1
|
Abhilash PL, Bharti U, Rashmi SK, Philip M, Raju TR, Kutty BM, Sagar BKC, Alladi PA. Aging and MPTP Sensitivity Depend on Molecular and Ultrastructural Signatures of Astroglia and Microglia in Mice Substantia Nigra. Cell Mol Neurobiol 2025; 45:13. [PMID: 39833644 PMCID: PMC11753320 DOI: 10.1007/s10571-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Both astroglia and microglia show region-specific distribution in CNS and often maladapt to age-associated alterations within their niche. Studies on autopsied substantia nigra (SN) of Parkinson's disease (PD) patients and experimental models propose gliosis as a trigger for neuronal loss. Epidemiological studies propose an ethnic bias in PD prevalence, since Caucasians are more susceptible than non-whites. Similarly, different mice strains are variably sensitive to MPTP. We had earlier likened divergent MPTP sensitivity of C57BL/6 J and CD-1 mice with differential susceptibility to PD, based on the numbers of SN neurons. We examined whether the variability was incumbent to inter-strain differences in glial features of male C57BL/6 J and CD-1 mice. Stereological counts showed relatively more microglia and fewer astrocytes in the SN of normal C57BL/6 J mice, suggesting persistence of an immune-vigilant state. MPTP-induced microgliosis and astrogliosis in both strains suggest their involvement in pathogenesis. ELISA of pro-inflammatory cytokines in the ventral-midbrain revealed augmentation of TNF-α and IL-6 at middle age in both strains that reduced at old age, suggesting middle age as a critical, inflamm-aging-associated time point. TNF-α levels were high in C57BL/6 J, through aging and post-MPTP, while IL-6 and IL-1β were upregulated at old age. CD-1 had higher levels of anti-inflammatory cytokine TGF-β. MPTP challenge caused upregulation of enzymes MAO-A, MAO-B, and iNOS in both strains. Post-MPTP enhancement in fractalkine and hemeoxygenase-1 may be neuron-associated compensatory signals. Ultrastructural observations of elongated astroglial/microglial mitochondria vis-à-vis the shrunken ones in neurons suggest a scale-up of their functions with neurotoxic consequences. Thus, astroglia and microglia may modulate aging and PD susceptibility.
Collapse
Affiliation(s)
- P L Abhilash
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - Upasna Bharti
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Santhosh Kumar Rashmi
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Mariamma Philip
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - B K Chandrasekhar Sagar
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore, India.
| |
Collapse
|
2
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Yarreiphang H, Vidyadhara DJ, Nambisan AK, Raju TR, Sagar BKC, Alladi PA. Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP. Mol Neurobiol 2023:10.1007/s12035-023-03372-1. [PMID: 37162724 DOI: 10.1007/s12035-023-03372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.
Collapse
Affiliation(s)
- Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Zoology Department, Hansraj College, University of Delhi, Delhi, 110007, India
| | - D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Anand Krishnan Nambisan
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - B K Chandrashekar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
4
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Harsha PK, Ranganayaki S, Yale G, Dey G, Mangalaparthi KK, Yarlagadda A, Chandrasekhar Sagar BK, Mahadevan A, Srinivas Bharath MM, Mani RS. Mitochondrial Dysfunction in Rabies Virus-Infected Human and Canine Brains. Neurochem Res 2022; 47:1610-1636. [PMID: 35229271 DOI: 10.1007/s11064-022-03556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Rabies is a fatal encephalitis caused by the Rabies lyssavirus (RABV). The presence of minimal neuropathological changes observed in rabies indicates that neuronal dysfunction, rather than neuronal death contributes to the fatal outcome. The role of mitochondrial changes has been suggested as a possible mechanism for neuronal dysfunction in rabies. However, these findings are mostly based on studies that have employed experimental models and laboratory-adapted virus. Studies on brain tissues from naturally infected human and animal hosts are lacking. The current study investigated the role of mitochondrial changes in rabies by morphological, biochemical and proteomic analysis of RABV-infected human and canine brains. Morphological analysis showed minimal inflammation with preserved neuronal and disrupted mitochondrial structure in both human and canine brains. Proteomic analysis revealed involvement of mitochondrial processes (oxidative phosphorylation, cristae formation, homeostasis and transport), synaptic proteins and autophagic pathways, with over-expression of subunits of mitochondrial respiratory complexes. Consistent with these findings, human and canine brains displayed elevated activities of complexes I (p < 0.05), IV (p < 0.05) and V (p < 0.05). However, this did not result in elevated ATP production (p < 0.0001), probably due to lowered mitochondrial membrane potential as noted in RABV-infected cells in culture. These could lead to mitochondrial dysfunction and mitophagy as indicated by expression of FKBP8 (p < 0.05) and PINK1 (p < 0.001)/PARKIN (p > 0.05) and ensuing autophagy, as shown by the status of LCIII (p < 0.05), LAMP1 (p < 0.001) and pertinent ultrastructural markers. We propose that altered mitochondrial bioenergetics and cristae architecture probably induce mitophagy, leading to autophagy and consequent neuronal dysfunction in rabies.
