognitive assessment demonstrated impaired spatial cognition in aged male and female APPNL-F/NL-F mice, but only aged females displayed recognition memory deficits compared to age-matched control mice. Conclusions: These findings confirm a sex-dependent hyper-to-hypoactivation glutamatergic paradigm in APPNL-F/NL-F mice. Further, data illustrate a sexually dimorphic biological aging process resulting in a more severe cognitive phenotype for female APPNL-F/NL-F mice than their male counterparts. Research outcomes mirror that of human AD pathology and provide further evidence of divergent AD pathogenesis between sexes.
Collapse
Affiliation(s)
- Caleigh A. Findley
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel .A. McFadden
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Tiarra. Hill
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Mackenzie R. Peck
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Kathleen Quinn
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
| | - Kevin N. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Depts of Neurology, Springfield, IL, USA
- Pharmacology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
15
|
Vohra A, Keefe P, Puthanveetil P. Altered Metabolic Signaling and Potential Therapies in Polyglutamine Diseases. Metabolites 2024; 14:320. [PMID: 38921455 PMCID: PMC11205831 DOI: 10.3390/metabo14060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Polyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications. The metabolic regulation during polyglutamine diseases is not well studied and needs more attention. We have brought to light the significance of regulating glutamine metabolism during polyglutamine diseases, which could help in decreasing the neuronal damage associated with excess glutamate and nucleotide generation. Most polyglutamine diseases are accompanied by symptoms that occur due to excess glutamate and nucleotide accumulation. Along with a dysregulated glutamine metabolism, the Nicotinamide adenine dinucleotide (NAD+) levels drop down, and, under these conditions, NAD+ supplementation is the only achievable strategy. NAD+ is a major co-factor in the glutamine metabolic pathway, and it helps in maintaining neuronal homeostasis. Thus, strategies to decrease excess glutamate and nucleotide generation, as well as channelizing glutamine toward the generation of ATP and the maintenance of NAD+ homeostasis, could aid in neuronal health. Along with understanding the metabolic dysregulation that occurs during polyglutamine diseases, we have also focused on potential therapeutic strategies that could provide direct benefits or could restore metabolic homeostasis. Our review will shed light into unique metabolic causes and into ideal therapeutic strategies for treating complications associated with polyglutamine diseases.
Collapse
Affiliation(s)
- Alisha Vohra
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Patrick Keefe
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Prasanth Puthanveetil
- College of Graduate Studies, Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
16
|
Campagne S. U1 snRNP Biogenesis Defects in Neurodegenerative Diseases. Chembiochem 2024; 25:e202300864. [PMID: 38459794 DOI: 10.1002/cbic.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The U1 small ribonucleoprotein (U1 snRNP) plays a pivotal role in the intricate process of gene expression, specifically within nuclear RNA processing. By initiating the splicing reaction and modulating 3'-end processing, U1 snRNP exerts precise control over RNA metabolism and gene expression. This ribonucleoparticle is abundantly present, and its complex biogenesis necessitates shuttling between the nuclear and cytoplasmic compartments. Over the past three decades, extensive research has illuminated the crucial connection between disrupted U snRNP biogenesis and several prominent human diseases, notably various neurodegenerative conditions. The perturbation of U1 snRNP homeostasis has been firmly established in diseases such as Spinal Muscular Atrophy, Pontocerebellar hypoplasia, and FUS-mediated Amyotrophic Lateral Sclerosis. Intriguingly, compelling evidence suggests a potential correlation in Fronto-temporal dementia and Alzheimer's disease as well. Although the U snRNP biogenesis pathway is conserved across all eukaryotic cells, neurons, in particular, appear to be highly susceptible to alterations in spliceosome homeostasis. In contrast, other cell types exhibit a greater resilience to such disturbances. This vulnerability underscores the intricate relationship between U1 snRNP dynamics and the health of neuronal cells, shedding light on potential avenues for understanding and addressing neurodegenerative disorders.
Collapse
Affiliation(s)
- Sebastien Campagne
- University of Bordeaux, INSERM U1212, CNRS UMR5320, ARNA unit 146, rue Leo Saignat, 33077, Bordeaux
- Institut Européen de Chimie et de Biologie, 2, rue Robert Escarpit, 33600, Pessac
| |
Collapse
|
17
|
Syvänen V, Koistinaho J, Lehtonen Š. Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease. Expert Opin Drug Discov 2024; 19:603-616. [PMID: 38409817 DOI: 10.1080/17460441.2024.2322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases. Targeting astrocytic functions may serve as a potential disease-modifying drug therapy in the future. AREAS COVERED The present review emphasizes the key astrocytic functions associated with neurodegenerative diseases and explores the possibility of pharmaceutical interventions to modify these processes. In addition, the authors provide an overview of current advancement in this field by including studies of possible drug candidates. EXPERT OPINION Glial research has experienced a significant renaissance in the last quarter-century. Understanding how disease pathologies modify or are caused by astrocyte functions is crucial when developing treatments for brain diseases. Future research will focus on building advanced models that can more precisely correlate to the state in the human brain, with the goal of routinely testing therapies in these models.
