1
|
Du WX, Goodman CA, Gregorevic P. Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin. Am J Physiol Cell Physiol 2024; 327:C1651-C1665. [PMID: 39344415 DOI: 10.1152/ajpcell.00553.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.
Collapse
Affiliation(s)
- Wayne X Du
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
2
|
Lei H, Xu H, Wu Y. Role of UCHL3 in health and disease. Biochem Biophys Res Commun 2024; 734:150626. [PMID: 39226739 DOI: 10.1016/j.bbrc.2024.150626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Ubiquitin C-terminal hydrolase 3 (UCHL3) is a cysteine protease that plays a crucial role in cell cycle regulation, DNA repair, and apoptosis by carrying out deubiquitination and deneddylation activities. It has emerged as a promising therapeutic target for certain cancers due to its ability to stabilize oncoproteins. The dysregulation of UCHL3 also has been associated with neurodegenerative diseases, underscoring its significance in maintaining protein homeostasis within cells. Research on UCHL3, including studies on Uchl3 knockout mice, has revealed its involvement in learning deficits, cellular stress responses, and retinal degeneration. This review delves into the cellular processes controlled by UCHL3 and its role in health and disease progression, as well as the development of UCHL3 inhibitors. Further investigation into the molecular mechanisms and physiological functions of UCHL3 is crucial for a comprehensive understanding of its impact on health and disease.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Research Unit of Stress and Cancer, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Jiao Tong University, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Sch Med, Shanghai 200025, China.
| |
Collapse
|
3
|
Long G, Wu Z, Wang D, Mi X, Hu K, Zhou L, Tang J. UCHL3 inhibits ferroptosis by stabilizing β-catenin and maintains stem-like properties of hepatocellular carcinoma cells. Free Radic Biol Med 2024; 212:162-173. [PMID: 38092274 DOI: 10.1016/j.freeradbiomed.2023.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic liver cancer. Dysregulated Wnt/β-catenin activation is closely related to the progression of cancer. Nevertheless, the mechanism that sustains the abnormal expression of β-catenin in HCC has yet to be identified. In this study, we find that UCHL3 is overexpressed in HCC tissues and correlated with β-catenin protein level. High expression of UCHL3 is associated with poor prognosis. UCHL3 knockdown markedly reduces the protein level of β-catenin in HCC cells. TOP-luciferase activity and β-catenin target genes expression are also decreased upon UCHL3 depletion. We find that the ARM domain of β-catenin is required for the interaction with UCHL3. UCHL3 increases β-catenin protein stability via removing K48-specific poly-ubiquitin chains from β-catenin protein. Furthermore, the depletion of UCHL3 induces ferroptosis and hinders the growth, invasion, and stem cell properties of HCC cells. These impacts could be restored by the overexpression of β-catenin. In addition, the UCHL3 inhibitor TCID inhibits the aggressive phenotype of HCC through the degradation of β-catenin. In general, our results indicates that UCHL3 increases the stability of β-catenin, which in turn facilitates tumorigenesis of HCC, suggesting that targeting UCHL3 may be a promising approach for the treatment of HCC.
Collapse
Affiliation(s)
- Guo Long
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheyu Wu
- Department of Orthopedics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200000, China
| | - Dong Wang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xingyu Mi
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kuan Hu
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ledu Zhou
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Jianing Tang
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Bharti H, Singal A, Saini M, Cheema PS, Raza M, Kundu S, Nag A. Repurposing the Pathogen Box compounds for identification of potent anti-malarials against blood stages of Plasmodium falciparum with PfUCHL3 inhibitory activity. Sci Rep 2022; 12:918. [PMID: 35042884 PMCID: PMC8766476 DOI: 10.1038/s41598-021-04619-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
Malaria has endured as a global epidemic since ages and its eradication poses an immense challenge due to the complex life cycle of the causative pathogen and its tolerance to a myriad of therapeutics. PfUCHL3, a member of the ubiquitin C-terminal hydrolase (UCH) family of deubiquitinases (DUBs) is cardinal for parasite survival and emerges as a promising therapeutic target. In this quest, we employed a combination of computational and experimental approaches to identify PfUCHL3 inhibitors as novel anti-malarials. The Pathogen Box library was screened against the crystal structure of PfUCHL3 (PDB ID: 2WE6) and its human ortholog (PDB ID: 1XD3). Fifty molecules with better comparative score, bioavailability and druglikeliness were subjected to in-vitro enzyme inhibition assay and among them only two compounds effectively inhibited PfUCHL3 activity at micro molar concentrations. Both MMV676603 and MMV688704 exhibited anti-plasmodial activity by altering the parasite phenotype at late stages of the asexual life cycle and inducing the accumulation of polyubiquitinated substrates. In addition, both the compounds were non-toxic and portrayed high selectivity window for the parasite over mammalian cells. This is the first comprehensive study to demonstrate the anti-malarial efficacy of PfUCHL3 inhibitors and opens new avenues to exploit UCH family of DUBs as a promising target for the development of next generation anti-malaria therapy.