Collapse
Affiliation(s)
- Pulleri Kandi Harsha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sathyanarayanan Ranganayaki
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Gourav Dey
- Manipal Academy of Higher Education, Manipal, India
- Institute of Bioinformatics, Bangalore, India
| | | | - Anusha Yarlagadda
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - B K Chandrasekhar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
6
|
Vidyadhara DJ, Yarreiphang H, Raju TR, Alladi PA. Differences in Neuronal Numbers, Morphology, and Developmental Apoptosis in Mice Nigra Provide Experimental Evidence of Ontogenic Origin of Vulnerability to Parkinson's Disease. Neurotox Res 2021; 39:1892-1907. [PMID: 34762290 DOI: 10.1007/s12640-021-00439-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Parkinson disease (PD) prevalence varies by ethnicity. In an earlier study, we replicated the reduced vulnerability to PD in an admixed population, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6 J, MPTP-resistant CD-1 and their F1 crossbreds. In the present study, we investigated if the differences have a developmental origin. Substantia nigra was evaluated at postnatal days 2 (P2), P6, P10, P14, P18, and P22. C57BL/6 J mice had smaller nigra and fewer dopaminergic neurons than the CD-1 and crossbreds at P2, which persisted through development. A significant increase in numbers and nigral volume was observed across strains until P14. A drastic decline thereafter was specific to C57BL/6 J. CD-1 and crossbreds retained their numbers from P14 to stabilize with supernumerary neurons at adulthood. The neuronal size increased gradually to attain adult morphology at P10 in the resistant strains, vis-à-vis at P22 in C57BL/6 J. Accordingly, in comparison to C57BL/6 J, the nigra of CD-1 and reciprocal crossbreds possessed cytomorphological features of resilience, since birth. The considerably lesser dopaminergic neuronal loss in the CD-1 and crossbreds was seen at P2 and P14 and thereafter was complemented by attenuated developmental cell death. The differences in programmed cell death were confirmed by reduced TUNEL labelling, AIF, and caspase-3 expression. GDNF expression aligned with the cell death pattern at P2 and P14 in both nigra and striatum. Earlier maturity of nigra and its neurons appears to be better features that reflect as MPTP resistance at adulthood. Thus, variable MPTP vulnerability in mice and also differential susceptibility to PD in humans may arise early during nigral development.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
- Formerly at Department of Neurophysiology, National Institute of Mental Health and Neuro-Sciences, Hosur Road, Bangalore, India.
| |
Collapse
|
7
|
Ruano D. Proteostasis Dysfunction in Aged Mammalian Cells. The Stressful Role of Inflammation. Front Mol Biosci 2021; 8:658742. [PMID: 34222330 PMCID: PMC8245766 DOI: 10.3389/fmolb.2021.658742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a biological and multifactorial process characterized by a progressive and irreversible deterioration of the physiological functions leading to a progressive increase in morbidity. In the next decades, the world population is expected to reach ten billion, and globally, elderly people over 80 are projected to triple in 2050. Consequently, it is also expected an increase in the incidence of age-related pathologies such as cancer, diabetes, or neurodegenerative disorders. Disturbance of cellular protein homeostasis (proteostasis) is a hallmark of normal aging that increases cell vulnerability and might be involved in the etiology of several age-related diseases. This review will focus on the molecular alterations occurring during normal aging in the most relevant protein quality control systems such as molecular chaperones, the UPS, and the ALS. Also, alterations in their functional cooperation will be analyzed. Finally, the role of inflammation, as a synergistic negative factor of the protein quality control systems during normal aging, will also be addressed. A better comprehension of the age-dependent modifications affecting the cellular proteostasis, as well as the knowledge of the mechanisms underlying these alterations, might be very helpful to identify relevant risk factors that could be responsible for or contribute to cell deterioration, a fundamental question still pending in biomedicine.
Collapse
Affiliation(s)
- Diego Ruano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Suresh SN, Jayaprakash Rao M, Manjithaya R. XCT 790 is a pharmacological aggrephagy inducer in a yeast model of proteotoxicity. Cell Biol Int 2021; 45:654-661. [PMID: 33415815 DOI: 10.1002/cbin.11518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/10/2020] [Accepted: 11/28/2020] [Indexed: 11/11/2022]
Abstract
Aggrephagy is a selective autophagic degradation intracellular mechanism that clears toxic misfolded protein aggregates such as α-synuclein. Here, we identify and demonstrate that the small molecule, XCT 790 alleviates α-synuclein-mediated adverse effects in a yeast model of proteotoxicity. XCT 790 induced general autophagy and also enhanced starvation-induced autophagy. Mechanistically, we showed that XCT 790 clears toxic α-synuclein aggregates in an autophagy-dependent manner. Interestingly, XCT 790 did not demonstrate a synergistic effect on autophagy induction in the presence of another autophagy inducer such as 6-Bio.
Collapse
Affiliation(s)
- S N Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Monala Jayaprakash Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.,Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|
9
|
Bocai NI, Marcora MS, Belfiori-Carrasco LF, Morelli L, Castaño EM. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models. J Alzheimers Dis 2020; 68:439-458. [PMID: 30775999 DOI: 10.3233/jad-181021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.
