1
|
Zhang L, Xie F, Wang X, Sun Z, Wu Y, Sun Z, Zhang S, Chen X, Zhao Y, Qian L. Homocysteine induced N 6-methyldeoxyadenosine modification perturbation elicits mitochondria dysfunction contributes to the impairment of learning and memory ability caused by early life stress in rats. Redox Biol 2025; 84:103668. [PMID: 40367860 DOI: 10.1016/j.redox.2025.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/21/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025] Open
Abstract
Mitochondrial dysfunction is the key pathological mechanism of cognitive decline, and homocysteine (Hcy) plays a vital role in modulating mitochondrial homeostasis. However, the regulating mechanism and intervention targets of Hcy-induced mitochondrial damage involved in brain impairment remain unclear. Herein, it is found that elevated Hcy levels lead to the increasement of METTL4 expression and augmentation of N6-methyldeoxyadenosine (6 mA) modification in mitochondrial DNA (mtDNA) induced by maternal separation (MS) stress. Meanwhile, mtDNA copy number and gene expression level were suppressed in the hippocampus and the binding of the mitochondrial transcription factor A (TFAM) to the mtDNA promoters can be obstructed, leading to mitochondrial dysfunction and learning and memory impairment. Thus, there was a pivotal role of mtDNA 6 mA regulated by METTL4 in Hcy mediated mitochondrial dysfunction and cognitive damage in rat exposed to early life stress, and targeted regulation of Hcy to rectify mtDNA 6 mA excess may be a strategy for developing mitochondria-focused cognitive disorders interventions.
Collapse
Affiliation(s)
- Ling Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China; Anhui Medical University, Hefei, Anhui, China
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuhan Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhaoxin Sun
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shijia Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China; Anhui Medical University, Hefei, Anhui, China
| | - Xiaobing Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China; Anhui Medical University, Hefei, Anhui, China.
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Peter-Okaka U, Boison D. Neuroglia and brain energy metabolism. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:117-126. [PMID: 40122620 PMCID: PMC12011283 DOI: 10.1016/b978-0-443-19104-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The glial control of energy homeostasis is of crucial importance for health and disease. Astrocytes in particular play a major role in controlling the equilibrium among adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine. Any energy crisis leads to a drop in ATP, and the resulting increase in adenosine is an evolutionary ancient mechanism to suppress energy-consuming activities. The maintenance of brain energy homeostasis, in turn, requires the availability of energy sources, such as glucose and ketones. Astrocytes have assumed an important role in enabling efficient energy utilization by neurons. In addition, neurons are under the metabolic control of astrocytes through regulation of glutamate and GABA levels. The intricate interplay between glial brain energy metabolism and brain function can be best understood once the homeostatic system of energy metabolism is brought out of control. This has best been studied within the context of epilepsy where metabolic treatments provide unprecedented opportunities for the control of seizures that are refractory to conventional antiseizure medications. This chapter will discuss astroglial energy metabolism in the healthy brain and will use epilepsy as a model condition in which glial brain energy homeostasis is disrupted. We will conclude with an outlook on how those principles can be applied to other conditions such as Alzheimer disease.
Collapse
Affiliation(s)
- Uchenna Peter-Okaka
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Mareš P. Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague. Physiol Res 2024; 73:S67-S82. [PMID: 38752773 PMCID: PMC11412343 DOI: 10.33549/physiolres.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Starting from simple clinical statistics, the spectrum of methods used in epilepsy research in the Institute of Physiology of the Czechoslovak (now Czech) Academy of Sciences progressively increased. Professor Servít used electrophysiological methods for study of brain activity in lower vertebrates, neuropathology was focused on electronmicroscopic study of cortical epileptic focus and ion-sensitive microelectrodes were used for studies of cortical direct current potentials. Developmental studies used electrophysiological methods (activity and projection of cortical epileptic foci, EEG under the influence of convulsant drugs, hippocampal, thalamic and cortical electrical stimulation for induction of epileptic afterdischarges and postictal period). Extensive pharmacological studies used seizures elicited by convulsant drugs (at first pentylenetetrazol but also other GABA antagonists as well as agonists of glutamate receptors). Motor performance and behavior were also studied during brain maturation. The last but not least molecular biology was included into the spectrum of methods. Many original data were published making a background of position of our laboratory in the first line of laboratories interested in brain development.
Collapse
Affiliation(s)
- P Mareš
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Yakovlev AV, Detterer AS, Yakovleva OV, Hermann A, Sitdikova GF. H 2S prevents the disruption of the blood-brain barrier in rats with prenatal hyperhomocysteinemia. J Pharmacol Sci 2024; 155:131-139. [PMID: 38880547 DOI: 10.1016/j.jphs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024] Open
Abstract
Elevation of the homocysteine concentration in the plasma called hyperhomocysteinemia (hHCY) during pregnancy causes a number of pre- and postnatal developmental disorders. The aim of our study was to analyze the effects of H2S donors -NaHS and N-acetylcysteine (NAC) on blood-brain barrier (BBB) permeability in rats with prenatal hHCY. In rats with mild hHCY BBB permeability assessed by Evans Blue extravasation in brain increased markedly throughout life. Administration of NaHS or NAC during pregnancy attenuated hHCY-associated damage and increased endogenous concentrations of sulfides in brain tissues. Acute application of dl-homocysteine thiolactone induced BBB leakage, which was prevented by the NMDA receptor antagonist MK-801 or H2S donors. Rats with hHCY demonstrated high levels of NO metabolite - nitrites and proinflammatory cytokines (IL-1β, TNF-α, IL-6) in brain. Lactate dehydrogenase (LDH) activity in the serum was higher in rats with hHCY. Mitochondrial complex-I activity was lower in brain of hHCY rats. NaHS treatment during pregnancy restored levels of proinflammatory cytokines, nitrites and activity of the respiratory chain complex in brain as well as the LDH activity in serum. Our data suggest that H2S has neuroprotective effects against prenatal hHCY-associated BBB disturbance providing a potential strategy for the prevention of developmental impairments in newborns.
Collapse
Affiliation(s)
- A V Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia
| | - A S Detterer
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia
| | - O V Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia
| | - A Hermann
- Department of Cell Biology, Division of Cellular and Molecular Neurobiology, University of Salzburg, Department of Biosciences, Hellbrunnerstr. 34, Salzburg, 5020, Austria
| | - G F Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia.