Collapse
Affiliation(s)
- Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aakriti Singal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Saini
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Mohsin Raza
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
5
|
Rong C, Zhou R, Wan S, Su D, Wang SL, Hess J. Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Front Oncol 2021; 10:592501. [PMID: 33585209 PMCID: PMC7878561 DOI: 10.3389/fonc.2020.592501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), have been found in a variety of tumor entities and play distinct roles in the pathogenesis and development of various cancers including head and neck cancer (HNC). HNC is a heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract, including different anatomic sites, distinct histopathologic types, as well as human papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains low. Emerging evidence has revealed the members of UCHs are associated with the pathogenesis and clinical prognosis of HNC, which highlights the prognostic and therapeutic implications of UCHs for patients with HNC. In this review, we summarize the physiological and pathological functions of the UCHs family, which provides enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and highlights the potential consideration of UCHs as attractive drug targets.
Collapse
Affiliation(s)
- Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Di Munno C, Busiello RA, Calonne J, Salzano AM, Miles-Chan J, Scaloni A, Ceccarelli M, de Lange P, Lombardi A, Senese R, Cioffi F, Visser TJ, Peeters RP, Dulloo AG, Silvestri E. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Front Endocrinol (Lausanne) 2021; 12:631176. [PMID: 33746903 PMCID: PMC7971177 DOI: 10.3389/fendo.2021.631176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.
Collapse
Affiliation(s)
- Celia Di Munno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Julie Calonne
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Anna Maria Salzano
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Jennifer Miles-Chan
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Michele Ceccarelli
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | | | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Theo J. Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Robin P. Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Abdul G. Dulloo
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Elena Silvestri,
| |
Collapse
|
7
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
8
|
UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis. Cell Rep 2019; 23:3352-3365. [PMID: 29898404 PMCID: PMC6019701 DOI: 10.1016/j.celrep.2018.05.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 11/21/2022] Open
Abstract
Genomic damage can feature DNA-protein crosslinks whereby their acute accumulation is utilized to treat cancer and progressive accumulation causes neurodegeneration. This is typified by tyrosyl DNA phosphodiesterase 1 (TDP1), which repairs topoisomerase-mediated chromosomal breaks. Although TDP1 levels vary in multiple clinical settings, the mechanism underpinning this variation is unknown. We reveal that TDP1 is controlled by ubiquitylation and identify UCHL3 as the deubiquitylase that controls TDP1 proteostasis. Depletion of UCHL3 increases TDP1 ubiquitylation and turnover rate and sensitizes cells to TOP1 poisons. Overexpression of UCHL3, but not a catalytically inactive mutant, suppresses TDP1 ubiquitylation and turnover rate. TDP1 overexpression in the topoisomerase therapy-resistant rhabdomyosarcoma is driven by UCHL3 overexpression. In contrast, UCHL3 is downregulated in spinocerebellar ataxia with axonal neuropathy (SCAN1), causing elevated levels of TDP1 ubiquitylation and faster turnover rate. These data establish UCHL3 as a regulator of TDP1 proteostasis and, consequently, a fine-tuner of protein-linked DNA break repair. TDP1 proteostasis is controlled by a UCHL3-dependent ubiquitylation mechanism UCHL3 depletion sensitizes mammalian cells to TOP1 inhibitors Increased TDP1 protein in rhabdomyosarcoma is driven by UCHL3 upregulation Decreased TDP1 protein in spinocerebellar ataxia is driven by UCHL3 downregulation
Collapse
|
9
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
10
|
UCHL3 promotes ovarian cancer progression by stabilizing TRAF2 to activate the NF-κB pathway. Oncogene 2019; 39:322-333. [DOI: 10.1038/s41388-019-0987-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
|
11
|
Goichon A, Bahlouli W, Ghouzali I, Chan P, Vaudry D, Déchelotte P, Ducrotté P, Coëffier M. Colonic Proteome Signature in Immunoproteasome-Deficient Stressed Mice and Its Relevance for Irritable Bowel Syndrome. J Proteome Res 2018; 18:478-492. [DOI: 10.1021/acs.jproteome.8b00793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexis Goichon
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Wafa Bahlouli
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Ibtissem Ghouzali
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Philippe Chan
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