Collapse
Affiliation(s)
- Valtteri Syvänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science, and Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Vongthip W, Nilkhet S, Boonruang K, Sukprasansap M, Tencomnao T, Baek SJ. Neuroprotective mechanisms of luteolin in glutamate-induced oxidative stress and autophagy-mediated neuronal cell death. Sci Rep 2024; 14:7707. [PMID: 38565590 PMCID: PMC10987666 DOI: 10.1038/s41598-024-57824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal dysfunction and loss, pose significant health challenges. Glutamate accumulation contributes to neuronal cell death in diseases such as Alzheimer's disease. This study investigates the neuroprotective potential of Albizia lebbeck leaf extract and its major constituent, luteolin, against glutamate-induced hippocampal neuronal cell death. Glutamate-treated HT-22 cells exhibited reduced viability, altered morphology, increased ROS, and apoptosis, which were attenuated by pre-treatment with A. lebbeck extract and luteolin. Luteolin also restored mitochondrial function, decreased mitochondrial superoxide, and preserved mitochondrial morphology. Notably, we first found that luteolin inhibited the excessive process of mitophagy via the inactivation of BNIP3L/NIX and inhibited lysosomal activity. Our study suggests that glutamate-induced autophagy-mediated cell death is attenuated by luteolin via activation of mTORC1. These findings highlight the potential of A. lebbeck as a neuroprotective agent, with luteolin inhibiting glutamate-induced neurotoxicity by regulating autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Wudtipong Vongthip
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kanokkan Boonruang
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
19
|
Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo Seldenreich R, Padilha APZ, De Pieri E, Effting PS, Machado-De-Ávila RA, Réus GZ, Leipnitz G, Streck EL. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 2024; 49:758-770. [PMID: 38104040 DOI: 10.1007/s11064-023-04072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Antunes Torres
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Giassi Alano
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rafaela Tezza Matiola
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rejane de Figueiredo Seldenreich
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Alex Paulo Zeferino Padilha
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ellen De Pieri
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Pauline Souza Effting
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ricardo Andrez Machado-De-Ávila
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gislaine Zilli Réus
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emilio Luiz Streck
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
20
|
Vyas A, Doshi G. A cross talk on the role of contemporary biomarkers in depression. Biomarkers 2024; 29:18-29. [PMID: 38261718 DOI: 10.1080/1354750x.2024.2308834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Introduction: Biomarkers can be used to identify determinants of response to various treatments of mental disorders. Evidence to date demonstrates that markers of inflammatory, neurotransmitter, neurotrophic, neuroendocrine, and metabolic function can predict the psychological and physical consequences of depression in individuals, allowing for the development of new therapeutic targets with fewer side effects. Extensive research has included hundreds of potential biomarkers of depression, but their roles in depression, abnormal patients, and how bioinformatics can be used to improve diagnosis, treatment, and prognosis have not been determined or defined. To determine which biomarkers can and cannot be used to predict treatment response, classify patients for specific treatments, and develop targets for new interventions, proprietary strategies, and current research projects need to be tailored.Material and Methods: This review article focuses on - biomarker systems that would help in the further development and expansion of newer targets - which holds great promise for reducing the burden of depression.Results and Discussion: Further, this review point to the inflammatory response, metabolic marker, and microribonucleic acids, long non-coding RNAs, HPA axis which are - related to depression and can serve as future targets.
Collapse
Affiliation(s)
- Aditi Vyas
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
21
|
Končeková J, Kotorová K, Gottlieb M, Bona M, Bonová P. Changes in excitatory amino acid transporters in response to remote ischaemic preconditioning and glutamate excitotoxicity. Neurochem Int 2024; 173:105658. [PMID: 38135159 DOI: 10.1016/j.neuint.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.
Collapse
Affiliation(s)
- Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic.
| |
Collapse
|
22
|
Zhang D, Wu X, Xue X, Li W, Zhou P, Lv Z, Zhao K, Zhu F. Ancient dormant virus remnant ERVW-1 drives ferroptosis via degradation of GPX4 and SLC3A2 in schizophrenia. Virol Sin 2024; 39:31-43. [PMID: 37690733 PMCID: PMC10877354 DOI: 10.1016/j.virs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral infections in human germline cells from millions of years ago. Among these, ERVW-1 (also known as HERV-W-ENV, ERVWE1, or ENVW) encodes the envelope protein of the HERV-W family, which contributes to the pathophysiology of schizophrenia. Additionally, neuropathological studies have revealed cell death and disruption of iron homeostasis in the brains of individuals with schizophrenia. Here, our bioinformatics analysis showed that differentially expressed genes in the human prefrontal cortex RNA microarray dataset (GSE53987) were mainly related to ferroptosis and its associated pathways. Clinical data demonstrated significantly lower expression levels of ferroptosis-related genes, particularly Glutathione peroxidase 4 (GPX4) and solute carrier family 3 member 2 (SLC3A2), in schizophrenia patients compared to normal controls. Further in-depth analyses revealed a significant negative correlation between ERVW-1 expression and the levels of GPX4/SLC3A2 in schizophrenia. Studies indicated that ERVW-1 increased iron levels, malondialdehyde (MDA), and transferrin receptor protein 1 (TFR1) expression while decreasing glutathione (GSH) levels and triggering the loss of mitochondrial membrane potential, suggesting that ERVW-1 can induce ferroptosis. Ongoing research has shown that ERVW-1 reduced the expression of GPX4 and SLC3A2 by inhibiting their promoter activities. Moreover, Ferrostatin-1 (Fer-1), the ferroptosis inhibitor, reversed the iron accumulation and mitochondrial membrane potential loss, as well as restored the expressions of ferroptosis markers GSH, MDA, and TFR1 induced by ERVW-1. In conclusion, ERVW-1 could promote ferroptosis by downregulating the expression of GPX4 and SLC3A2, revealing a novel mechanism by which ERVW-1 contributes to neuronal cell death in schizophrenia.
Collapse
Affiliation(s)
- Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhao Lv
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
23
|
Schneider Y, Gauer C, Andert M, Hoffmann A, Riemenschneider MJ, Krebs W, Chalmers N, Lötzsch C, Naumann UJ, Xiang W, Rothhammer V, Beckervordersandforth R, Schlachetzki JCM, Winkler J. Distinct forebrain regions define a dichotomous astrocytic profile in multiple system atrophy. Acta Neuropathol Commun 2024; 12:1. [PMID: 38167307 PMCID: PMC10759635 DOI: 10.1186/s40478-023-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The growing recognition of a dichotomous role of astrocytes in neurodegenerative processes has heightened the need for unraveling distinct astrocytic subtypes in neurological disorders. In multiple system atrophy (MSA), a rare, rapidly progressing atypical Parkinsonian disease characterized by increased astrocyte reactivity. However the specific contribution of astrocyte subtypes to neuropathology remains elusive. Hence, we first set out to profile glial fibrillary acidic protein levels in astrocytes across the human post mortem motor cortex, putamen, and substantia nigra of MSA patients and observed an overall profound astrocytic response. Matching the post mortem human findings, a similar astrocytic phenotype was present in a transgenic MSA mouse model. Notably, MSA mice exhibited a decreased expression of the glutamate transporter 1 and glutamate aspartate transporter in the basal ganglia, but not the motor cortex. We developed an optimized astrocyte isolation protocol based on magnetic-activated cell sorting via ATPase Na+/K+ transporting subunit beta 2 and profiled the transcriptomic landscape of striatal and cortical astrocytes in transgenic MSA mice. The gene expression profile of astrocytes in the motor cortex displayed an anti-inflammatory signature with increased oligodendroglial and pro-myelinogenic expression pattern. In contrast, striatal astrocytes were defined by elevated pro-inflammatory transcripts accompanied by dysregulated genes involved in homeostatic functions for lipid and calcium metabolism. These findings provide new insights into a region-dependent, dichotomous astrocytic response-potentially beneficial in the cortex and harmful in the striatum-in MSA suggesting a differential role of astrocytes in MSA-related neurodegenerative processes.