| |
Collapse
|
5
|
Zhang L, Xie F, Wang X, Sun Z, Hu H, Wu Y, Zhang S, Chen X, Qian L, Zhao Y. N 6-methyldeoxyadenosine modification difference contributes to homocysteine-induced mitochondrial perturbation in rat hippocampal primary neurons and PC12 cells. Biochem Pharmacol 2024; 226:116410. [PMID: 38969302 DOI: 10.1016/j.bcp.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Elevated homocysteine (Hcy) levels are detrimental to neuronal cells and contribute to cognitive dysfunction in rats. Mitochondria plays a crucial role in cellular energy metabolism. Interestingly, the damaging effects of Hcy in vivo and in vitro conditions exhibit distinct results. Herein, we aimed to investigate the effects of Hcy on mitochondrial function in primary neurons and PC12 cells and explore the underlying mechanisms involved. The metabolic intermediates of Hcy act as methyl donors and play important epigenetic regulatory roles. N6-methyldeoxyadenosine (6 mA) modification, which is enriched in mitochondrial DNA (mtDNA), can be mediated by methylase METTL4. Our study suggested that mitochondrial perturbation caused by Hcy in primary neurons and PC12 cells may be attributable to mtDNA 6 mA modification difference. Hcy could activate the expression of METTL4 within mitochondria to facilitate mtDNA 6 mA status, and repress mtDNA transcription, then result in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ling Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China; Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Hu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuhan Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shijia Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China; Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaobing Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Villa BR, George AG, Shutt TE, Sullivan PG, Rho JM, Teskey GC. Postictal hypoxia involves reactive oxygen species and is ameliorated by chronic mitochondrial uncoupling. Neuropharmacology 2023; 238:109653. [PMID: 37422182 DOI: 10.1016/j.neuropharm.2023.109653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Prolonged severe hypoxia follows brief seizures and represents a mechanism underlying several negative postictal manifestations without interventions. Approximately 50% of the postictal hypoxia phenomenon can be accounted for by arteriole vasoconstriction. What accounts for the rest of the drop in unbound oxygen is unclear. Here, we determined the effect of pharmacological modulation of mitochondrial function on tissue oxygenation in the hippocampus of rats after repeatedly evoked seizures. Rats were treated with mitochondrial uncoupler 2,4 dinitrophenol (DNP) or antioxidants. Oxygen profiles were recorded using a chronically implanted oxygen-sensing probe, before, during, and after seizure induction. Mitochondrial function and redox tone were measured using in vitro mitochondrial assays and immunohistochemistry. Postictal cognitive impairment was assessed using the novel object recognition task. Mild mitochondrial uncoupling by DNP raised hippocampal oxygen tension and ameliorated postictal hypoxia. Chronic DNP also lowered mitochondrial oxygen-derived reactive species and oxidative stress in the hippocampus during postictal hypoxia. Uncoupling the mitochondria exerts therapeutic benefits on postictal cognitive dysfunction. Finally, antioxidants do not affect postictal hypoxia, but protect the brain from associated cognitive deficits. We provided evidence for a metabolic component of the prolonged oxygen deprivation that follow seizures and its pathological sequelae. Furthermore, we identified a molecular underpinning of this metabolic component, which involves excessive oxygen conversion into reactive species. Mild mitochondrial uncoupling may be a potential therapeutic strategy to treat the postictal state where seizure control is absent or poor.
Collapse
Affiliation(s)
- Bianca R Villa
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Timothy E Shutt
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Departments of Medical Genetics and Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Patrick G Sullivan
- Department of Anatomy and Neurobiology, and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Jong M Rho
- Department of Neurosciences, Pediatrics and Pharmacology, University of California San Diego, Rady Children's Hospital, San Diego, CA, 92037, USA.
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
7
|
Kaur B, Sharma PK, Chatterjee B, Bissa B, Nattarayan V, Ramasamy S, Bhat A, Lal M, Samaddar S, Banerjee S, Roy SS. Defective quality control autophagy in Hyperhomocysteinemia promotes ER stress and consequent neuronal apoptosis through proteotoxicity. Cell Commun Signal 2023; 21:258. [PMID: 37749555 PMCID: PMC10518934 DOI: 10.1186/s12964-023-01288-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
Homocysteine (Hcy), produced physiologically in all cells, is an intermediate metabolite of methionine and cysteine metabolism. Hyperhomocysteinemia (HHcy) resulting from an in-born error of metabolism that leads to accumulation of high levels of Hcy, is associated with vascular damage, neurodegeneration and cognitive decline. Using a HHcy model in neuronal cells, primary cortical neurons and transgenic zebrafish, we demonstrate diminished autophagy and Hcy-induced neurotoxicity associated with mitochondrial dysfunction, fragmentation and apoptosis. We find this mitochondrial dysfunction is due to Hcy-induced proteotoxicity leading to ER stress. We show this sustained proteotoxicity originates from the perturbation of upstream autophagic pathways through an aberrant activation of mTOR and that protetoxic stress act as a feedforward cues to aggravate a sustained ER stress that culminate to mitochondrial apoptosis in HHcy model systems. Using chemical chaperones to mitigate sustained ER stress, Hcy-induced proteotoxicity and consequent neurotoxicity were rescued. We also rescue neuronal lethality by activation of autophagy and thereby reducing proteotoxicity and ER stress. Our findings pave the way to devise new strategies for the treatment of neural and cognitive pathologies reported in HHcy, by either activation of upstream autophagy or by suppression of downstream ER stress. Video Abstract.
Collapse
Affiliation(s)
- Bhavneet Kaur
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Pradeep Kumar Sharma
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Barun Chatterjee
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Bhawana Bissa
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Present address: Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vasugi Nattarayan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
| | - Soundhar Ramasamy
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Ajay Bhat
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Megha Lal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | | | | | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India.
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Benek O, Vaskova M, Miskerikova M, Schmidt M, Andrys R, Rotterova A, Skarka A, Hatlapatkova J, Karasova JZ, Medvecky M, Hroch L, Vinklarova L, Fisar Z, Hroudova J, Handl J, Capek J, Rousar T, Kobrlova T, Dolezal R, Soukup O, Aitken L, Gunn-Moore F, Musilek K. Development of submicromolar 17β-HSD10 inhibitors and their in vitro and in vivo evaluation. Eur J Med Chem 2023; 258:115593. [PMID: 37390508 DOI: 10.1016/j.ejmech.2023.115593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/13/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 μM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17β-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).
Collapse
Affiliation(s)
- Ondrej Benek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Michaela Vaskova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Marketa Miskerikova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Adam Skarka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Jana Hatlapatkova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Matej Medvecky
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University of Warwick, Bioinformatics Research Technology Platform, Coventry, CV4 7AL, United Kingdom
| | - Lukas Hroch
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Vinklarova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zdenek Fisar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudova
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jiri Handl
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Jan Capek
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Tomas Rousar
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Laura Aitken
- University of St. Andrews, School of Biology, Biomedical Science Research Complex, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Frank Gunn-Moore
- University of St. Andrews, School of Biology, Biomedical Science Research Complex, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
Ľupták M, Fišar Z, Hroudová J. Different Effects of SSRIs, Bupropion, and Trazodone on Mitochondrial Functions and Monoamine Oxidase Isoform Activity. Antioxidants (Basel) 2023; 12:1208. [PMID: 37371937 DOI: 10.3390/antiox12061208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial dysfunction is involved in the pathophysiology of psychiatric and neurodegenerative disorders and can be used as a modulator and/or predictor of treatment responsiveness. Understanding the mitochondrial effects of antidepressants is important to connect mitochondria with their therapeutic and/or adverse effects. Pig brain-isolated mitochondria were used to evaluate antidepressant-induced changes in the activity of electron transport chain (ETC) complexes, monoamine oxidase (MAO), mitochondrial respiratory rate, and ATP. Bupropion, escitalopram, fluvoxamine, sertraline, paroxetine, and trazodone were tested. All tested antidepressants showed significant inhibition of complex I and IV activities at high concentrations (50 and 100 µmol/L); complex II + III activity was reduced by all antidepressants except bupropion. Complex I-linked respiration was reduced by escitalopram >> trazodone >> sertraline. Complex II-linked respiration was reduced only by bupropion. Significant positive correlations were confirmed between complex I-linked respiration and the activities of individual ETC complexes. MAO activity was inhibited by all tested antidepressants, with SSRIs causing a greater effect than trazodone and bupropion. The results indicate a probable association between the adverse effects of high doses of antidepressants and drug-induced changes in the activity of ETC complexes and the respiratory rate of mitochondria. In contrast, MAO inhibition could be linked to the antidepressant, procognitive, and neuroprotective effects of the tested antidepressants.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
10
|
Yu J, Cheng Y, Cui Y, Zhai Y, Zhang W, Zhang M, Xin W, Liang J, Pan X, Wang Q, Sun H. Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures. Neurosci Bull 2022; 38:1347-1364. [PMID: 35821335 PMCID: PMC9672298 DOI: 10.1007/s12264-022-00914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Collapse
Affiliation(s)
- Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenshen Zhang
- The Sixth Scientific Research Department, Shandong Institute of Nonmetallic Materials, Jinan, 250031, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
11
|
Abstract
The brain is a highly energy-demanding organ and requires bioenergetic adaptability to balance normal activity with pathophysiological fuelling of spontaneous recurrent seizures, the hallmark feature of the epilepsies. Recurrent or prolonged seizures have long been known to permanently alter neuronal circuitry and to cause excitotoxic injury and aberrant inflammation. Furthermore, pathological changes in bioenergetics and metabolism are considered downstream consequences of epileptic seizures that begin at the synaptic level. However, as we highlight in this Review, evidence is also emerging that primary derangements in cellular or mitochondrial metabolism can result in seizure genesis and lead to spontaneous recurrent seizures. Basic and translational research indicates that the relationships between brain metabolism and epileptic seizures are complex and bidirectional, producing a vicious cycle that compounds the deleterious consequences of seizures. Metabolism-based treatments such as the high-fat, antiseizure ketogenic diet have become mainstream, and metabolic substrates and enzymes have become attractive molecular targets for seizure prevention and recovery. Moreover, given that metabolism is crucial for epigenetic as well as inflammatory changes, the idea that epileptogenesis can be both negatively and positively influenced by metabolic changes is rapidly gaining ground. Here, we review evidence that supports both pathophysiological and therapeutic roles for brain metabolism in epilepsy.