Collapse
Affiliation(s)
- Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Marcora
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lautaro F Belfiori-Carrasco
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Seshadri A, Alladi PA. Divergent Expression Patterns of Drp1 and HSD10 in the Nigro-Striatum of Two Mice Strains Based on their MPTP Susceptibility. Neurotox Res 2019; 36:27-38. [PMID: 30993548 DOI: 10.1007/s12640-019-00036-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Alterations in the basal ganglia circuitry are critical events in the pathophysiology of Parkinson's disease (PD). We earlier compared MPTP-susceptible C57BL/6J and MPTP-resistant CD-1 mice to understand the differential prevalence of PD in different ethnic populations like Caucasians and Asian-Indians. The MPTP-resistant CD-1 mice had 33% more nigral neurons and lost only 15-17% of them following MPTP administration. In addition to other cytomorphological features, their basal ganglia neurons had higher calcium-buffering protein levels. During disease pathogenesis as well as in MPTP-induced parkinsonian models, the loss of nigral neurons is associated with reduction in mitochondrial complex-1. Under these conditions, mitochondria respond by undergoing fusion or fission. 17β-hydroxysteroid type 10, i.e., hydroxysteroid dehydrogenase10 (HSD10) and dynamin-related peptide1 (Drp1) are proteins involved in mitochondrial hyperfusion and fission, respectively. Each plays an important role in mitochondrial structure and homeostasis. Their role in determining susceptibility to the neurotoxin MPTP in basal ganglia is however unclear. We studied their expression using immunohistochemistry and Western blotting in the dorsolateral striatum, ventral tegmental area, and substantia nigra pars compacta (SNpc) of C57BL/6J and CD-1 mice. In the SNpc, which exhibits more neuron loss following MPTP, C57BL/6J had higher baseline Drp1 levels; suggesting persistence of fission under normal conditions. Whereas, HSD10 levels increased in CD-1 following MPTP administration. This suggests mitochondrial hyperfusion, as an attempt towards neuroprotection. Thus, the baseline differences in HSD10 and DRP1 levels as well as their contrasting MPTP-responses may be critical determinants of the magnitude of neuronal loss/survival. Similar differences may determine the variable susceptibility to PD in humans.
Collapse
Affiliation(s)
- Akshaya Seshadri
- Department of Neuroscience, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
- Department of Clinical Pharmacology and Toxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
11
|
Aging mildly affects dendritic arborisation and synaptic protein expression in human substantia nigra pars compacta. J Chem Neuroanat 2019; 97:57-65. [DOI: 10.1016/j.jchemneu.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
|
12
|
Vidyadhara DJ, Sasidharan A, Kutty BM, Raju TR, Alladi PA. Admixing MPTP-resistant and MPTP-vulnerable mice enhances striatal field potentials and calbindin-D28K expression to avert motor behaviour deficits. Behav Brain Res 2018; 360:216-227. [PMID: 30529402 DOI: 10.1016/j.bbr.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Asian-Indians are less vulnerable to Parkinson's disease (PD) than the Caucasians. Their admixed populace has even lesser risk. Studying this phenomenon using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6J, MPTP-resistant CD-1 and their resistant crossbred mice revealed differences in the nigrostriatal cyto-molecular features. Here, we investigated the electrophysiological and behavioural correlates for differential MPTP-susceptibility and their outcome upon admixing. We recorded local field potentials (LFPs) from dorsal striatum and assessed motor co-ordination using rotarod and grip strength measures. Nigral calbindin-D28K expression, a regulator of striatal activity through nigrostriatal projections was evaluated using immunohistochemistry. The crossbreds had significantly higher baseline striatal LFPs. MPTP significantly increased the neuronal activity in delta (0.5-4 Hz) and low beta (12-16 Hz) ranges in C57BL/6J; significant increase across frequency bands till high beta (0.5-30 Hz) in CD-1, and caused no alterations in crossbreds. MPTP further depleted the already low nigral calbindin-D28K expression in C57BL/6J. While in crossbreds, it was further up-regulated. MPTP affected the rotarod and grip strength performance of the C57BL/6J, while the injected CD-1 and crossbreds performed well. The increased striatal β-oscillations are comparable to that in PD patients. Higher power in CD-1 may be compensatory in nature, which were also reported in pre-symptomatic monkeys. Concurrent up-regulation of nigral calbindin-D28K may assist maintenance of striatal activity by buffering calcium overload in nigra. Thus, preserved motor behaviour in PD reminiscent conditions in CD-1 and crossbreds complement compensated/unaffected striatal LFPs. Similar electrophysiological correlates and cytomorphological features are envisaged in human phenomenon of differential PD prevalence, which are modulated upon admixing.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Arun Sasidharan
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
13
|
Bhaduri B, Abhilash PL, Alladi PA. Baseline striatal and nigral interneuronal protein levels in two distinct mice strains differ in accordance with their MPTP susceptibility. J Chem Neuroanat 2018; 91:46-54. [PMID: 29694842 DOI: 10.1016/j.jchemneu.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022]
Abstract
Epidemiological studies reveal an ethnicity-based bias in prevalence of Parkinson's disease (PD), deriving from the differences that exist between Caucasians and African or Asian populations. Experimental mice models provide a scope to analyse the cellular mechanisms of differential susceptibility to PD. C57BL/6J mice, for instance, are more susceptible to MPTP-induced Parkinsonism whereas CD-1 mice are resistant. In PD-pathogenesis, interneuronal contribution is also likely, although they comprise only 5-10% of the striatal cells. The interneurons harbour calcium binding proteins, like calretinin (Cal-R) and parvalbumin (PV), which are crucial in Ca2+ homeostasis for preventing calcium-induced excitotoxicity. GAD-67-immunoreactive interneurons are the other prominent set of GABAergic interneurons. In PD, dopamine loss up-regulates GAD-67 expression in striatal projection neurons and other basal ganglia circuit. We studied the possible contribution of interneurons in determining variable susceptibility by assessing the expression of calretinin, PV and GAD-67 in both striatum and substantia nigra pars compacta (SNpc) in two distinct mice strains, i.e. C57BL/6J and CD-1 under normal conditions, using unbiased stereology for quantification of immunoreactive cells and immunoblotting. The vulnerable C57BL/6J had lesser basal parvalbumin expression in both nigra and striatum whereas the calretinin levels were low only in the striatum. GAD-67 expression showed no perceptible differences in the striatum or SNpc of either of the strains. Differential expression of calcium buffering/binding proteins under normal physiological condition proffers a role for interneurons in the differential susceptibility to PD. Thus, even the baseline susceptibility indices i.e. without using the neurotoxin; can provide vital mechanistic insights into PD pathogenesis.