- INSERM unit 1239, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - Pierre Déchelotte
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| | - Philippe Ducrotté
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Gastroenterology Department, Rouen University Hospital, Rouen, F-76031, France
| | - Moïse Coëffier
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| |
Collapse
|
12
|
Zhao P, Guo T, Qian L, Wang X, Yuan Y, Cheng Q, Zuo Y, Liu J, Miao Y, Feng Q, Zhang L, Wu S, Zheng H. Ubiquitin C-terminal hydrolase-L3 promotes interferon antiviral activity by stabilizing type I-interferon receptor. Antiviral Res 2017; 144:120-129. [PMID: 28583475 DOI: 10.1016/j.antiviral.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/12/2017] [Accepted: 06/02/2017] [Indexed: 12/24/2022]
Abstract
Type-I interferons (IFN-I) are important antiviral drugs which are widely used in clinical therapy of diverse viral infections. However, understanding the detailed mechanisms for IFN-I antiviral signaling remains a major challenge, and may provide novel targets for IFN-based antiviral therapy. So far, the roles of deubiquitinases (DUBs) in regulating IFN-I antiviral activity are still largely unexplored. Here, we find that Ubiquitin C-terminal hydrolase-L3 (UCHL3) plays an important role in regulating type I-interferon (IFN-I) mediated antiviral response. Interestingly, we find that UCHL3 regulates COPS5-dependent deneddylation of Cullin1, which is an essential component of SCFβ-TrCP complex and associated with SCFβ-TrCP activities. Furthermore, we reveal that UCHL3 physically interacts with COPS5, and determines the level and protein stability of cellular COPS5 by deubiquitinating COPS5. We further demonstrate that UCHL3 upregulates the levels of SCFβ-TrCP substrates including IFN-I receptor IFNAR1, which enhances IFN-I mediated signaling pathway and antiviral activity. These findings identify COPS5 as a novel in vivo substrate of UCHL3, and uncover the deubiquitination-deneddylation mediated regulation for IFN-I signaling and antiviral function, which may provide a novel strategy for improving IFN-based antiviral therapy.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tingting Guo
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Liping Qian
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiaofang Wang
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qiao Cheng
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yibo Zuo
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jin Liu
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qian Feng
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Liting Zhang
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Shuhua Wu
- Department of Emergency and Critical Care, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Hui Zheng
- Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Zhang X, Smits AH, van Tilburg GBA, Jansen PWTC, Makowski MM, Ovaa H, Vermeulen M. An Interaction Landscape of Ubiquitin Signaling. Mol Cell 2017; 65:941-955.e8. [PMID: 28190767 DOI: 10.1016/j.molcel.2017.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| | - Arne H Smits
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Gabrielle B A van Tilburg
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| |
Collapse
|
14
|
Nilsen TS, Thorsen L, Kirkegaard C, Ugelstad I, Fosså SD, Raastad T. The effect of strength training on muscle cellular stress in prostate cancer patients on ADT. Endocr Connect 2016; 5:74-82. [PMID: 27169606 PMCID: PMC5002963 DOI: 10.1530/ec-15-0120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) for prostate cancer (PCa) is associated with several side effects, including loss of muscle mass. Muscle atrophy is associated with reduced mitochondrial function and increased muscle cellular stress that may be counteracted by strength training. Thus, the aim of this study was to investigate the effect of strength training on mitochondrial proteins and indicators of muscle cellular stress in PCa patients on ADT. METHODS Men diagnosed with locally advanced PCa receiving ADT were randomised to a strength training group (STG) (n=16) or a control group (CG) (n=15) for 16 weeks. Muscle biopsies were collected pre- and post-intervention from the vastus lateralis muscle, and analysed for mitochondrial proteins (citrate synthase, cytochrome c oxidase subunit IV (COXIV), HSP60) and indicators of muscle cellular stress (heat shock protein (HSP) 70, alpha B-crystallin, HSP27, free ubiquitin, and total ubiquitinated proteins) using Western blot and ELISA. RESULTS No significant intervention effects were observed in any of the mitochondrial proteins or indicators of muscle cellular stress. However, within-group analysis revealed that the level of HSP70 was reduced in the STG and a tendency towards a reduction in citrate synthase levels was observed in the CG. Levels of total ubiquitinated proteins were unchanged in both groups. CONCLUSION Although reduced HSP70 levels indicated reduced muscle cellular stress in the STG, the lack of an intervention effect precluded any clear conclusions.