Collapse
|
12
|
Michaličková D, Kübra Öztürk H, Hroudová J, Ľupták M, Kučera T, Hrnčíř T, Kutinová Canová N, Šíma M, Slanař O. Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1. Physiol Res 2022; 71:147-157. [PMID: 35043649 DOI: 10.33549/physiolres.934800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate therapeutic potential of edaravone in the murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and to expand the knowledge of its mechanism of action. Edaravone (6 mg/kg/day) was administered intraperitoneally from the onset of clinical symptoms until the end of the experiment (28 days). Disease progression was assessed daily using severity scores. At the peak of the disease, histological analyses, markers of oxidative stress (OS) and parameters of mitochondrial function in the brains and spinal cords (SC) of mice were determined. Gene expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha was determined at the end of the experiment. Edaravone treatment ameliorated EAE severity and attenuated inflammation in the SC of the EAE mice, as verified by histological analysis. Moreover, edaravone treatment decreased OS, increased the gene expression of the Nrf2 and HO-1, increased the activity of the mitochondrial complex II/III, reduced the activity of the mitochondrial complex IV and preserved ATP production in the SC of the EAE mice. In conclusion, findings in this study provide additional evidence of edaravone potential for the treatment of multiple sclerosis and expand our knowledge of the mechanism of action of edaravone in the EAE model.
Collapse
Affiliation(s)
- Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Pošusta A, Folbergrová J, Tauchmannová K, Mráček T, Otáhal J. Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats. Front Cell Neurosci 2022; 16:855161. [PMID: 35370554 PMCID: PMC8965559 DOI: 10.3389/fncel.2022.855161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG μCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.
Collapse
Affiliation(s)
- Jan Daněk
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Šárka Danačíková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - David Kala
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Sonam Kapoor
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Pošusta
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jakub Otáhal,
| |
Collapse
|
14
|
Jancovski N, Baldwin T, Orford M, Li M, Jones GD, Burbano LE, Rutherford T, Reid C, Heales S, Eaton S, Petrou S. Protective effects of medium chain triglyceride diet in a mouse model of Dravet syndrome. Epilepsia 2021; 62:3131-3142. [PMID: 34713469 DOI: 10.1111/epi.17101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy with early childhood onset. Patients with DS do not respond well to antiepileptic drugs and have only a few treatment options available. Here, we evaluated the effect of medium chain triglyceride (MCT) diet therapy in a mouse model of DS. METHODS Scn1aR1407X/+ DS mice were given diets supplemented with MCTs with varying ratios of decanoic (C10) and octanoic (C8) acid or a control diet for 4 weeks. Video monitoring was performed to evaluate spontaneous convulsive seizure frequency. Susceptibility to hyperthermia-induced seizures was also examined. Medium chain fatty acids, and mitochondrial and antioxidant markers were assessed in brain homogenate. RESULTS Dietary intervention with MCTs significantly prolonged survival and reduced convulsive seizure frequency during the critical period of highest seizure occurrence in the Scn1aR1407X/+ DS mice. Moreover, MCT diet therapy showed protective effects against hyperthermia-induced seizures. We demonstrated that coadministration of C10/C8 was effective at reducing both seizures and mortality, whereas C10 alone only reduced mortality, suggesting that the ratio of C10 to C8 in the MCT is an important factor for efficacy. When C10 and C8 are supplemented at an 80:20 ratio in the diet, C10 accumulates in the brain in high enough concentrations to enhance brain energy metabolism by both stimulating mitochondrial enrichment and increasing its antioxidant status. SIGNIFICANCE The results from this study indicate that MCT diet therapy may provide therapeutic benefits in DS. Future clinical studies would elucidate whether these positive effects are mirrored in human patients.
Collapse
Affiliation(s)
- Nikola Jancovski
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Tomas Baldwin
- Developmental Biology and Cancer University College London Great Ormond Street Institute of Child Health, London, UK
| | - Michael Orford
- Developmental Biology and Cancer University College London Great Ormond Street Institute of Child Health, London, UK
| | - Melody Li
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Gabriel Davis Jones
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Lisseth Estefania Burbano
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | - Christopher Reid
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Simon Heales
- Inborn Errors of Metabolism, Chemical Pathology, University College London Metabolism, Great Ormond Street for Children Hospital, Chemical Pathology, Great Ormond Street Hospital, London, UK.,Neurometabolic Unit, National Hospital, London, UK
| | - Simon Eaton
- Developmental Biology and Cancer University College London Great Ormond Street Institute of Child Health, London, UK
| | - Steven Petrou
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Effect of Novel Antipsychotics on Energy Metabolism - In Vitro Study in Pig Brain Mitochondria. Mol Neurobiol 2021; 58:5548-5563. [PMID: 34365585 DOI: 10.1007/s12035-021-02498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The identification and quantification of mitochondrial effects of novel antipsychotics (brexpiprazole, cariprazine, loxapine, and lurasidone) were studied in vitro in pig brain mitochondria. Selected parameters of mitochondrial metabolism, electron transport chain (ETC) complexes, citrate synthase (CS), malate dehydrogenase (MDH), monoamine oxidase (MAO), mitochondrial respiration, and total ATP and reactive oxygen species (ROS) production were evaluated and associated with possible adverse effects of drugs. All tested antipsychotics decreased the ETC activities (except for complex IV, which increased in activity after brexpiprazole and loxapine addition). Both complex I- and complex II-linked respiration were dose-dependently inhibited, and significant correlations were found between complex I-linked respiration and both complex I activity (positive correlation) and complex IV activity (negative correlation). All drugs significantly decreased mitochondrial ATP production at higher concentrations. Hydrogen peroxide production was significantly increased at 10 µM brexpiprazole and lurasidone and at 100 µM cariprazine and loxapine. All antipsychotics acted as partial inhibitors of MAO-A, brexpiprazole and loxapine partially inhibited MAO-B. Based on our results, novel antipsychotics probably lacked oxygen uncoupling properties. The mitochondrial effects of novel antipsychotics might contribute on their adverse effects, which are mostly related to decreased ATP production and increased ROS production, while MAO-A inhibition might contribute to their antidepressant effect, and brexpiprazole- and loxapine-induced MAO-B inhibition might likely promote neuroplasticity and neuroprotection. The assessment of drug-induced mitochondrial dysfunctions is important in development of new drugs as well as in the understanding of molecular mechanism of adverse or side drug effects.