Collapse
Affiliation(s)
- Y Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - C Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - M Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - A Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - M J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - W Krebs
- Core Unit Bioinformatics, Data Integration and Analysis (CUBiDA), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - N Chalmers
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - C Lötzsch
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - U J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - W Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - V Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - R Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - J Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
24
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Radbakhsh S, Butler AE, Moallem SA, Sahebkar A. The Effects of Curcumin on Brain-Derived Neurotrophic Factor Expression in Neurodegenerative Disorders. Curr Med Chem 2024; 31:5937-5952. [PMID: 37278037 DOI: 10.2174/0929867330666230602145817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a crucial molecule implicated in plastic modifications related to learning and memory. The expression of BDNF is highly regulated, which can lead to significant variability in BDNF levels in healthy subjects. Changes in BDNF expression might be associated with neuropsychiatric diseases, particularly in structures important for memory processes, including the hippocampus and parahippocampal areas. Curcumin is a natural polyphenolic compound that has great potential for the prevention and treatment of age-related disorders by regulating and activating the expression of neural protective proteins such as BDNF. This review discusses and analyzes the available scientific literature on the effects of curcumin on BDNF production and function in both in vitro and in vivo models of disease.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Faisal H, Qamar F, Hsu ES, Xu J, Lai EC, Wong ST, Masud FN. Prevalence of Delirium After Abdominal Surgery and Association With Ketamine: A Retrospective, Propensity-Matched Cohort Study. Crit Care Explor 2024; 6:e1032. [PMID: 38222873 PMCID: PMC10786598 DOI: 10.1097/cce.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
IMPORTANCE Delirium is a common postoperative complication for older patients in the ICU. Ketamine, used primarily as an analgesic, has been thought to prevent delirium. OBJECTIVE Determine the prevalence and association of delirium with low-dose ketamine use in ICU patients after abdominal surgery. DESIGN Single-center, retrospective, propensity-matched cohort study. SETTING Eight hospital academic medical center. PATIENTS Cohort comprising 1836 patients admitted to the ICU after abdominal surgery between June 23, 2018 and September 1, 2022. MAIN OUTCOMES AND MEASURES Propensity score matching (PSM) with a 3:1 ratio between no-ketamine use and ketamine use was performed through a greedy algorithm (caliper of 0.005). Outcomes of interest included: delirium (assessed by Confusion Assessment Method-ICU), mean pain score (Numeric Pain Scale or Critical Care Pain Observation Tool score as available), mean opioid consumption (morphine milligram equivalents), length of stay (d), and mortality. RESULTS Prevalence of delirium was 47.71% (95% CI, 45.41-50.03%) in the cohort. Of 1836 patients, 120 (6.54%) used low-dose ketamine infusion. After PSM, the prevalence of delirium was 56.02% (95% CI, 51.05-60.91%) in all abdominal surgery patients. The ketamine group had 41% less odds of delirium (odds ratio [OR] = 0.59; 95% CI, 0.37-0.94; p = 0.026) than patients with no-ketamine use. Patients with ketamine use had higher mean pain scores (3.57 ± 2.86 vs. 2.21 ± 2.09, p < 0.001). In the subgroup analysis, patients in the ketamine-use group 60 years old or younger had 64% less odds of delirium (OR = 0.36; 95% CI, 0.13-0.95; p = 0.039). The mean pain scores were higher in the ketamine group for patients 60 years old or older. There was no significant difference in mortality and opioid consumption. CONCLUSIONS AND RELEVANCE Low-dose ketamine infusion was associated with lower prevalence of delirium in ICU patients following abdominal surgery. Prospective studies should further evaluate ketamine use and delirium.
Collapse
Affiliation(s)
- Hina Faisal
- Department of Surgery, Houston Methodist, Houston, TX
- Department of Surgery, Weill Cornell Medicine, New York, NY
| | - Fatima Qamar
- Department of Cardiothoracic Surgery, Houston Methodist, Houston, TX
| | - En Shuo Hsu
- Center for Health Data Science and Analytics, Houston Methodist, Houston, TX
| | - Jiaqiong Xu
- Center for Health Data Science and Analytics, Houston Methodist, Houston, TX
| | - Eugene C Lai
- Stanley H. Appel Department of Neurology, Houston Methodist, Houston, TX
| | - Stephen T Wong
- Department of Systems Medicine and Bioengineering and Houston Methodist Neal Cancer Center, Houston Methodist, Houston, TX
| | - Faisal N Masud
- Center for Critical Care, Houston Methodist, Houston, TX, USA
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
27
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
28
|
Natale G, Colella M, De Carluccio M, Lelli D, Paffi A, Carducci F, Apollonio F, Palacios D, Viscomi MT, Liberti M, Ghiglieri V. Astrocyte Responses Influence Local Effects of Whole-Brain Magnetic Stimulation in Parkinsonian Rats. Mov Disord 2023; 38:2173-2184. [PMID: 37700489 DOI: 10.1002/mds.29599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. OBJECTIVE Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. METHODS 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. RESULTS As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. CONCLUSION These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giuseppina Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Micol Colella
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Maria De Carluccio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Lelli
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Neuroimaging Laboratory, Department of Physiology and Pharmacology "Vitorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
29
|
Benson CA, King JF, Kauer SD, Waxman SG, Tan AM. Increased astrocytic GLT-1 expression in tripartite synapses is associated with SCI-induced hyperreflexia. J Neurophysiol 2023; 130:1358-1366. [PMID: 37877184 PMCID: PMC10972632 DOI: 10.1152/jn.00234.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023] Open
Abstract
Spasticity is a chronic neurological complication associated with spinal cord injury (SCI), characterized by increased muscle tone and stiffness. A physiological sign of spasticity is hyperreflexia, evident by the loss of evoked rate-dependent depression (RDD) in the H-reflex. Although previous work has shown that SCI-induced astrogliosis contributes to hyperexcitability disorders, including neuropathic pain and spasticity, it is unclear how reactive astrocytes can modulate synaptic transmission within the injured spinal cord. To study astrocytes' role in post-SCI hyperreflexia, we examined glutamate transporter-1 (GLT-1) and postsynaptic density protein 95 (PSD-95) proteins in astrocytes and neurons, respectively, within the ventral horn (lamina IX) below the level of injury (spinal segment L4-5). The close juxtaposition of GLT-1 and PSD-95 markers is a molecular correlate of tripartite synapses and is thought to be a key element in the astrocyte-induced plasticity of neuronal synapses. Our study compared animals with and without SCI-induced hyperreflexia and spasticity and investigated potential synaptic abnormalities associated with astrocyte involvement. As expected, 4 wk after SCI, we observed a loss in evoked H-reflex RDD in hindlimb electromyogram recordings, i.e., hyperreflexia, in contrast to uninjured sham. Importantly, our main findings show a significant increase in the presence of GLT-1-PSD-95 tripartite synapses in the ventral spinal cord motor regions of animals exhibiting SCI-induced hyperreflexia. Taken together, our study suggests the involvement of astrocyte-neuron synaptic complexes in the plasticity-driven progression of chronic spasticity.NEW & NOTEWORTHY The role of astrocytes in H-reflex hyperexcitability following SCI remains understudied. Our findings establish a relationship between GLT-1 expression, its proximity to neuronal PSD-95 in the spinal cord ventral horn, and the loss of H-reflex RDD, i.e., hyperreflexia. Our findings provide a new perspective on synaptic alterations and the development of SCI-related spasticity.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| |