Collapse
Affiliation(s)
- T S Nilsen
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| | - L Thorsen
- Department of OncologyOslo University Hospital, Oslo, Norway
| | - C Kirkegaard
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| | - I Ugelstad
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| | - S D Fosså
- Department of OncologyOslo University Hospital, Oslo, Norway
| | - T Raastad
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
15
|
Lynch CJ, Kimball SR, Xu Y, Salzberg AC, Kawasawa YI. Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover. Physiol Genomics 2015; 47:569-80. [PMID: 26351290 DOI: 10.1152/physiolgenomics.00055.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023] Open
Abstract
Consumption of a protein-containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, α-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), which interconverts leucine and α-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wild-type mice were compared by next-generation RNA sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1,486/∼39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis [eukaryotic initiation factor (eIF)-2, mammalian target of rapamycin, eIF4, and p70S6K pathways including 40S and 60S ribosomal proteins], protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy, and cell death) were upregulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways was altered in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids, and branched chain amino acids were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wild-type mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania;
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Yuping Xu
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Anna C Salzberg
- The Institute for Personalized Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Yuka Imamura Kawasawa
- The Institute for Personalized Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania; Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania; and Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, Pennsylvania
| |
Collapse
|
16
|
Navarro MF, Carmody L, Romo-Fewell O, Lokensgard ME, Love JJ. Characterizing Substrate Selectivity of Ubiquitin C-Terminal Hydrolase-L3 Using Engineered α-Linked Ubiquitin Substrates. Biochemistry 2014; 53:8031-42. [DOI: 10.1021/bi5006317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mario F. Navarro
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa Carmody
- Sorrento Therapeutics, 6042 Cornerstone
Court West, Suite B, San Diego, California 92122, United States
| | - Octavio Romo-Fewell
- Department
of Chemistry and Biochemistry, San Diego State University, 5500
Campanile Drive, San Diego, California 92182-1030, United States
| | - Melissa E. Lokensgard
- Department
of Chemistry and Biochemistry, San Diego State University, 5500
Campanile Drive, San Diego, California 92182-1030, United States
| | - John J. Love
- Department
of Chemistry and Biochemistry, San Diego State University, 5500
Campanile Drive, San Diego, California 92182-1030, United States
| |
Collapse
|
17
|
El-Heliebi A, Kroneis T, Wagner K, Meditz K, Kolb D, Feichtinger J, Thallinger GG, Quehenberger F, Liegl-Atzwanger B, Rinner B. Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells. PLoS One 2014; 9:e87663. [PMID: 24503940 PMCID: PMC3913634 DOI: 10.1371/journal.pone.0087663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/26/2013] [Indexed: 12/27/2022] Open
Abstract
The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells. The population of cells consists of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous) cells. To date analysis was only performed on bulk tumor mass because of its rare incidence, lack of suited model systems and technical limitations thereby neglecting its heterogeneous composition. We intended to clarify whether the observed cell types are derived from genetically distinct clones or represent different phenotypes. Furthermore, we aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Phenotype-specific analyses of small non-vacuolated and large physaliferous cells in two independent chordoma cell lines yielded four candidate genes involved in chordoma cell development. UCHL3, coding for an ubiquitin hydrolase, was found to be over-expressed in the large physaliferous cell phenotype of MUG-Chor1 (18.7-fold) and U-CH1 (3.7-fold) cells. The mannosyltransferase ALG11 (695-fold) and the phosphatase subunit PPP2CB (18.6-fold) were found to be up-regulated in large physaliferous MUG-Chor1 cells showing a similar trend in U-CH1 cells. TMEM144, an orphan 10-transmembrane family receptor, yielded contradictory data as cDNA microarray analysis showed up- but RT-qPCR data down-regulation in large physaliferous MUG-Chor1 cells. Isolation of few but morphologically identical cells allowed us to overcome the limitations of bulk analysis in chordoma research. We identified the different chordoma cell phenotypes to be part of a developmental process and discovered new genes linked to chordoma cell development representing potential targets for further research in chordoma tumor biology.
Collapse
Affiliation(s)
- Amin El-Heliebi
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Kroneis
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
- * E-mail: .
| | - Karin Wagner
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Katharina Meditz
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Feichtinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Gerhard G. Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Beate Rinner
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
19
|
Ubiquitin C-terminal hydrolase-L3 regulates Smad1 ubiquitination and osteoblast differentiation. FEBS Lett 2011; 585:1121-6. [DOI: 10.1016/j.febslet.2011.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/21/2022]
|