Collapse
|
16
|
Fišar Z, Ľupták M, Hroudová J. Little in vitro effect of remdesivir on mitochondrial respiration and monoamine oxidase activity in isolated mitochondria. Toxicol Lett 2021; 350:143-151. [PMID: 34311047 DOI: 10.1016/j.toxlet.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Remdesivir (RDV) is a novel antiviral drug whose mitochondrial effects are not well known. In vitro effects of RDV on the mitochondrial respiration, individual respiratory complexes, and the activity of monoamine oxidase (MAO-A and MAO-B) were measured in isolated mitochondria. At micromolar RDV concentrations, minimal or no inhibitory effects on the studied mitochondrial enzymes were found. At very high concentrations of RDV, there was partial inhibition of complex I- (IC50 675 μmol/L, residual activity 39.4 %) and complex II-linked (IC50 81.8 μmol/L, residual activity 40.7 %) respiration, without inhibition of complex IV-linked respiration, and partial inhibition both of MAO-A (IC50 26.6 μmol/L, residual activity 35.2 %) and MAO-B (IC50 89.8 μmol/L, residual activity 34.0 %) activity. Individual respiratory complexes (I, II + III, and IV) were partially inhibited at a high drug concentration. The active metabolite of RDV (GS-443902) had very little effect on mitochondrial oxygen consumption rate with residual activity of 87.0 % for complex I-linked respiration, 90.3 % for complex II-linked respiration, and with no inhibition of complex IV-linked respiration. In conclusion, measurement of the effect of RDV and its active metabolite on isolated mitochondria shows that there is very little direct effect on mitochondrial respiration occurs at therapeutic drug concentration.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 121 28, Prague 2, Czech Republic.
| | - Matej Ľupták
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Institute of Pharmacology, Albertov 4, 128 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 121 28, Prague 2, Czech Republic
| |
Collapse
|
17
|
Klein Gunnewiek TM, Van Hugte EJH, Frega M, Guardia GS, Foreman K, Panneman D, Mossink B, Linda K, Keller JM, Schubert D, Cassiman D, Rodenburg R, Vidal Folch N, Oglesbee D, Perales-Clemente E, Nelson TJ, Morava E, Nadif Kasri N, Kozicz T. m.3243A > G-Induced Mitochondrial Dysfunction Impairs Human Neuronal Development and Reduces Neuronal Network Activity and Synchronicity. Cell Rep 2021; 31:107538. [PMID: 32320658 DOI: 10.1016/j.celrep.2020.107538] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Eline J H Van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands
| | - Gemma Solé Guardia
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katharina Foreman
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Daan Panneman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - David Cassiman
- Department of Hepatology, UZ Leuven, 3000 Leuven, Belgium
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Noemi Vidal Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Timothy J Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands.
| | - Tamas Kozicz
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| |
Collapse
|
18
|
Folbergrová J, Ješina P, Otáhal J. Treatment With Resveratrol Ameliorates Mitochondrial Dysfunction During the Acute Phase of Status Epilepticus in Immature Rats. Front Neurosci 2021; 15:634378. [PMID: 33746702 PMCID: PMC7973046 DOI: 10.3389/fnins.2021.634378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to elucidate the effect of resveratrol (natural polyphenol) on seizure activity, production of ROS, brain damage and mitochondrial function in the early phase of status epilepticus (SE), induced in immature 12 day-old rats by substances of a different mechanism of action (Li-pilocarpine, DL-homocysteic acid, 4-amino pyridine, and kainate). Seizure activity, production of superoxide anion, brain damage and mitochondrial function were assessed by EEG recordings, hydroethidium method, FluoroJadeB staining and Complex I activity measurement. A marked decrease of complex I activity associated with the acute phase of SE in immature brain was significantly attenuated by resveratrol, given i.p. in two or three doses (25 mg/kg each), 30 min before, 30 or 30 and 60 min after the induction of SE. Increased O2.– production was completely normalized, brain damage partially attenuated. Since resveratrol did not influence seizure activity itself (latency, intensity, frequency), the mechanism of protection is likely due to its antioxidative properties. The findings have a clinical relevance, suggesting that clinically available substances with antioxidant properties might provide a high benefit as an add-on therapy during the acute phase of SE, influencing also mechanisms involved in the development of epilepsy.
Collapse
Affiliation(s)
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
19
|
Vega-García A, Feria-Romero I, García-Juárez A, Munguia-Madera AC, Montes-Aparicio AV, Zequeida-Muñoz E, Garcia-Albavera E, Orozco-Suárez S. Cannabinoids: A New Perspective on Epileptogenesis and Seizure Treatment in Early Life in Basic and Clinical Studies. Front Behav Neurosci 2021; 14:610484. [PMID: 33510627 PMCID: PMC7835327 DOI: 10.3389/fnbeh.2020.610484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Neural hyperexcitability in the event of damage during early life, such as hyperthermia, hypoxia, traumatic brain injury, status epilepticus, or a pre-existing neuroinflammatory condition, can promote the process of epileptogenesis, which is defined as the sequence of events that converts a normal circuit into a hyperexcitable circuit and represents the time that occurs between the damaging event and the development of spontaneous seizure activity or the establishment of epilepsy. Epilepsy is the most common neurological disease in the world, characterized by the presence of seizures recurring without apparent provocation. Cannabidiol (CBD), a phytocannabinoid derived from the subspecies Cannabis sativa (CS), is the most studied active ingredient and is currently studied as a therapeutic strategy: it is an anticonvulsant mainly used in children with catastrophic epileptic syndromes and has also been reported to have anti-inflammatory and antioxidant effects, supporting it as a therapeutic strategy with neuroprotective potential. However, the mechanisms by which CBD exerts these effects are not entirely known, and the few studies on acute and chronic models in immature animals have provided contradictory results. Thus, it is difficult to evaluate the therapeutic profile of CBD, as well as the involvement of the endocannabinoid system in epileptogenesis in the immature brain. Therefore, this review focuses on the collection of scientific data in animal models, as well as information from clinical studies on the effects of cannabinoids on epileptogenesis and their anticonvulsant and adverse effects in early life.
Collapse
Affiliation(s)
- Angélica Vega-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Anais García-Juárez
- División de Ciencias Biológicas y Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Ch Munguia-Madera
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | - Alexia V Montes-Aparicio
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| | | | | | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico
| |
Collapse
|
20
|
Involvements of Hyperhomocysteinemia in Neurological Disorders. Metabolites 2021; 11:metabo11010037. [PMID: 33419180 PMCID: PMC7825518 DOI: 10.3390/metabo11010037] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Homocysteine (HCY), a physiological amino acid formed when proteins break down, leads to a pathological condition called hyperhomocysteinemia (HHCY), when it is over a definite limit. It is well known that an increase in HCY levels in blood, can contribute to arterial damage and several cardiovascular disease, but the knowledge about the relationship between HCY and brain disorders is very poor. Recent studies demonstrated that an alteration in HCY metabolism or a deficiency in folate or vitamin B12 can cause altered methylation and/or redox potentials, that leads to a modification on calcium influx in cells, or into an accumulation in amyloid and/or tau protein involving a cascade of events that culminate in apoptosis, and, in the worst conditions, neuronal death. The present review will thus summarize how much is known about the possible role of HHCY in neurodegenerative disease.