Collapse
|
30
|
Erickson JD, Kyllo T, Wulff H. Ca 2+-regulated expression of high affinity methylaminoisobutryic acid transport in hippocampal neurons inhibited by riluzole and novel neuroprotective aminothiazoles. Curr Res Physiol 2023; 6:100109. [PMID: 38107787 PMCID: PMC10724208 DOI: 10.1016/j.crphys.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 12/19/2023] Open
Abstract
High affinity methylaminoisobutyric acid(MeAIB)/glutamine(Gln) transport activity regulated by neuronal firing occurs at the plasma membrane in mature rat hippocampal neuron-enriched cultures. Spontaneous Ca2+-regulated transport activity was similarly inhibited by riluzole, a benzothiazole anticonvulsant agent, and by novel naphthalenyl substituted aminothiazole derivatives such as SKA-378. Here, we report that spontaneous transport activity is stimulated by 4-aminopyridine (4-AP) and that phorbol-myristate acetate (PMA) increases high K+ stimulated transport activity that is inhibited by staurosporine. 4-AP-stimulated spontaneous and PMA-stimulated high K+-induced transport is not present at 7 days in vitro (DIV) and is maximal by DIV∼21. The relative affinity for MeAIB is similar for spontaneous and high K+-stimulated transport (Km ∼ 50 μM) suggesting that a single transporter is involved. While riluzole and SKA-378 inhibit spontaneous transport with equal potency (IC50 ∼ 1 μM), they exhibit decreased (∼3-5 X) potency for 4-AP-stimulated spontaneous transport. Interestingly, high K+-stimulated MeAIB transport displays lower and differential sensitivity to the two compounds. SKA-378-related halogenated derivatives of SKA-75 (SKA-219, SKA-377 and SKA-375) preferentially inhibit high K+-induced expression of MeAIB transport activity at the plasma membrane (IC50 < 25 μM), compared to SKA-75 and riluzole (IC50 > 100 μM). Ca2+-dependent spontaneous and high K+-stimulated MeAIB transport activity is blocked by ω-conotoxin MVIIC, ω-agatoxin IVA, ω-agatoxin TK (IC50 ∼ 500 nM) or cadmium ion (IC50 ∼ 20 μM) demonstrating that P/Q-type CaV channels that are required for activity-regulated presynaptic vesicular glutamate (Glu) release are also required for high-affinity MeAIB transport expression at the plasma membrane. We suggest that neural activity driven and Ca2+ dependent trafficking of the high affinity MeAIB transporter to the plasma membrane is a unique target to understand mechanisms of Glu/Gln recycling in synapses and acute neuroprotection against excitotoxic presynaptic Glu induced neural injury.
Collapse
Affiliation(s)
- Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
31
|
Jones R, Morales-Munoz I, Shields A, Blackman G, Legge SE, Pritchard M, Kornblum D, MacCabe JH, Upthegrove R. Early neutrophil trajectory following clozapine may predict clozapine response - Results from an observational study using electronic health records. Brain Behav Immun 2023; 113:267-274. [PMID: 37494985 DOI: 10.1016/j.bbi.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Clozapine has unique effectiveness in treatment-resistant schizophrenia and is known to cause immunological side-effects. A transient spike in neutrophils commonly occurs in the first weeks of clozapine therapy. There is contradictory evidence in the literature as to whether neutrophil changes with clozapine are linked to treatment response. AIMS The current study aims to further examine the neutrophil changes in response to clozapine and explore any association between neutrophil trajectory and treatment response. METHODS A retrospective cohort study of patients undergoing their first treatment with clozapine and continuing for at least 2 years identified 425 patients (69% male/31% female). Neutrophil counts at baseline, 3 weeks and 1 month were obtained predominantly by linkage with data from the clozapine monitoring service. Clinical Global Impression- Severity (CGI-S) was rated from case notes at the time of clozapine initiation and at 2 years. Latent class growth analysis (LCGA) was performed to define distinct trajectories of neutrophil changes during the first month of treatment. Logistic regression was then conducted to investigate for association between the trajectory of neutrophil count changes in month 1 and clinical response at 2 years as well as between baseline neutrophil count and response. RESULTS Of the original cohort, 397 (93%) patients had useable neutrophil data during the first 6 weeks of clozapine treatment. LCGA revealed significant differences in neutrophil trajectories with a three-class model being the most parsimonious. The classes had similar trajectory profiles but differed primarily on overall neutrophil count: with low, high-normal and high neutrophil classes, comprising 52%, 40% and 8% of the sample respectively. Membership of the high-normal group was associated with significantly increased odds of a positive response to clozapine, as compared to the low neutrophil group [Odds ratio (OR) = 2.10, p-value = 0.002; 95% confidence interval (95% CI) = 1.31-3.36]. Baseline neutrophil count was a predictor of response to clozapine at 2 years, with counts of ≥5 × 109/l significantly associated with positive response (OR = 1.60, p-value = 0.03; 95% CI = 1.03-2.49). CONCLUSIONS Our data are consistent with the hypothesis that patients with low-level inflammation, reflected in a high-normal neutrophil count, are more likely to respond to clozapine, raising the possibility that clozapine exerts its superior efficacy via immune mechanisms.
Collapse
Affiliation(s)
- Rowena Jones
- Institute for Mental Health, School of Psychology, University of Birmingham, UK; Birmingham and Solihull Mental Health Foundation Trust, UK.
| | | | - Adrian Shields
- Clinical Immunology Service, University of Birmingham, UK
| | - Graham Blackman
- Department of Psychiatry, University of Oxford, Warneford Hospital, OX3 7JX, UK; Department of Psychosis Studies, King's College London, and South London and Maudsley NHS Foundation Trust, UK
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Daisy Kornblum
- King's College London (Institute of Psychiatry, Psychology and Neuroscience), London, UK
| | - James H MacCabe
- King's College London (Institute of Psychiatry, Psychology and Neuroscience), London, UK; Department of Psychosis Studies, King's College London, and South London and Maudsley NHS Foundation Trust, UK
| | - Rachel Upthegrove
- Institute for Mental Health, School of Psychology, University of Birmingham, UK; Early Intervention Service, Birmingham Women's and Children's NHS Trust, UK
| |
Collapse
|
32
|
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. PATHOPHYSIOLOGY 2023; 30:420-442. [PMID: 37755398 PMCID: PMC10536590 DOI: 10.3390/pathophysiology30030032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.