Collapse
Affiliation(s)
- Bidisha Bhaduri
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - P L Abhilash
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
14
|
Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ, Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA, Manjithaya R. Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRα Is Neuroprotective. Front Mol Neurosci 2018; 11:109. [PMID: 29686608 PMCID: PMC5900053 DOI: 10.3389/fnmol.2018.00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Mechanistic insights into aggrephagy, a selective basal autophagy process to clear misfolded protein aggregates, are lacking. Here, we report and describe the role of Estrogen Related Receptor α (ERRα, HUGO Gene Nomenclature ESRRA), new molecular player of aggrephagy, in keeping autophagy flux in check by inhibiting autophagosome formation. A screen for small molecule modulators for aggrephagy identified ERRα inverse agonist XCT 790, that cleared α-synuclein aggregates in an autophagy dependent, but mammalian target of rapamycin (MTOR) independent manner. XCT 790 modulates autophagosome formation in an ERRα dependent manner as validated by siRNA mediated knockdown and over expression approaches. We show that, in a basal state, ERRα is localized on to the autophagosomes and upon autophagy induction by XCT 790, this localization is lost and is accompanied with an increase in autophagosome biogenesis. In a preclinical mouse model of Parkinson's disease (PD), XCT 790 exerted neuroprotective effects in the dopaminergic neurons of nigra by inducing autophagy to clear toxic protein aggregates and, in addition, ameliorated motor co-ordination deficits. Using a chemical biology approach, we unrevealed the role of ERRα in regulating autophagy and can be therapeutic target for neurodegeneration.
Collapse
Affiliation(s)
- S. N. Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Aravinda K. Chavalmane
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Malini Pillai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Veena Ammanathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - D. J. Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Shashank Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Phalguni A. Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
15
|
Admixing of MPTP-Resistant and Susceptible Mice Strains Augments Nigrostriatal Neuronal Correlates to Resist MPTP-Induced Neurodegeneration. Mol Neurobiol 2016; 54:6148-6162. [PMID: 27704331 DOI: 10.1007/s12035-016-0158-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
Abstract
Disease genetics in admixed populations like Hispanic-Americans, African-Americans, etc. are gaining importance due to high disease burden in them. Furthermore, epidemiological studies conclusively prove ethnicity-based differential prevalence of Parkinson's disease (PD), since the American-Caucasians are more susceptible than Asian-Indians and Africans. Contradictorily, Anglo-Indians, an admixture of Europeans and Asian-Indians are five-times less susceptible than Indians. We evaluated the neural basis of this phenomenon using the cytomorphological features of susceptibility to nigrostriatal neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The nigral dopaminergic neuronal numbers, their size and tyrosine hydroxylase (TH), PitX3 and Nurr1 expression were compared in MPTP-susceptible C57BL/6J mice, MPTP-resistant CD-1 mice and their crossbreds using stereology, morphometry and densitometry. Apoptotic index was evaluated by TUNEL-assay and caspase-3 expression. Striatal volume, TH and glial derived neurotrophic factor (GDNF) expression were studied. The normal CD-1 and crossbreds had significantly more, although smaller, nigral dopaminergic neurons than C57BL/6J, and a larger striatum. The crossbreds had higher TH, Nurr1 and PitX3 levels. MPTP administration caused loss of ~50-60 % nigral dopaminergic neurons in C57BL/6J and ~15 % in CD-1, but none in crossbreds. MPTP-induced cellular shrinkage in C57BL/6J was contrasted by nuclear enlargement without somal alterations in resistant strains. MPTP lowered the striatal TH and GDNF in C57BL/6J. Elevated striatal GDNF in CD-1 and crossbreds could be of compensatory nature and complemented the reduced nigral caspase-3 expression to attenuate and/or block apoptosis. Similar neural correlates of resilience are envisaged in the Anglo-Indian population. Thus, we present the core neuroanatomical features of resilience against PD and evidence for ethnicity-based differential prevalence.