Collapse
|
21
|
Fišar Z, Musílek K, Benek O, Hroch L, Vinklářová L, Schmidt M, Hroudová J, Raboch J. Effects of novel 17β-hydroxysteroid dehydrogenase type 10 inhibitors on mitochondrial respiration. Toxicol Lett 2020; 339:12-19. [PMID: 33359020 DOI: 10.1016/j.toxlet.2020.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 12/29/2022]
Abstract
Mitochondrial enzymes are targets of newly synthesized drugs being tested for the treatment of neurodegenerative disorders, such as Alzheimer's disease (AD). The enzyme 17β-hydroxysteroid dehydrogenase type 10 (HSD10) is a multifunctional mitochondrial protein that is thought to play a role in the pathophysiology of AD and is one of the targets of new potential AD drugs. The in vitro effects of frentizole, riluzole, AG18051, and 42 novel modulators of HSD10 (potential AD drugs) on citrate synthase (CS) activity, monoamine oxidase (MAO) activity, complex I- or complex II-linked mitochondrial respiratory rate, and complex I activity were measured in isolated pig brain mitochondria. Based on their minimal inhibitory effects on the respiratory rate of mitochondria and CS and complex I activity, six novel compounds were selected for further testing. Assuming that inhibition of MAO-B could be a desirable effect of AD drugs, only AG18051 and one new compound met the criteria for MAO-B inhibition with minimal drug-induced effects on mitochondrial respiration. In conclusion, our in vitro screening of mitochondrial effect of novel potential AD drugs has enabled the selection of the most promising molecules for further testing that are relatively safe in terms of drug-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic.
| | - Kamil Musílek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Ondřej Benek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Lukáš Hroch
- University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Vinklářová
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Jana Hroudová
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jiří Raboch
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| |
Collapse
|
22
|
Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial? Antioxidants (Basel) 2020; 9:antiox9111029. [PMID: 33105652 PMCID: PMC7690410 DOI: 10.3390/antiox9111029] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common neurological disorder which affects patients physically and mentally and causes a real burden for the patient, family and society both medically and economically. Currently, more than one-third of epilepsy patients are still under unsatisfied control, even with new anticonvulsants. Other measures may be added to those with drug-resistant epilepsy. Excessive neuronal synchronization is the hallmark of epileptic activity and prolonged epileptic discharges such as in status epilepticus can lead to various cellular events and result in neuronal damage or death. Unbalanced oxidative status is one of the early cellular events and a critical factor to determine the fate of neurons in epilepsy. To counteract excessive oxidative damage through exogenous antioxidant supplements or induction of endogenous antioxidative capability may be a reasonable approach for current anticonvulsant therapy. In this article, we will introduce the critical roles of oxidative stress and further discuss the potential use of antioxidants in this devastating disease.
Collapse
|
23
|
Effects of Novel Tacrine Derivatives on Mitochondrial Energy Metabolism and Monoamine Oxidase Activity-In Vitro Study. Mol Neurobiol 2020; 58:1102-1113. [PMID: 33089424 DOI: 10.1007/s12035-020-02172-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022]
Abstract
The trends of novel AD therapeutics are focused on multitarget-directed ligands (MTDLs), which combine cholinesterase inhibition with additional biological properties such as antioxidant properties to positively affect neuronal energy metabolism as well as mitochondrial function. We examined the in vitro effects of 10 novel MTDLs on the activities of mitochondrial enzymes (electron transport chain complexes and citrate synthase), mitochondrial respiration, and monoamine oxidase isoform (MAO-A and MAO-B) activity. The drug-induced effects of 7-MEOTA-adamantylamine heterodimers (K1011, K1013, K1018, K1020, and K1022) and tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers (K1046, K1053, K1056, K1060, and K1065) were measured in pig brain mitochondria. Most of the substances inhibited complex I- and complex II-linked respiration at high concentrations; K1046, K1053, K1056, and K1060 resulted in the least inhibition of mitochondrial respiration. Citrate synthase activity was not significantly inhibited by the tested substances; the least inhibition of complex I was observed for compounds K1060 and K1053, while both complex II/III and complex IV activity were markedly inhibited by K1011 and K1018. MAO-A was fully inhibited by K1018 and K1065, and MAO-B was fully inhibited by K1053 and K1065; the other tested drugs were partial inhibitors of both MAO-A and MAO-B. The tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers K1046, K1053, and K1060 seem to be the most suitable molecules for subsequent in vivo studies. These compounds had balanced inhibitory effects on mitochondrial respiration, with low complex I and complex II/III inhibition and full or partial inhibition of MAO-B activity.
Collapse
|
24
|
Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int J Mol Sci 2020; 21:ijms21207698. [PMID: 33080955 PMCID: PMC7589705 DOI: 10.3390/ijms21207698] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as sources of ROS generation and alterations in antioxidant defense resulting from altered gene expression and post-translational modifications of proteins. Moreover, we discuss some recent findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and antioxidant defense. A better understanding of complex mechanisms through which Hcy affects mitochondrial functions could contribute to the development of more specific therapeutic strategies targeted at HHcy-associated disorders.
Collapse
|
25
|
Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:797-811. [PMID: 31858154 DOI: 10.1007/s00210-019-01791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
The evaluation of drug-induced mitochondrial impairment may be important in drug development as well as in the comprehension of molecular mechanisms of the therapeutic and adverse effects of drugs. The primary aim of this study was to investigate the effects of four drugs for treatment of depression (bupropion, fluoxetine, amitriptyline, and imipramine) and five drugs for bipolar disorder treatment (lithium, valproate, valpromide, lamotrigine, and carbamazepine) on cell energy metabolism. The in vitro effects of the selected psychopharmaca were measured in isolated pig brain mitochondria; the activities of citrate synthase (CS) and electron transport chain (ETC) complexes (I, II + III, and IV) and mitochondrial respiration rates linked to complex I and complex II were measured. Complex I was significantly inhibited by lithium, carbamazepine, fluoxetine, amitriptyline, and imipramine. The activity of complex IV was decreased after exposure to carbamazepine. The activities of complex II + III and CS were not affected by any tested drug. Complex I-linked respiration was significantly inhibited by bupropion, fluoxetine, amitriptyline, imipramine, valpromide, carbamazepine, and lamotrigine. Significant inhibition of complex II-linked respiration was observed after mitochondria were exposed to amitriptyline, fluoxetine, and carbamazepine. Our outcomes confirm the need to investigate the effects of drugs on both the total respiration rate and the activities of individual enzymes of the ETC to reveal the risk of adverse effects as well as to understand the molecular mechanisms leading to drug-induced changes in the respiratory rate. Our approach can be further replicated to study the mechanisms of action of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
26
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
27
|
Ballance WC, Qin EC, Chung HJ, Gillette MU, Kong H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials 2019; 217:119292. [PMID: 31279098 PMCID: PMC7081518 DOI: 10.1016/j.biomaterials.2019.119292] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases and disorders seriously impact memory and cognition and can become life-threatening. Current medical techniques attempt to combat these detrimental effects mainly through the administration of neuromedicine. However, drug efficacy is limited by rapid dispersal of the drugs to off-target sites while the site of administration is prone to overdose. Many neuropathological conditions are accompanied by excessive reactive oxygen species (ROS) due to the inflammatory response. Accordingly, ROS-responsive drug delivery systems have emerged as a promising solution. To guide intelligent and comprehensive design of ROS-responsive drug delivery systems, this review article discusses the two following topics: (1) the biology of ROS in both healthy and diseased nervous systems and (2) recent developments in ROS-responsive, drug delivery system design. Overall, this review article would assist efforts to make better decisions about designing ROS-responsive, neural drug delivery systems, including the selection of ROS-responsive functional groups.
Collapse
Affiliation(s)
- William C Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
28
|
Sirtuin 1 Regulates Mitochondrial Biogenesis and Provides an Endogenous Neuroprotective Mechanism Against Seizure-Induced Neuronal Cell Death in the Hippocampus Following Status Epilepticus. Int J Mol Sci 2019; 20:ijms20143588. [PMID: 31340436 PMCID: PMC6678762 DOI: 10.3390/ijms20143588] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Status epilepticus may decrease mitochondrial biogenesis, resulting in neuronal cell death occurring in the hippocampus. Sirtuin 1 (SIRT1) functionally interacts with peroxisome proliferator-activated receptors and γ coactivator 1α (PGC-1α), which play a crucial role in the regulation of mitochondrial biogenesis. In Sprague-Dawley rats, kainic acid was microinjected unilaterally into the hippocampal CA3 subfield to induce bilateral seizure activity. SIRT1, PGC-1α, and other key proteins involving mitochondrial biogenesis and the amount of mitochondrial DNA were investigated. SIRT1 antisense oligodeoxynucleotide was used to evaluate the relationship between SIRT1 and mitochondrial biogenesis, as well as the mitochondrial function, oxidative stress, and neuronal cell survival. Increased SIRT1, PGC-1α, and mitochondrial biogenesis machinery were found in the hippocampus following experimental status epilepticus. Downregulation of SIRT1 decreased PGC-1α expression and mitochondrial biogenesis machinery, increased Complex I dysfunction, augmented the level of oxidized proteins, raised activated caspase-3 expression, and promoted neuronal cell damage in the hippocampus. The results suggest that the SIRT1 signaling pathway may play a pivotal role in mitochondrial biogenesis, and could be considered an endogenous neuroprotective mechanism counteracting seizure-induced neuronal cell damage following status epilepticus.