Collapse
Affiliation(s)
- Henry W. Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Caleb E. Stewart
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Patrick Luther
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Kevin Yabut
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
33
|
Purvis EM, Fedorczak N, Prah A, Han D, O’Donnell JC. Porcine Astrocytes and Their Relevance for Translational Neurotrauma Research. Biomedicines 2023; 11:2388. [PMID: 37760829 PMCID: PMC10525191 DOI: 10.3390/biomedicines11092388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are essential to virtually all brain processes, from ion homeostasis to neurovascular coupling to metabolism, and even play an active role in signaling and plasticity. Astrocytic dysfunction can be devastating to neighboring neurons made inherently vulnerable by their polarized, excitable membranes. Therefore, correcting astrocyte dysfunction is an attractive therapeutic target to enhance neuroprotection and recovery following acquired brain injury. However, the translation of such therapeutic strategies is hindered by a knowledge base dependent almost entirely on rodent data. To facilitate additional astrocytic research in the translatable pig model, we present a review of astrocyte findings from pig studies of health and disease. We hope that this review can serve as a road map for intrepid pig researchers interested in studying astrocyte biology.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Fedorczak
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Prah
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Han
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C. O’Donnell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Yakubov E, Schmid S, Hammer A, Chen D, Dahlmanns JK, Mitrovic I, Zurabashvili L, Savaskan N, Steiner HH, Dahlmanns M. Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema. Front Oncol 2023; 13:1176038. [PMID: 37554158 PMCID: PMC10406130 DOI: 10.3389/fonc.2023.1176038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Human malignant brain tumors such as gliomas are devastating due to the induction of cerebral edema and neurodegeneration. A major contributor to glioma-induced neurodegeneration has been identified as glutamate. Glutamate promotes cell growth and proliferation in variety of tumor types. Intriguently, glutamate is also an excitatory neurotransmitter and evokes neuronal cell death at high concentrations. Even though glutamate signaling at the receptor and its downstream effectors has been extensively investigated at the molecular level, there has been little insight into how glutamate enters the tumor microenvironment and impacts on metabolic equilibration until recently. Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11) appeared to be a major player in this process, mediating glutamate secretion and ferroptosis. Also, PPARγ is associated with ferroptosis in neurodegeneration, thereby destroying neurons and causing brain swelling. Although these data are intriguing, tumor-associated edema has so far been quoted as of vasogenic origin. Hence, glutamate and PPARγ biology in the process of glioma-induced brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA receptors in vivo, brain swelling and peritumoral alterations can be mitigated. This review sheds light on the role of glutamate in brain tumors presenting the conceptual challenge that xCT disruption causes ferroptosis activation in malignant brain tumors. Thus, interfering with glutamate takes center stage in forming the basis of a metabolic equilibration approach.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Schmid
- Department of Trauma, Orthopaedics, Plastic and Hand Surgery, University Hospital Augsburg, Augsburg, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
- Center for Spine and Scoliosis Therapy, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jana Katharina Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Mitrovic
- Department of Cardiac Surgery, Bogenhausen Hospital, Munich, Germany
| | | | - Nicolai Savaskan
- Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Public Health Neukölln, District Office Neukölln of Berlin Neukölln, Berlin, Germany
| | | | - Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
Kaczmarski P, Sochal M, Strzelecki D, Białasiewicz P, Gabryelska A. Influence of glutamatergic and GABAergic neurotransmission on obstructive sleep apnea. Front Neurosci 2023; 17:1213971. [PMID: 37521710 PMCID: PMC10372424 DOI: 10.3389/fnins.2023.1213971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Glutamate and γ-aminobutyric acid (GABA) are the two main neurotransmitters in the human brain. The balance between their excitatory and inhibitory functions is crucial for maintaining the brain's physiological functions. Disturbance of glutamatergic or GABAergic neurotransmission leads to serious health problems including neurodegeneration, affective and sleep disorders. Both GABA and glutamate are involved in the control of the sleep-wake cycle. The disturbances in their function may cause sleep and sleep-related disorders. Obstructive sleep apnea (OSA) is the most common sleep respiratory disorder and is characterized by repetitive collapse of the upper airway resulting in intermittent hypoxia and sleep fragmentation. The complex pathophysiology of OSA is the basis of the development of numerous comorbid diseases. There is emerging evidence that GABA and glutamate disturbances may be involved in the pathogenesis of OSA, as well as its comorbidities. Additionally, the GABA/glutamate targeted pharmacotherapy may also influence the course of OSA, which is important in the implementation of wildly used drugs including benzodiazepines, anesthetics, and gabapentinoids. In this review, we summarize current knowledge on the influence of disturbances in glutamatergic and GABAergic neurotransmission on obstructive sleep apnea.
Collapse
Affiliation(s)
- Piotr Kaczmarski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
36
|
Kim N, Lee JH, Song Y, Lee JH, Schatz GC, Hwang H. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube. J Phys Chem B 2023. [PMID: 37369069 DOI: 10.1021/acs.jpcb.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The effect of the protonation state of glutamic acid on its translocation through cyclic peptide nanotubes (CPNs) was assessed by using molecular dynamics (MD) simulations. Anionic (GLU-), neutral zwitterionic (GLU0), and cationic (GLU+) forms of glutamic acid were selected as three different protonation states for an analysis of energetics and diffusivity for acid transport across a cyclic decapeptide nanotube. Based on the solubility-diffusion model, permeability coefficients for the three protonation states of the acid were calculated and compared with experimental results for CPN-mediated glutamate transport through CPNs. Potential of mean force (PMF) calculations reveal that, due to the cation-selective nature of the lumen of CPNs, GLU-, so-called glutamate, shows significantly high free energy barriers, while GLU+ displays deep energy wells and GLU0 has mild free energy barriers and wells inside the CPN. The considerable energy barriers for GLU- inside CPNs are mainly attributed to unfavorable interactions with DMPC bilayers and CPNs and are reduced by favorable interactions with channel water molecules through attractive electrostatic interactions and hydrogen bonding. Unlike the distinct PMF curves, position-dependent diffusion coefficient profiles exhibit comparable frictional behaviors regardless of the charge status of three protonation states due to similar confined environments imposed by the lumen of the CPN. The calculated permeability coefficients for the three protonation states clearly demonstrate that glutamic acid has a strong protonation state dependence for its transport through CPNs, as determined by the energetics rather than the diffusivity of the protonation state. In addition, the permeability coefficients also imply that GLU- is unlikely to pass through a CPN due to the high energy barriers inside the CPN, which is in disagreement with experimental measurements, where a considerable amount of glutamate permeating through the CPN was detected. To resolve the discrepancy between this work and the experimental observations, several possibilities are proposed, including a large concentration gradient of glutamate between the inside and outside of lipid vesicles and bilayers in the experiments, the glutamate activity difference between our MD simulations and experiments, an overestimation of energy barriers due to the artifacts imposed in MD simulations, and/or finally a transformation of the protonation state from GLU- to GLU0 to reduce the energy barriers. Overall, our study demonstrates that the protonation state of glutamic acid has a strong effect on the transport of the acid and suggests a possible protonation state change for glutamate permeating through CPNs.