Collapse
|
16
|
Vidyadhara DJ, Yarreiphang H, Abhilash PL, Raju TR, Alladi PA. Differential expression of calbindin in nigral dopaminergic neurons in two mice strains with differential susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Chem Neuroanat 2016; 76:82-89. [PMID: 26775762 DOI: 10.1016/j.jchemneu.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/04/2016] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) affects the A9 dopaminergic (DA) neurons of substantia nigra pars compacta (SNpc) whereas other DA neuronal subtypes are spared. The role of calbindin in this differential vulnerability has been long elicited, and is seen in the MPTP induced mice models of PD. A peculiar feature of mice models is the strain specific differences in the susceptibility to MPTP. Here, calbindin-D28K expression in DA neurons of SNpc of MPTP susceptible C57BL/6 mice and MPTP resistant CD-1 mice was studied as a susceptibility marker of degeneration. Unbiased stereological estimation of immunoperoxidase stained midbrain sections revealed significantly higher number of calbindin immunoreactive cells in SNpc of CD-1 mice compared to that of C57BL/6 strain. Western blotting showed minimal differences in the levels. Calbindin-tyrosine hydroxylase immunofluorescence co-labeling was performed to map the calbindin immunoreactive DA neurons in SNpc and ventral tegmental area (VTA) and to quantify the calbindin expression at cellular level. While the levels were comparable in VTA of both mice strains, the SNpc of CD-1 mice showed significantly higher calbindin expression. Within the SNpc, the medial and dorsal subdivisions showed higher calbindin expression in CD-1. The expression in the ventrolateral SNpc of both strains remained comparable. Our observations clearly point at overall higher levels and sizeable percentage of cells expressing more calbindin in SNpc of CD-1 mice, which might confer neuroprotection against MPTP, while its lower expression makes C57BL/6 mice more susceptible. Similar mechanism may be attributed to the phenomenon of differential prevalence of PD in different ethnic populations.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - H Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - P L Abhilash
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India.
| |
Collapse
|
17
|
Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 2015; 36:3321-3333. [PMID: 26433682 DOI: 10.1016/j.neurobiolaging.2015.08.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Age being a risk factor for Parkinson's disease, assessment of age-related changes in the human substantia nigra may elucidate its pathogenesis. Increase in Marinesco bodies, α-synuclein, free radicals and so forth in the aging nigral neurons are clear indicators of neurodegeneration. Here, we report the glial responses in aging human nigra. The glial numbers were determined on Nissl-stained sections. The expression of glial fibrillary acidic protein, S100β, 2', 3'-cyclic nucleotide 3' phosphodiesterase, and Iba1 was assessed on cryosections of autopsied midbrains by immunohistochemistry and densitometry. The glial counts showed a biphasic increase, of which, the first prominent phase from fetal age to birth could be physiological gliogenesis whereas the second one after middle age may reflect mild age-related gliosis. Astrocytic morphology was altered, but glial fibrillary acidic protein expression increased only mildly. Presence of type-4 microglia suggests possibility of neuroinflammation. Mild reduction in 2', 3'-cyclic nucleotide 3' phosphodiesterase-labeled area denotes subtle demyelination. Stable age-related S100β expression indicates absence of calcium overload. Against the expected prominent gliosis, subtle age-related morphological alterations in human nigral glia attribute them a participatory role in aging.
Collapse
|
18
|
Crum TS, Gleixner AM, Posimo JM, Mason DM, Broeren MT, Heinemann SD, Wipf P, Brodsky JL, Leak RK. Heat shock protein responses to aging and proteotoxicity in the olfactory bulb. J Neurochem 2015; 133:780-794. [PMID: 25640060 DOI: 10.1111/jnc.13041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022]
Abstract
The olfactory bulb is one of the most vulnerable brain regions in age-related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here, we describe age-related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2-4 months. To model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro-oxidant paraquat. Toxin-induced increases were observed in Hsp70, Hsp25, and Hsp32. To determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells. The olfactory bulb is affected in the early phases of many age-related neurodegenerative disorders. Here, we described the impact of aging on multiple heat shock proteins (Hsps), such as Hsp70, in the female rat olfactory bulb in vivo. Using multiple proteasome and Hsp70 inhibitors (see schematic), we found that proteotoxicity elicited a compensatory increase in Hsp70 in primary olfactory bulb cells in vitro. Hsp70 then reduced the proteotoxic buildup of ubiquitinated proteins and robustly protected against cell death according to three independent viability assays. Thus, olfactory bulb neurons can mount impressive natural adaptations to proteotoxic injury, perhaps explaining why neurodegenerative disorders are so delayed in onset and so slow to progress.