Collapse
|
29
|
Cikánková T, Fišar Z, Bakhouche Y, Ľupták M, Hroudová J. In vitro effects of antipsychotics on mitochondrial respiration. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1209-1223. [PMID: 31104106 DOI: 10.1007/s00210-019-01665-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
Assessment of drug-induced mitochondrial dysfunctions is important in drug development as well as in the understanding of molecular mechanism of therapeutic or adverse effects of drugs. The aim of this study was to investigate the effects of three typical antipsychotics (APs) and seven atypical APs on mitochondrial bioenergetics. The effects of selected APs on citrate synthase, electron transport chain complexes (ETC), and mitochondrial complex I- or complex II-linked respiratory rate were measured using mitochondria isolated from pig brain. Complex I activity was decreased by chlorpromazine, haloperidol, zotepine, aripiprazole, quetiapine, risperidone, and clozapine. Complex II + III was significantly inhibited by zotepine, aripiprazole, quetiapine, and risperidone. Complex IV was inhibited by zotepine, chlorpromazine, and levomepromazine. Mitochondrial respiratory rate was significantly inhibited by all tested APs, except for olanzapine. Typical APs did not exhibit greater efficacy in altering mitochondrial function compared to atypical APs except for complex I inhibition by chlorpromazine and haloperidol. A comparison of the effects of APs on individual respiratory complexes and on the overall mitochondrial respiration has shown that mitochondrial functions may not fully reflect the disruption of complexes of ETC, which indicates AP-induced modulation of other mitochondrial proteins. Due to the complicated processes associated with mitochondrial activity, it is necessary to measure not only the effect of the drug on individual mitochondrial enzymes but also the respiration rate of the mitochondria or a similar complex process. The experimental approach used in the study can be applied to mitochondrial toxicity testing of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Yousra Bakhouche
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
30
|
Burtscher J, Bean C, Zangrandi L, Kmiec I, Agostinho A, Scorrano L, Gnaiger E, Schwarzer C. Proenkephalin Derived Peptides Are Involved in the Modulation of Mitochondrial Respiratory Control During Epileptogenesis. Front Mol Neurosci 2018; 11:351. [PMID: 30319356 PMCID: PMC6167428 DOI: 10.3389/fnmol.2018.00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Epilepsies are a group of common neurological diseases exerting a strong burden on patients and society, often lacking clear etiology and effective therapeutical strategies. Early intervention during the development of epilepsy (epileptogenesis) is of great medical interest, though hampered by poorly characterized epileptogenetic processes. Using the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, we investigated the functional role of the endogenous opioid enkephalin during epileptogenesis. We addressed three sequential questions: (1) How does enkephalin affect seizure threshold and how is it regulated during epileptogenesis? (2) Does enkephalin influence detrimental effects during epileptogenesis? (3) How is enkephalin linked to mitochondrial function during epileptogenesis?. In contrast to other neuropeptides, the expression of enkephalin is not regulated in a seizure dependent manner. The pattern of regulation, and enkephalin's proconvulsive effects suggested it as a potential driving force in epileptogenesis. Surprisingly, enkephalin deficiency aggravated progressive granule cell dispersion in kainic acid induced epileptogenesis. Based on reported beneficial effects of enkephalin on mitochondrial function in hypoxic/ischemic states, we hypothesized that enkephalin may be involved in the adaptation of mitochondrial respiration during epileptogenesis. Using high-resolution respirometry, we observed dynamic improvement of hippocampal mitochondrial respiration after kainic acid-injections in wild-type, but not in enkephalin-deficient mice. Thus, wild-type mice displayed higher efficiency in the use of mitochondrial capacity as compared to enkephalin-deficient mice. Our data demonstrate a Janus-headed role of enkephalin in epileptogenesis. In naive mice, enkephalin facilitates seizures, but in subsequent stages it contributes to neuronal survival through improved mitochondrial respiration.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Camilla Bean
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iwona Kmiec
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Agostinho
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Erich Gnaiger
- D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Oroboros Instruments, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Abstract
There is a resurgence of interest in the role of metabolism in epilepsy. Long considered ancillary and acknowledged only in the context of clinical application of ketogenic diets, metabolic control of epilepsy is gaining momentum and mainstream interest among researchers. A metabolic paradigm for epilepsy rests upon known perturbations in three major interconnected metabolic nodes and therapeutic targets therefrom (i.e., glycolysis, mitochondria, and redox balance).
Collapse
|
32
|
Crespo M, León-Navarro DA, Martín M. Cerebellar oxidative stress and fine motor impairment in adolescent rats exposed to hyperthermia-induced seizures is prevented by maternal caffeine intake during gestation and lactation. Eur J Pharmacol 2018; 822:186-198. [DOI: 10.1016/j.ejphar.2018.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
|
33
|
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis. Mol Neurobiol 2018; 55:7512-7522. [PMID: 29427088 DOI: 10.1007/s12035-018-0924-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.-), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: "acute treatment," i.p. administration 30 min before, 30 and 60 min after induction of SE and "full treatment" when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.-, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Hana Kubová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
34
|
Pearson-Smith JN, Patel M. Metabolic Dysfunction and Oxidative Stress in Epilepsy. Int J Mol Sci 2017; 18:ijms18112365. [PMID: 29117123 PMCID: PMC5713334 DOI: 10.3390/ijms18112365] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023] Open
Abstract
The epilepsies are a heterogeneous group of disorders characterized by the propensity to experience spontaneous recurrent seizures. Epilepsies can be genetic or acquired, and the underlying mechanisms of seizure initiation, seizure propagation, and comorbid conditions are incompletely understood. Metabolic changes including the production of reactive species are known to result from prolonged seizures and may also contribute to epilepsy development. In this review, we focus on the evidence that metabolic and redox disruption is both cause and consequence of epileptic seizures. Additionally, we discuss the promise of targeting redox processes as a therapeutic option in epilepsy.
Collapse
Affiliation(s)
- Jennifer N Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
35
|
Venediktova NI, Gorbacheva OS, Belosludtseva NV, Fedotova IB, Surina NM, Poletaeva II, Kolomytkin OV, Mironova GD. Energetic, oxidative and ionic exchange in rat brain and liver mitochondria at experimental audiogenic epilepsy (Krushinsky-Molodkina model). J Bioenerg Biomembr 2017; 49:149-158. [PMID: 28070860 DOI: 10.1007/s10863-016-9693-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/30/2016] [Indexed: 01/02/2023]
Abstract
The role of brain and liver mitochondria at epileptic seizure was studied on Krushinsky-Molodkina (KM) rats which respond to sound with an intensive epileptic seizure (audiogenic epilepsy). We didn't find significant changes in respiration rats of brain and liver mitochondria of KM and control rats; however the efficiency of АТР synthesis in the KM rat mitochondria was 10% lower. In rats with audiogenic epilepsy the concentration of oxidative stress marker malondialdehyde in mitochondria of the brain (but not liver) was 2-fold higher than that in the control rats. The rate of H2O2 generation in brain mitochondria of КМ rats was twofold higher than in the control animals when using NAD-dependent substrates. This difference was less pronounced in liver mitochondria. In KM rats, the activity of mitochondrial ATP-dependent potassium channel was lower than in liver mitochondria of control rats. The comparative study of the mitochondria ability to retain calcium ions revealed that in the case of using the complex I and complex II substrates, permeability transition pore is easier to trigger in brain and liver mitochondria of KM and КМs rats than in the control ones. The role of the changes in the energetic, oxidative, and ionic exchange in the mechanism of audiogenic epilepsy generation in rats and the possible correction of the epilepsy seizures are discussed.