Collapse
Affiliation(s)
- Namho Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Yeonho Song
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Hyonseok Hwang
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
37
|
Ravache TT, Batistuzzo A, Nunes GG, Gomez TGB, Lorena FB, Do Nascimento BPP, Bernardi MM, Lima ERR, Martins DO, Campos ACP, Pagano RL, Ribeiro MO. Multisensory Stimulation Reverses Memory Impairment in Adrβ 3KO Male Mice. Int J Mol Sci 2023; 24:10522. [PMID: 37445699 DOI: 10.3390/ijms241310522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Norepinephrine plays an important role in modulating memory through its beta-adrenergic receptors (Adrβ: β1, β2 and β3). Here, we hypothesized that multisensory stimulation would reverse memory impairment caused by the inactivation of Adrβ3 (Adrβ3KO) with consequent inhibition of sustained glial-mediated inflammation. To test this, 21- and 86-day-old Adrβ3KO mice were exposed to an 8-week multisensory stimulation (MS) protocol that comprised gustatory and olfactory stimuli of positive and negative valence; intellectual challenges to reach food; the use of hidden objects; and the presentation of food in ways that prompted foraging, which was followed by analysis of GFAP, Iba-1 and EAAT2 protein expression in the hippocampus (HC) and amygdala (AMY). The MS protocol reduced GFAP and Iba-1 expression in the HC of young mice but not in older mice. While this protocol restored memory impairment when applied to Adrβ3KO animals immediately after weaning, it had no effect when applied to adult animals. In fact, we observed that aging worsened the memory of Adrβ3KO mice. In the AMY of Adrβ3KO older mice, we observed an increase in GFAP and EAAT2 expression when compared to wild-type (WT) mice that MS was unable to reduce. These results suggest that a richer and more diverse environment helps to correct memory impairment when applied immediately after weaning in Adrβ3KO animals and indicates that the control of neuroinflammation mediates this response.
Collapse
Affiliation(s)
- Thaís T Ravache
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Alice Batistuzzo
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Gabriela G Nunes
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Thiago G B Gomez
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Fernanda B Lorena
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
- Departamento de Medicina Translacional, Universidade Federal de São Paulo 04023-062, SP, Brazil
| | - Bruna P P Do Nascimento
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
- Departamento de Medicina Translacional, Universidade Federal de São Paulo 04023-062, SP, Brazil
| | - Maria Martha Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil
| | - Eduarda R R Lima
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Daniel O Martins
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Ana Carolina P Campos
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Miriam O Ribeiro
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| |
Collapse
|
38
|
Banerjee R, Raj A, Potdar C, Pal PK, Yadav R, Kamble N, Holla V, Datta I. Astrocytes Differentiated from LRRK2-I1371V Parkinson's-Disease-Induced Pluripotent Stem Cells Exhibit Similar Yield but Cell-Intrinsic Dysfunction in Glutamate Uptake and Metabolism, ATP Generation, and Nrf2-Mediated Glutathione Machinery. Cells 2023; 12:1592. [PMID: 37371062 PMCID: PMC10297190 DOI: 10.3390/cells12121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signaling pathways. It also has several pathological mutant-variants, and their incidences show ethnicity biases and drug-response differences with expression in dopaminergic-neurons and astrocytes. Here, we aimed to assess the cell-intrinsic effect of the LRRK2-I1371V mutant variant, prevalent in East Asian populations, on astrocyte yield and biology, involving Nrf2-mediated glutathione machinery, glutamate uptake and metabolism, and ATP generation in astrocytes derived from LRRK2-I1371V PD patient iPSCs and independently confirmed in LRRK2-I1371V-overexpressed U87 cells. Astrocyte yield (GFAP-immunopositive) was comparable between LRRK2-I1371V and healthy control (HC) populations; however, the astrocytic capability to mitigate oxidative stress in terms of glutathione content was significantly reduced in the mutant astrocytes, along with a reduction in the gene expression of the enzymes involved in glutathione machinery and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Simultaneously, a significant decrease in glutamate uptake was observed in LRRK2-I1371V astrocytes, with lower gene expression of glutamate transporters SLC1A2 and SLC1A3. The reduction in the protein expression of SLC1A2 was also directly confirmed. Enzymes catalyzing the generation of γ glutamyl cysteine (precursor of glutathione) from glutamate and the metabolism of glutamate to enter the Krebs cycle (α-ketoglutaric acid) were impaired, with significantly lower ATP generation in LRRK2-I1371V astrocytes. De novo glutamine synthesis via the conversion of glutamate to glutamine was also affected, indicating glutamate metabolism disorder. Our data demonstrate for the first time that the mutation in the LRRK2-I1371V allele causes significant astrocytic dysfunction with respect to Nrf2-mediated antioxidant machinery, AT -generation, and glutamate metabolism, even with comparable astrocyte yields.
Collapse
Affiliation(s)
- Roon Banerjee
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Aishwarya Raj
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Vikram Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| |
Collapse
|
39
|
Luchetti S, Liere P, Pianos A, Verwer RWH, Sluiter A, Huitinga I, Schumacher M, Swaab DF, Mason MRJ. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson's disease. Neurobiol Dis 2023:106169. [PMID: 37257664 DOI: 10.1016/j.nbd.2023.106169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.