Collapse
Affiliation(s)
- Tyler S Crum
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Amanda M Gleixner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Matthew T Broeren
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Scott D Heinemann
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Peter Wipf
- Departments of Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| |
Collapse
|
19
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
20
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
21
|
Gleixner AM, Pulugulla SH, Pant DB, Posimo JM, Crum TS, Leak RK. Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell Tissue Res 2014; 357:43-54. [PMID: 24723229 DOI: 10.1007/s00441-014-1852-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/17/2014] [Indexed: 12/17/2022]
Abstract
Many heat shock proteins are chaperones that help refold or degrade misfolded proteins and battle apoptosis. Because of their capacity to protect against protein misfolding, they may help keep diseases of aging at bay. A few reports have examined heat shock proteins (eg. Hsp25, Hsp60, Hsp70, and heat shock cognate 70 or Hsc70) as a function of age in the striatum and nigra. In the present study, we examined the impact of aging on Hsp25, heme oxygenase 1 (HO1 or Hsp32), Hsp40, Hsp60, Hsc70, Hsc/Hsp70 interacting protein (Hip), 78 kDa glucose-regulated protein (GRP78), Hsp90, and ubiquitinated proteins in the nigra and striatum of the female rat by infrared immunoblotting. Female animals are not typically examined in aging studies, adding further to the novelty of our study. Striatal HO1 and Hsp40 were both higher in middle-aged females than in the oldest group. Hsp60 levels were also highest in middle age in the nigra, but were highest in the oldest animals in the striatum. Striatal levels of Hsc70 and the co-chaperone Hip were lower in the oldest group relative to the youngest animals. In contrast, Hsp25 rose with advancing age in both regions. Hsp25 was also colocalized with tyrosine hydroxylase in nigral neurons. Ubiquitinated proteins exhibited a trend to rise in the oldest animals in both regions, and K48 linkage-specific ubiquitin rose significantly from 4-6 to 16-19 months in the striatum. Our study reveals a complex array of age-related changes in heat shock proteins. Furthermore, the age-related rises in some proteins, such as Hsp25, may reflect endogenous adaptations to cellular stress.
Collapse
Affiliation(s)
- A M Gleixner
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | | | | | | | | | | |
Collapse
|
22
|
Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014; 66:229-39. [PMID: 24668686 DOI: 10.1002/iub.1262] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Selenoproteins are important for normal brain function, and decreased function of selenoproteins can lead to impaired cognitive function and neurological disorders. This review examines the possible roles of selenoproteins in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and epilepsy. Selenium deficiency is associated with cognitive decline, and selenoproteins may be helpful in preventing neurodegeneration in AD. PD is associated with impaired function of glutathione peroxidase selenoenzymes. In HD, selenium deters lipid peroxidation by increasing specific glutathione peroxidases. Selenium deficiency increases risk of seizures in epilepsy, whereas supplementation may help to alleviate seizures. Further studies on the mechanisms of selenoprotein function will increase our understanding of how selenium and selenoproteins can be used in treatment and prevention of brain disorders.
Collapse
Affiliation(s)
- Roshan Pillai
- Department of Cell and Molecular Biology, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| | | | | |
Collapse
|
23
|
Doimo NTS, Zárate-Bladés CR, Rodrigues RF, Tefé-Silva C, Trotte MNS, Souza PRM, Soares LS, Rios WM, Floriano EM, Brandão IT, Masson AP, Coelho V, Ramos SG, Silva CL. Immunotherapy of tuberculosis with Mycobacterium leprae Hsp65 as a DNA vaccine triggers cross-reactive antibodies against mammalian Hsp60 but not pathological autoimmunity. Hum Vaccin Immunother 2014; 10:1238-43. [PMID: 24607935 DOI: 10.4161/hv.28249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite substantial efforts in recent years toward the development of new vaccines and drugs against tuberculosis (TB), success has remained elusive. Immunotherapy of TB with mycobacterial Hsp65 as a DNA vaccine (DNA-hsp65) results in a reduction of systemic bacterial loads and lung tissue damage, but the high homology of Hsp65 with the mammalian protein raises concern that pathological autoimmune responses may also be triggered. We searched for autoimmune responses elicited by DNA-hsp65 immunotherapy in mice chronically infected with TB by evaluating the humoral immune response and comprehensive histopathology using stereology. Cross-reactive antibodies between mycobacterial and mammalian Hsp60/65 were detected; however, no signs of pathological autoimmunity were found up to 60 days after the end of the therapy.
Collapse
Affiliation(s)
- Nayara T S Doimo
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Carlos R Zárate-Bladés
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Rodrigo F Rodrigues
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Cristiane Tefé-Silva
- Department of Pathology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Marcele N S Trotte
- Veterinary Medical Department of Anatomical Pathology; State University of Rio de Janeiro; Rio de Janeiro, Brazil
| | - Patrícia R M Souza
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Luana S Soares
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Wendy M Rios
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Elaine M Floriano
- Department of Pathology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Izaira T Brandão
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Ana P Masson
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Verônica Coelho
- Laboratory of Immunology; Heart Institute (InCor); School of Medicine; University of São Paulo; São Paulo, Brazil; Institute for Investigation in Immunology (iii)-National Institute of Science and Technology; São Paulo, Brazil
| | - Simone G Ramos
- Department of Pathology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Celio L Silva
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| |
Collapse
|
24
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Bharath MMS, Shankar SK. Mitochondrial function in human brains is affected by pre- and post mortem factors. Neuropathol Appl Neurobiol 2013; 39:298-315. [PMID: 22639898 DOI: 10.1111/j.1365-2990.2012.01285.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Mitochondrial function and the ensuing ATP synthesis are central to the functioning of the brain and contribute to neuronal physiology. Most studies on neurodegenerative diseases have highlighted that mitochondrial dysfunction is an important event contributing to pathology. However, studies on the human brain mitochondria in various neurodegenerative disorders heavily rely on post mortem samples. As post mortem tissues are influenced by pre- and post mortem factors, we investigated the effect of these variables on mitochondrial function. METHODS We examined whether the mitochondrial function (represented by mitochondrial enzymes and antioxidant activities) in post mortem human brains (n=45) was affected by increased storage time (11.8-104.1 months), age of the donor (2 days to 80 years), post mortem interval (2.5-26 h), gender difference and agonal state [based on Glasgow Coma Scale: range=3-15] in the frontal cortex, as a prototype. RESULTS We observed that the activities of citrate synthase, succinate dehydrogenase and mitochondrial reductase (MTT) were significantly affected only by gender difference (citrate synthase: P=0.005; succinate dehydrogenase: P=0.01; mitochondrial reductase: P=0.006), being higher in females, but not by any other factor. Mitochondrial complex I activity was significantly inhibited by increasing age (r=-0.40; P=0.05). On the other hand, the mitochondrial antioxidant enzyme glutathione reductase decreased with severe agonal state (P=0.003), while the activity of glutathione-S-transferase declined with increased storage time (P=0.005) and severe agonal state (P=0.02). CONCLUSION Our data highlight the influence of pre- and post mortem factors on preservation of mitochondrial function with implications for studies on brain pathology employing stored human samples.