Collapse
Affiliation(s)
- Natalya I Venediktova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia.
| | - Olga S Gorbacheva
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| | - Irina B Fedotova
- Biology Department, Laboratory for Physiology and Genetics of Behavior, Lomonosov Moscow State University, Leninskie Gory, 1, Build. 12, Moscow, 119992, Russia
| | - Natalia M Surina
- Biology Department, Laboratory for Physiology and Genetics of Behavior, Lomonosov Moscow State University, Leninskie Gory, 1, Build. 12, Moscow, 119992, Russia
| | - Inga I Poletaeva
- Biology Department, Laboratory for Physiology and Genetics of Behavior, Lomonosov Moscow State University, Leninskie Gory, 1, Build. 12, Moscow, 119992, Russia
| | - Oleg V Kolomytkin
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
36
|
NMDA receptor antagonism with novel indolyl, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, reduces seizures duration in a rat model of epilepsy. Sci Rep 2017; 7:45540. [PMID: 28358047 PMCID: PMC5371989 DOI: 10.1038/srep45540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
Collapse
|
37
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
38
|
Singh N, Hroudová J, Fišar Z. In Vitro Effects of Cognitives and Nootropics on Mitochondrial Respiration and Monoamine Oxidase Activity. Mol Neurobiol 2016; 54:5894-5904. [PMID: 27660276 DOI: 10.1007/s12035-016-0121-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
Impairment of mitochondrial metabolism, particularly the electron transport chain (ETC), as well as increased oxidative stress might play a significant role in pathogenesis of Alzheimer's disease (AD). Some effects of drugs used for symptomatic AD treatment may be related to their direct action on mitochondrial function. In vitro effects of pharmacologically different cognitives (galantamine, donepezil, rivastigmine, 7-MEOTA, memantine) and nootropic drugs (latrepirdine, piracetam) were investigated on selected mitochondrial parameters: activities of ETC complexes I, II + III, and IV, citrate synthase, monoamine oxidase (MAO), oxygen consumption rate, and hydrogen peroxide production of pig brain mitochondria. Complex I activity was decreased by galantamine, donepezil, and memantine; complex II + III activity was increased by galantamine. None of the tested drugs caused significant changes in the rate of mitochondrial oxygen consumption, even at high concentrations. Except galantamine, all tested drugs were selective MAO-A inhibitors. Latrepirdine, donepezil, and 7-MEOTA were found to be the most potent MAO-A inhibitors. Succinate-induced mitochondrial hydrogen peroxide production was not significantly affected by the drugs tested. The direct effect of cognitives and nootropics used in the treatment of AD on mitochondrial respiration is relatively small. The safest drugs in terms of disturbing mitochondrial function appear to be piracetam and rivastigmine. The MAO-A inhibition by cognitives and nootropics may also participate in mitochondrial neuroprotection. The results support the future research aimed at measuring the effects of currently used drugs or newly synthesized drugs on mitochondrial functioning in order to understand their mechanism of action.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| |
Collapse
|
39
|
Chen SD, Zhen YY, Lin JW, Lin TK, Huang CW, Liou CW, Chan SHH, Chuang YC. Dynamin-Related Protein 1 Promotes Mitochondrial Fission and Contributes to The Hippocampal Neuronal Cell Death Following Experimental Status Epilepticus. CNS Neurosci Ther 2016; 22:988-999. [PMID: 27577016 DOI: 10.1111/cns.12600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
AIMS Prolonged seizure activity may result in mitochondrial dysfunction and lead to cell death in the hippocampus. Mitochondrial fission may occur in an early stage of neuronal cell death. This study examined the role of the mitochondrial fission protein dynamin-related protein 1 (Drp1) in the hippocampus following status epilepticus. METHODS Kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 area in Sprague Dawley rats to induce prolonged seizure activity. Biochemical analysis, electron microscopy, and immunofluorescence staining were performed to evaluate the subsequent molecular and cellular events. The effects of pretreatment with a mitochondrial fission protein inhibitor, Mdivi-1 (2 nmol), were also evaluated. RESULTS Phosphorylation of Drp1 at serine 616 (p-Drp1(Ser616)) was elevated from 1 to 24 h after the elicited seizure activity. Pretreatment with Mdivi-1 decreased the Drp1 phosphorylation at Ser616 and limited the mitochondrial fission. Mdivi-1 rescued the Complex I dysfunction, decreased the levels of oxidized proteins, decreased the activation of cytochrome c/caspase-3 signaling, and blunted cell death in CA3 neurons. CONCLUSION Our findings suggest that activation of p-Drp1(Ser616) is related to seizure-induced neuronal damage. Modulation of p-Drp1(Ser616) expression is accompanied by decreases in mitochondrial fission, mitochondrial dysfunction, and oxidation, providing a neuroprotective effect against seizure-induced hippocampal neuronal damage.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui-Wei Lin
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction. Front Cell Neurosci 2016; 10:136. [PMID: 27303267 PMCID: PMC4881382 DOI: 10.3389/fncel.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or additive role in the pathogenesis of epilepsies in infants and children.
Collapse
|
41
|
Tamijani SMS, Karimi B, Amini E, Golpich M, Dargahi L, Ali RA, Ibrahim NM, Mohamed Z, Ghasemi R, Ahmadiani A. Thyroid hormones: Possible roles in epilepsy pathology. Seizure 2015; 31:155-64. [PMID: 26362394 DOI: 10.1016/j.seizure.2015.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here.
Collapse
Affiliation(s)
| | - Benyamin Karimi
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raymond Azman Ali
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Singh N, Hroudová J, Fišar Z. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria. J Mol Neurosci 2015; 56:926-931. [PMID: 25820672 DOI: 10.1007/s12031-015-0545-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic.
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| |
Collapse
|
43
|
Amini E, Rezaei M, Mohamed Ibrahim N, Golpich M, Ghasemi R, Mohamed Z, Raymond AA, Dargahi L, Ahmadiani A. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts. Mol Neurobiol 2014; 52:492-513. [PMID: 25195699 DOI: 10.1007/s12035-014-8876-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/25/2014] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great promise. In addition, we will also highlight the role of gene reprogramming and mitochondrial biogenesis in the preconditioning-mediated neuroprotective events.
Collapse
Affiliation(s)
- Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Folbergrová J. Oxidative stress in immature brain following experimentally-induced seizures. Physiol Res 2014; 62:S39-48. [PMID: 24329702 DOI: 10.33549/physiolres.932613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The existing data indicate that status epilepticus (SE) induced in immature animals is associated with oxidative stress and mitochondrial dysfunction. This has been demonstrated using two models of SE, induced by substances with a different mechanism of action (DL-homocysteic acid and 4-aminopyridine) which suggests that the findings are not model-dependent but they reflect more general phenomenon. Oxidative stress occurring in immature brain during and following seizures is apparently due to both the increased free radicals production and the limited antioxidant defense. Pronounced inhibition of mitochondrial complex I in immature brain was demonstrated not only during the acute phase of SE, but it persisted during long periods of survival, corresponding to the development of spontaneous seizures (epileptogenesis). The findings suggest that oxidative modification is most likely responsible for the sustained deficiency of complex I activity. It can be assumed that the substances with antioxidant properties combined with conventional therapies might provide a beneficial effect in treatment of epilepsy.