Collapse
Affiliation(s)
- Sabina Luchetti
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands; Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Philippe Liere
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Antoine Pianos
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Arja Sluiter
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Michael Schumacher
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | | |
Collapse
|
40
|
Luo Y, Chen J, Huang HY, Lam ESY, Wong GKC. Narrative review of roles of astrocytes in subarachnoid hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:302. [PMID: 37181334 PMCID: PMC10170286 DOI: 10.21037/atm-22-5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Background and Objective Astrocytes play an important role in healthy brain function, including the development and maintenance of blood-brain barrier (BBB), structural support, brain homeostasis, neurovascular coupling and secretion of neuroprotective factors. Reactive astrocytes participate in various pathophysiology after subarachnoid hemorrhage (SAH) including neuroinflammation, glutamate toxicity, brain edema, vasospasm, BBB disruption, cortical spreading depolarization (SD). Methods We searched PubMed up to 31 May, 2022 and evaluated the articles for screening and inclusion for subsequent systemic review. We found 198 articles with the searched terms. After exclusion based on the selection criteria, we selected 30 articles to start the systemic review. Key Content and Findings We summarized the response of astrocytes induced by SAH. Astrocytes are critical for brain edema formation, BBB reconstruction and neuroprotection in the acute stage of SAH. Astrocytes clear extracellular glutamate by increasing the uptake of glutamate and Na+/K+ ATPase activity after SAH. Neurotrophic factors released by astrocytes contribute to neurological recovery after SAH. Meanwhile, Astrocytes also form glial scars which hinder axon regeneration, produce proinflammatory cytokines, free radicals, and neurotoxic molecules. Conclusions Preclinical studies showed that therapeutic targeting the astrocytes response could have a beneficial effect in ameliorating neuronal injury and cognitive impairment after SAH. Clinical trials and preclinical animal studies are still urgently needed in order to determine where astrocytes stand in various pathway of brain damage and repair after SAH and, above all, to develop therapeutic approaches which benefit patient outcomes.
Collapse
Affiliation(s)
- Yujie Luo
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Junfan Chen
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Yin Huang
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Erica Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - George Kwok-Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Conti F, Pietrobon D. Astrocytic Glutamate Transporters and Migraine. Neurochem Res 2023; 48:1167-1179. [PMID: 36583835 DOI: 10.1007/s11064-022-03849-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Glutamate levels and lifetime in the brain extracellular space are dinamically regulated by a family of Na+- and K+-dependent glutamate transporters, which thereby control numerous brain functions and play a role in numerous neurological and psychiatric diseases. Migraine is a neurological disorder characterized by recurrent attacks of typically throbbing and unilateral headache and by a global dysfunction in multisensory processing. Familial hemiplegic migraine type 2 (FHM2) is a rare monogenic form of migraine with aura caused by loss-of-function mutations in the α2 Na/K ATPase (α2NKA). In the adult brain, this pump is expressed almost exclusively in astrocytes where it is colocalized with glutamate transporters. Knockin mouse models of FHM2 (FHM2 mice) show a reduced density of glutamate transporters in perisynaptic astrocytic processes (mirroring the reduced expression of α2NKA) and a reduced rate of glutamate clearance at cortical synapses during neuronal activity and sensory stimulation. Here we review the migraine-relevant alterations produced by the astrocytic glutamate transport dysfunction in FHM2 mice and their underlying mechanisms, in particular regarding the enhanced brain susceptibility to cortical spreading depression (the phenomenon that underlies migraine aura and can also initiate the headache mechanisms) and the enhanced algesic response to a migraine trigger.
Collapse
Affiliation(s)
- Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy.
- CNR Institute of Neuroscience, 35131, Padua, Italy.
| |
Collapse
|
42
|
Bondi H, Chiazza F, Masante I, Bortolotto V, Canonico PL, Grilli M. Heterogenous response to aging of astrocytes in murine Substantia Nigra pars compacta and pars reticulata. Neurobiol Aging 2023; 123:23-34. [PMID: 36630756 DOI: 10.1016/j.neurobiolaging.2022.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Currently, little is known about the impact of aging on astrocytes in substantia nigra pars compacta (SNpc), where dopaminergic neurons degenerate both in physiological aging and in Parkinson's disease, an age-related neurodegenerative disorder. We performed a morphometric analysis of GFAP+ astrocytes in SNpc and, for comparison, in the pars reticulata (SNpr) of young (4-6 months), middle-aged (14-17 months) and old (20-24 months) C57BL/6J male mice. We demonstrated an age-dependent increase of structural complexity only in astrocytes localized in SNpc, and not in SNpr. Astrocytic structural remodelling was not accompanied by changes in GFAP expression, while GFAP increased in SNpr of old compared to young mice. In parallel, transcript levels of selected astrocyte-enriched genes were evaluated. With aging, decreased GLT1 expression occurred only in SNpc, while xCT transcript increased both in SNpc and SNpr, suggesting a potential loss of homeostatic control of extracellular glutamate only in the subregion where age-dependent neurodegeneration occurs. Altogether, our results support an heterogenous morphological and biomolecular response to aging of GFAP+ astrocytes in SNpc and SNpr.
Collapse
Affiliation(s)
- Heather Bondi
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Fausto Chiazza
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Irene Masante
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
43
|
Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology 2023; 224:109349. [PMID: 36436594 PMCID: PMC9843824 DOI: 10.1016/j.neuropharm.2022.109349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 μM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 μM) compared to NaV1.2 (IC50 = 118 μM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.
Collapse
|
44
|
Blaylock RL. The biochemical basis of neurodegenerative disease: The role of immunoexcitoxicity and ways to possibly attenuate it. Surg Neurol Int 2023; 14:141. [PMID: 37151454 PMCID: PMC10159298 DOI: 10.25259/sni_250_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
There is growing evidence that inflammation secondary to immune activation is intimately connected to excitotoxicity. We now know that most peripheral tissues contain fully operational glutamate receptors. While most of the available research deals with excitotoxicity in central nervous system (CNS) tissues, this is no longer true. Even plant has been found to contain glutamate receptors. Most of the immune cells, including mask cells, contain glutamate receptors. The receptors are altered by inflammation, both chemokine and cytokines. A host of new diseases have been found that are caused by immunity to certain glutamate receptors, as we see with Rasmussen's encephalitis. In this paper, I try to explain this connection and possible ways to reduce or even stop the reaction.
Collapse
Affiliation(s)
- Russell L. Blaylock
- Corresponding author: Russell L. Blaylock, M.D. 609 Old Natchez Trace Canton, MS. Retired Neurosurgeon, Department of Neurosurgery, Theoretical Neuroscience Research, LLC, Ridgeland, Mississippi, United States.
| |
Collapse
|
45
|
Alijanpour S, Miryounesi M, Ghafouri-Fard S. The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders. Metab Brain Dis 2023; 38:1-16. [PMID: 36173507 DOI: 10.1007/s11011-022-01091-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.