Collapse
Affiliation(s)
- G Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
25
|
Liang B, Wang S, Wang Q, Zhang W, Viollet B, Zhu Y, Zou MH. Aberrant endoplasmic reticulum stress in vascular smooth muscle increases vascular contractility and blood pressure in mice deficient of AMP-activated protein kinase-α2 in vivo. Arterioscler Thromb Vasc Biol 2013; 33:595-604. [PMID: 23288166 DOI: 10.1161/atvbaha.112.300606] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The endoplasmic reticulum (ER) plays a critical role in ensuring proper folding of newly synthesized proteins. Aberrant ER stress is reported to play a causal role in cardiovascular diseases. However, the effects of ER stress on vascular smooth muscle contractility and blood pressure remain unknown. The aim of this study was to investigate whether aberrant ER stress causes abnormal vasoconstriction and consequent high blood pressure in mice. METHODS AND RESULTS ER stress markers, vascular smooth muscle contractility, and blood pressure were monitored in mice. Incubation of isolated aortic rings with tunicamycin or MG132, 2 structurally unrelated ER stress inducers, significantly increased both phenylephrine-induced vasoconstriction and the phosphorylation of myosin light chain (Thr18/Ser19), both of which were abrogated by pretreatment with chemical chaperones or 5-Aminoimidazole-4-carboxamide ribonucleotide and metformin, 2 potent activators for the AMP-activated protein kinase. Consistently, administration of tauroursodeoxycholic acid or 4-phenyl butyric acid, 2 structurally unrelated chemical chaperones, in AMP-activated protein kinase-α2 knockout mice lowered blood pressure and abolished abnormal vasoconstrictor response of AMP-activated protein kinase-α2 knockout mice to phenylephrine. Consistently, tunicamycin (0.01 μg/g per day) infusion markedly increased both systolic and diastolic blood pressure, both of which were ablated by coadministration of 4-phenyl butyric acid. Furthermore, 4-phenyl butyric acid or tauroursodeoxycholic acid, which suppressed angiotensin II infusion-induced ER stress markers in vivo, markedly lowered blood pressure in angiotensin II-infused mice in vivo. CONCLUSIONS We conclude that ER stress increases vascular smooth muscle contractility resulting in high blood pressure, and AMP-activated protein kinase activation mitigates high blood pressure through the suppression of ER stress in vivo.
Collapse
Affiliation(s)
- Bin Liang
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Mutations in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme that is deficient in Gaucher's disease, are important and common risk factors for Parkinson's disease and related disorders. This association was first recognised in the clinic, where parkinsonism was noted, albeit rarely, in patients with Gaucher's disease and more frequently in relatives who were obligate carriers. Subsequently, findings from large studies showed that patients with Parkinson's disease and associated Lewy body disorders had an increased frequency of GBA mutations when compared with control individuals. Patients with GBA-associated parkinsonism exhibit varying parkinsonian phenotypes but tend to have an earlier age of onset and more associated cognitive changes than patients with parkinsonism without GBA mutations. Hypotheses proposed to explain this association include a gain-of-function due to mutations in glucocerebrosidase that promotes α-synuclein aggregation; substrate accumulation due to enzymatic loss-of-function, which affects α-synuclein processing and clearance; and a bidirectional feedback loop. Identification of the pathological mechanisms underlying GBA-associated parkinsonism will improve our understanding of the genetics, pathophysiology, and treatment for both rare and common neurological diseases.