Collapse
Affiliation(s)
- J Folbergrová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
45
|
Curcumin supplementation improves mitochondrial and behavioral deficits in experimental model of chronic epilepsy. Pharmacol Biochem Behav 2014; 125:55-64. [PMID: 25117510 DOI: 10.1016/j.pbb.2014.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/28/2014] [Accepted: 08/02/2014] [Indexed: 01/06/2023]
Abstract
The present study was aimed to investigate the potential beneficial effect of curcumin, a polyphenol with pleiotropic properties, on mitochondrial dysfunctions, oxidative stress and cognitive deficits in a kindled model of epilepsy. Kindled epilepsy was induced in rats by administering a sub-convulsive dose of pentylenetetrazole (PTZ, 40 mg/kg body weight) every alternate day for 30 days. PTZ administered rats exhibited marked cognitive deficits assessed using active and passive avoidance tasks. This was accompanied by a significant decrease in NADH:cytochrome-c reductase (complex I) and cytochrome-c oxidase (complex IV) activities along with an increase in ROS, lipid peroxidation and protein carbonyls. The levels of glutathione also decreased in the cortex and hippocampus. Electron micrographs revealed disruption of mitochondrial membrane integrity with distorted cristae in PTZ treated animals. Histopathological examination showed pyknotic nuclei and cell loss in the hippocampus as well as in the cortex of PTZ treated animals. Curcumin administration at a dose of 100 mg/kg, p.o. throughout the treatment paradigm was able to ameliorate cognitive deficits with no significant effect on seizure score. Curcumin was able to restore the activity of mitochondrial complexes. In addition, significant reduction in ROS generation, lipid peroxidation and protein carbonyls was observed in PTZ animals supplemented with curcumin. Moreover, glutathione levels were also restored in PTZ treated rats supplemented with curcumin. Curcumin protected mitochondria from seizure induced structural alterations. Further, the curcumin supplemented PTZ rats had normal cell morphology and reduced cell loss. These results suggest that curcumin supplementation has potential to prevent mitochondrial dysfunctions and oxidative stress with improved cognitive functions in a chronic model of epilepsy.
Collapse
|
46
|
Golpich M, Rahmani B, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, Ahmadiani A. Preconditioning as a potential strategy for the prevention of Parkinson's disease. Mol Neurobiol 2014; 51:313-30. [PMID: 24696268 DOI: 10.1007/s12035-014-8689-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. A numerous of cellular processes including oxidative stress, mitochondrial dysfunction, and accumulation of α-synuclein aggregates are considered to contribute to the pathogenesis of Parkinson's disease. A further understanding of the cellular and molecular mechanisms involved in the pathophysiology of PD is crucial for developing effective diagnostic, preventative, and therapeutic strategies to cure this devastating disorder. Preconditioning (PC) is assumed as a natural adaptive process whereby a subthreshold stimulus can promote protection against a subsequent lethal stimulus in the brain as well as in other tissues that affords robust brain tolerance facing neurodegenerative insults. Multiple lines of evidence have demonstrated that preconditioning as a possible neuroprotective technique may reduce the neural deficits associated with neurodegenerative diseases such as PD. Throughout the last few decades, a lot of efforts have been made to discover the molecular determinants involved in preconditioning-induced protective responses; although, the accurate mechanisms underlying this "tolerance" phenomenon are not fully understood in PD. In this review, we will summarize pathophysiology and current therapeutic approaches in PD and discuss about preconditioning in PD as a potential neuroprotective strategy. Also the role of gene reprogramming and mitochondrial biogenesis involved in the preconditioning-mediated neuroprotective events will be highlighted. Preconditioning may represent a promising therapeutic weapon to combat neurodegeneration.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
47
|
Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N. Epileptic focus and alteration of metabolism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:209-43. [PMID: 25078504 DOI: 10.1016/b978-0-12-418693-4.00009-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common neurologic disorders affecting a substantial part of the population worldwide. Epileptic seizures represent the situation of increased neuronal activity associated with the enhanced demands for sufficient energy supply. For that purpose, very efficient regulatory mechanisms have to operate to ensure that cerebral blood flow, delivery of oxygen, and nutrients are continuously adapted to the local metabolic needs. The sophisticated regulation has to function in concert at several levels (systemic, tissue, cellular, and subcellular). Particularly, mitochondria play a key role not only in the energy production, but they are also central to many other processes including those leading to neuronal death. Impairment of any of the involved pathways can result in serious functional alterations, neurodegeneration, and potentially in epileptogenesis. The present review will address some of the important issues concerning vascular and metabolic changes in pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Jakub Otáhal
- Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Jaroslava Folbergrová
- Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Richard Kovacs
- Institute for Neurophysiology, Charité-Medical University Berlin, Berlin, Germany
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Nicola Maggio
- Department of Neurology, The Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel
| |
Collapse
|
48
|
Khurana DS, Valencia I, Goldenthal MJ, Legido A. Mitochondrial dysfunction in epilepsy. Semin Pediatr Neurol 2013; 20:176-87. [PMID: 24331359 DOI: 10.1016/j.spen.2013.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is the most common neurologic disorder worldwide and is characterized by recurrent unprovoked seizures. The mitochondrial (mt) respiratory chain is the final common pathway for cellular energy production through the process of oxidative phosphorylation. As neurons are terminally differentiated cells that lack significant regenerative capacity and have a high energy demand, they are more vulnerable to mt dysfunction. Therefore, epileptic seizures have been well described in several diseases such as mt encephalomyopathy, lactic acidosis, and stroke-like episodes and myoclonic epilepsy and ragged red fibers, which are caused by gene mutations in mtDNA, among others. Mutations in nuclear DNA regulating mt function are also being described (eg, POLG gene mutation). The role of mitochondria (mt) in acquired epilepsies, which account for about 60% of all epilepsies, is equally important but less well understood. Oxidative stress is one of the possible mechanisms in the pathogenesis of epilepsy resulting from mt dysfunction gradually disrupting the intracellular Ca(2+) homeostasis, which modulates neuronal excitability and synaptic transmission, making neurons more vulnerable to additional stress, and leading to energy failure and neuronal loss in epilepsy. Antiepileptic drugs (AEDs) also affect mt function in several ways. There must be caution when treating epilepsy in patients with known mt disorders as some AEDs are toxic to the mt. This review summarizes our current knowledge of the effect of mt disorders on epilepsy, of epileptic seizures on mt, and of AEDs on mt function and the implications of all these interactions for the management of epilepsy in patients with or without mt disease.
Collapse
Affiliation(s)
- Divya S Khurana
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| | - Ignacio Valencia
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Michael J Goldenthal
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Agustín Legido
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
49
|
Folbergrová J, Ješina P, Nůsková H, Houštěk J. Antioxidant enzymes in cerebral cortex of immature rats following experimentally‐induced seizures: upregulation of mitochondrial MnSOD (SOD2). Int J Dev Neurosci 2012; 31:123-30. [DOI: 10.1016/j.ijdevneu.2012.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/24/2023] Open
Affiliation(s)
- Jaroslava Folbergrová
- Institute of PhysiologyAcademy of Sciences of the Czech Republic, (v.v.i.)Vídeňská 1083, 142 20Prague 4Czech Republic
| | - Pavel Ješina
- Institute of PhysiologyAcademy of Sciences of the Czech Republic, (v.v.i.)Vídeňská 1083, 142 20Prague 4Czech Republic
| | - Hana Nůsková
- Institute of PhysiologyAcademy of Sciences of the Czech Republic, (v.v.i.)Vídeňská 1083, 142 20Prague 4Czech Republic
| | - Josef Houštěk
- Institute of PhysiologyAcademy of Sciences of the Czech Republic, (v.v.i.)Vídeňská 1083, 142 20Prague 4Czech Republic
| |
Collapse
|
50
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|