Collapse
Affiliation(s)
- Sahar Alijanpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis 2022; 13:1063. [PMID: 36543780 PMCID: PMC9772344 DOI: 10.1038/s41419-022-05457-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Epilepsy is a common neurological disorder and glutamate excitotoxicity plays a key role in epileptic pathogenesis. Astrocytic glutamate transporter GLT-1 is responsible for preventing excitotoxicity via clearing extracellular accumulated glutamate. Previously, three variants (G82R, L85P, and P289R) in SLC1A2 (encoding GLT-1) have been clinically reported to be associated with epilepsy. However, the functional validation and underlying mechanism of these GLT-1 variants in epilepsy remain undetermined. In this study, we reported that these disease-linked mutants significantly decrease glutamate uptake, cell membrane expression of the glutamate transporter, and glutamate-elicited current. Additionally, we found that these variants may disturbed stromal-interacting molecule 1 (STIM1)/Orai1-mediated store-operated Ca2+ entry (SOCE) machinery in the endoplasmic reticulum (ER), in which GLT-1 may be a new partner of SOCE. Furthermore, knock-in mice with disease-associated variants showed a hyperactive phenotype accompanied by reduced glutamate transporter expression. Therefore, GLT-1 is a promising and reliable therapeutic target for epilepsy interventions.
Collapse
|
47
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
48
|
Abram M, Jakubiec M, Reeb K, Cheng MH, Gedschold R, Rapacz A, Mogilski S, Socała K, Nieoczym D, Szafarz M, Latacz G, Szulczyk B, Kalinowska-Tłuścik J, Gawel K, Esguerra CV, Wyska E, Müller CE, Bahar I, Fontana ACK, Wlaź P, Kamiński RM, Kamiński K. Discovery of ( R)- N-Benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [ (R)-AS-1], a Novel Orally Bioavailable EAAT2 Modulator with Drug-like Properties and Potent Antiseizure Activity In Vivo. J Med Chem 2022; 65:11703-11725. [PMID: 35984707 PMCID: PMC9469208 DOI: 10.1021/acs.jmedchem.2c00534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders.
Collapse
Affiliation(s)
- Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katelyn Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Robin Gedschold
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097Warsaw, Poland
| | - Justyna Kalinowska-Tłuścik
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-090Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349Oslo, Norway
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| |
Collapse
|
49
|
Wood OWG, Yeung JHY, Faull RLM, Kwakowsky A. EAAT2 as a therapeutic research target in Alzheimer's disease: A systematic review. Front Neurosci 2022; 16:952096. [PMID: 36033606 PMCID: PMC9399514 DOI: 10.3389/fnins.2022.952096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the human central nervous system, responsible for a wide variety of normal physiological processes. Glutamatergic metabolism and its sequestration are tightly regulated in the normal human brain, and it has been demonstrated that dysregulation of the glutamatergic system can have wide-ranging effects both in acute brain injury and neurodegenerative diseases. The excitatory amino acid transporter 2 (EAAT2) is the dominant glutamatergic transporter in the human brain, responsible for efficient removal of glutamate from the synaptic cleft for recycling within glial cells. As such, it has a key role in maintaining excitatory-inhibitory homeostasis. Animal studies have demonstrated dysregulation or alterations of EAAT2 expression can have implications in neurodegenerative disorders. Despite extensive research into glutamatergic alterations in AD mouse models, there is a lack of studies examining the expression of EAAT2 within the AD human brain. In this systematic review, 29 articles were identified that either analyzed EAAT2 expression in the AD human brain or used a human-derived cell culture. Studies were inconclusive as to whether EAAT2 was upregulated or downregulated in AD. However, changes in localization and correlation between EAAT2 expression and symptomatology was noted. These findings implicate EAAT2 alterations as a key process in AD progression and highlight the need for further research into the characterization of EAAT2 processes in normal physiology and disease in human tissue and to identify compounds that can act as EAAT2 neuromodulators.
Collapse
Affiliation(s)
- Oliver W. G. Wood
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jason H. Y. Yeung
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, Ollscoil na Gaillimhe – University of Galway, Galway, Ireland
- *Correspondence: Andrea Kwakowsky
| |
Collapse
|
50
|
Thompson JA, Miralles RM, Wengert ER, Wagley PK, Yu W, Wenker IC, Patel MK. Astrocyte reactivity in a mouse model of SCN8A epileptic encephalopathy. Epilepsia Open 2022; 7:280-292. [PMID: 34826216 PMCID: PMC9159254 DOI: 10.1002/epi4.12564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE SCN8A epileptic encephalopathy is caused predominantly by de novo gain-of-function mutations in the voltage-gated sodium channel Nav 1.6. The disorder is characterized by early onset of seizures and developmental delay. Most patients with SCN8A epileptic encephalopathy are refractory to current anti-seizure medications. Previous studies determining the mechanisms of this disease have focused on neuronal dysfunction as Nav 1.6 is expressed by neurons and plays a critical role in controlling neuronal excitability. However, glial dysfunction has been implicated in epilepsy and alterations in glial physiology could contribute to the pathology of SCN8A encephalopathy. In the current study, we examined alterations in astrocyte and microglia physiology in the development of seizures in a mouse model of SCN8A epileptic encephalopathy. METHODS Using immunohistochemistry, we assessed microglia and astrocyte reactivity before and after the onset of spontaneous seizures. Expression of glutamine synthetase and Nav 1.6, and Kir 4.1 channel currents were assessed in astrocytes in wild-type (WT) mice and mice carrying the N1768D SCN8A mutation (D/+). RESULTS Astrocytes in spontaneously seizing D/+ mice become reactive and increase expression of glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. These same astrocytes exhibited reduced barium-sensitive Kir 4.1 currents compared to age-matched WT mice and decreased expression of glutamine synthetase. These alterations were only observed in spontaneously seizing mice and not before the onset of seizures. In contrast, microglial morphology remained unchanged before and after the onset of seizures. SIGNIFICANCE Astrocytes, but not microglia, become reactive only after the onset of spontaneous seizures in a mouse model of SCN8A encephalopathy. Reactive astrocytes have reduced Kir 4.1-mediated currents, which would impair their ability to buffer potassium. Reduced expression of glutamine synthetase would modulate the availability of neurotransmitters to excitatory and inhibitory neurons. These deficits in potassium and glutamate handling by astrocytes could exacerbate seizures in SCN8A epileptic encephalopathy. Targeting astrocytes may provide a new therapeutic approach to seizure suppression.
Collapse
Affiliation(s)
- Jeremy A. Thompson
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Raquel M. Miralles
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Eric R. Wengert
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Pravin K. Wagley
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Wenxi Yu
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Ian C. Wenker
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Manoj K. Patel
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|