Collapse
Affiliation(s)
- Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
27
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Srinivas Bharath M, Shankar S. Effect of Premortem and Postmortem Factors on the Distribution and Preservation of Antioxidant Activities in the Cytosol and Synaptosomes of Human Brains. Biopreserv Biobank 2012; 10:253-65. [DOI: 10.1089/bio.2012.0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G. Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - C. Venkateshappa
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M.M. Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - S.K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
28
|
Braak H, Thal DR, Matschke J, Ghebremedhin E, Del Tredici K. Age-related appearance of dendritic inclusions in catecholaminergic brainstem neurons. Neurobiol Aging 2012; 34:286-97. [PMID: 22503003 DOI: 10.1016/j.neurobiolaging.2012.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/27/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
We identified p62-immunoreactive inclusions in dendrites of catecholaminergic brainstem projection neurons using antibodies against p62, ubiquitin, α-synuclein, hyperphosphorylated tau, and tyrosine hydroxylase in 100-μm sections through the brainstem dorsal vagal area, locus coeruleus, and substantia nigra of 149 autopsy cases staged for intraneuronal Alzheimer's and Parkinson's disease-associated lesions. The inclusions resembled Marinesco bodies within cell nuclei of catecholaminergic neurons as well as the dot-like structures previously described by Dickson in specific neuropil areas in humans. The p62-positive inclusions were confined to dendrites of catecholaminergic neurons, lacked neuromelanin granules, and were tau- and α-synuclein-negative. Their immunoreactivity for ubiquitin varied and their prevalence significantly increased with advancing age. The presence or absence of Alzheimer's and/or Parkinson's disease-associated pathology did not influence their existence. There was a strong association between the presence of p62-positive inclusions and Marinesco bodies (p < 0.0001). Our results reveal a hitherto unknown alteration within specific neuronal types of the human brainstem that may be independent of the sequestosome-ubiquitin-proteasomal pathway and unrelated to proteinaceous aggregate-formation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy, Center for Biomedical Research, Department of Neurology, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
29
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Srinivas Bharath M, Shankar S. Glutathione metabolism is modulated by postmortem interval, gender difference and agonal state in postmortem human brains. Neurochem Int 2011; 59:1029-42. [DOI: 10.1016/j.neuint.2011.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/27/2011] [Accepted: 08/31/2011] [Indexed: 01/26/2023]
|
30
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Bharath MS, Shankar S. Effect of Storage Time, Postmortem Interval, Agonal State, and Gender on the Postmortem Preservation of Glial Fibrillary Acidic Protein and Oxidatively Damaged Proteins in Human Brains. Biopreserv Biobank 2011; 9:379-87. [DOI: 10.1089/bio.2011.0033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- G. Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - C. Venkateshappa
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M.M. Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - S.K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
31
|
Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MMS, Shankar SK. Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson's disease. Neurochem Res 2011; 37:358-69. [PMID: 21971758 DOI: 10.1007/s11064-011-0619-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/09/2011] [Accepted: 09/22/2011] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is characterized by selective degeneration and loss of dopaminergic neurons in the substantia nigra (SN) of the ventral mid brain leading to dopamine depletion in the striatum. Oxidative stress and mitochondrial damage have been implicated in the death of SN neurons during the evolution of PD. In our previous study on human PD brains, we observed that compared to SN, striatum was significantly protected against oxidative damage and mitochondrial dysfunction. To understand whether brain aging contributes to the vulnerability of midbrain to neurodegeneration in PD compared to striatum, we assessed the status of oxidant and antioxidant markers, glutathione metabolic enzymes, glial fibrillary acidic protein (GFAP) expression and mitochondrial complex I(CI) activity in SN (n = 23) and caudate nucleus (n = 24) during physiological aging in human brains. We observed a significant increase in protein oxidation (P < 0.001), loss of CI activity (P = 0.04) and increased astrocytic proliferation indicated by GFAP expression (P < 0.001) in SN compared to CD with increasing age. These changes were attributed to significant decrease in antioxidant function represented by superoxide dismutase (SOD) (P = 0.03), glutathione (GSH) peroxidase (GPx) (P = 0.02) and GSH reductase (GR) (P = 0.03) and a decreasing trend in total GSH and catalase with increasing age. However, these parameters were relatively unaltered in CD. We propose that SN undergoes extensive oxidative damage, loss of antioxidant and mitochondrial function and increased GFAP expression during physiological aging which might make it more vulnerable to neurotoxic insults thus contributing to selective degeneration during evolution of PD.
Collapse
Affiliation(s)
- C Venkateshappa
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | | | | | | | | | | |
Collapse
|
32
|
Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, Srinivas Bharath MM, Shankar SK. Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson's disease brains. Neurochem Res 2011; 36:1452-63. [PMID: 21484266 DOI: 10.1007/s11064-011-0471-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Dopaminergic neurons die in Parkinson's disease (PD) due to oxidative stress and mitochondrial dysfunction in the substantia nigra (SN). We evaluated if oxidative stress occurs in other brain regions like the caudate nucleus (CD), putamen (Put) and frontal cortex (FC) in human postmortem PD brains (n = 6). While protein oxidation was elevated only in CD (P < 0.05), lipid peroxidation was increased only in FC (P < 0.05) and protein nitration was unchanged in PD compared to controls. Interestingly, mitochondrial complex I (CI) activity was unaffected in PD compared to controls. There was a 3-5 fold increase in the total glutathione (GSH) levels in the three regions (P < 0.01 in FC and CD; P < 0.05 in Put) but activities of antioxidant enzymes catalase, superoxide dismutase, glutathione reductase and glutathione-s-tranferase were not increased. Total GSH levels were elevated in these areas because of decreased activity of gamma glutamyl transpeptidase (γ-GT) (P < 0.05) activity suggesting a decreased breakdown of GSH. There was an increase in expression of glial fibrillary acidic protein (GFAP) (P < 0.001 in FC; P < 0.05 in CD) and glutathione peroxidase (P < 0.05 in CD and Put) activity due to proliferation of astrocytes. We suggest that increased GSH and astrocytic proliferation protects non-SN brain regions from oxidative and mitochondrial damage in PD.
Collapse
Affiliation(s)
- Rajeswara Babu Mythri
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, # 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|