1
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and Cellular Basis of Impaired Phagocytosis and Photoreceptor Degeneration in CLN3 Disease. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39535788 PMCID: PMC11563035 DOI: 10.1167/iovs.65.13.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose CLN3 Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease induced pluripotent stem cell-RPE cells show defective phagocytosis of photoreceptor outer segment (POS). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3Δ7-8/Δ7-8 (CLN3) Yucatan miniswine was also used to study the impact of CLN3Δ7-8/Δ7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3Δ7-8/Δ7-8 and wild-type miniswine eyes were carried out at 6, 36, or 48 months of age. Results CLN3Δ7-8/Δ7-8 RPE (CLN3 RPE) displayed decreased POS binding and consequently decreased uptake of POS compared with isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3Δ7-8/Δ7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months of age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3Δ7-8/Δ7-8 mutation (which affects ≤85% of patients) affects both RPE and POS and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
Affiliation(s)
- Jimin Han
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Vicki Swier
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Clarissa Booth
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jill M. Weimer
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
- Department of Pediatrics; Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
2
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and cellular basis of impaired phagocytosis and photoreceptor degeneration in CLN3 disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597388. [PMID: 38895469 PMCID: PMC11185776 DOI: 10.1101/2024.06.09.597388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose CLN3 Batten disease (also known as Juvenile Neuronal Ceroid Lipofuscinosis; JNCL) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease iPSC-RPE cells show defective phagocytosis of photoreceptor outer segments (POSs). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3 Δ 7-8/ Δ 7-8 ( CLN3 ) Yucatan miniswine was also used to study the impact of CLN3 Δ 7-8/ Δ 7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3 Δ 7/8 and wild-type miniswine eyes were carried out at 6-, 36-, or 48-month age. Results CLN3 Δ 7-8/ Δ 7-8 RPE ( CLN3 RPE) displayed reduced POS binding and consequently decreased uptake of POS compared to isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3 Δ 7-8/ Δ 7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months-of-age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3 Δ 7-8/ Δ 7-8 mutation (that affects up to 85% patients) affects both RPE and POSs and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
|
3
|
Centa JL, Stratton MP, Pratt MA, Osterlund Oltmanns JR, Wallace DG, Miller SA, Weimer JM, Hastings ML. Protracted CLN3 Batten disease in mice that genetically model an exon-skipping therapeutic approach. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:15-27. [PMID: 37359347 PMCID: PMC10285469 DOI: 10.1016/j.omtn.2023.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Genetic mutations that disrupt open reading frames and cause translation termination are frequent causes of human disease and are difficult to treat due to protein truncation and mRNA degradation by nonsense-mediated decay, leaving few options for traditional drug targeting. Splice-switching antisense oligonucleotides offer a potential therapeutic solution for diseases caused by disrupted open reading frames by inducing exon skipping to correct the open reading frame. We have recently reported on an exon-skipping antisense oligonucleotide that has a therapeutic effect in a mouse model of CLN3 Batten disease, a fatal pediatric lysosomal storage disease. To validate this therapeutic approach, we generated a mouse model that constitutively expresses the Cln3 spliced isoform induced by the antisense molecule. Behavioral and pathological analyses of these mice demonstrate a less severe phenotype compared with the CLN3 disease mouse model, providing evidence that antisense oligonucleotide-induced exon skipping can have therapeutic efficacy in treating CLN3 Batten disease. This model highlights how protein engineering through RNA splicing modulation can be an effective therapeutic approach.
Collapse
Affiliation(s)
- Jessica L. Centa
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Matthew P. Stratton
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Steven A. Miller
- Psychology Department, College of Health Professionals, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
| | - Michelle L. Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Swier VJ, White KA, Johnson TB, Wang X, Han J, Pearce DA, Singh R, Drack AV, Pfeifer W, Rogers CS, Brudvig JJ, Weimer JM. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis Model Mech 2023; 16:dmm050038. [PMID: 37305926 PMCID: PMC10434985 DOI: 10.1242/dmm.050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Jimin Han
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David A. Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruchira Singh
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Institute for Vision Research, Iowa City, IA 52242, USA
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
5
|
Johnson TB, Brudvig JJ, Likhite S, Pratt MA, White KA, Cain JT, Booth CD, Timm DJ, Davis SS, Meyerink B, Pineda R, Dennys-Rivers C, Kaspar BK, Meyer K, Weimer JM. Early postnatal administration of an AAV9 gene therapy is safe and efficacious in CLN3 disease. Front Genet 2023; 14:1118649. [PMID: 37035740 PMCID: PMC10080320 DOI: 10.3389/fgene.2023.1118649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
CLN3 disease, caused by biallelic mutations in the CLN3 gene, is a rare pediatric neurodegenerative disease that has no cure or disease modifying treatment. The development of effective treatments has been hindered by a lack of etiological knowledge, but gene replacement has emerged as a promising therapeutic platform for such disorders. Here, we utilize a mouse model of CLN3 disease to test the safety and efficacy of a cerebrospinal fluid-delivered AAV9 gene therapy with a study design optimized for translatability. In this model, postnatal day one administration of the gene therapy virus resulted in robust expression of human CLN3 throughout the CNS over the 24-month duration of the study. A range of histopathological and behavioral parameters were assayed, with the therapy consistently and persistently rescuing a number of hallmarks of disease while being safe and well-tolerated. Together, the results show great promise for translation of the therapy into the clinic, prompting the launch of a first-in-human clinical trial (NCT03770572).
Collapse
Affiliation(s)
- Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
| | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
| | - Shibi Likhite
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Jacob T. Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
| | - Clarissa D. Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Derek J. Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Samantha S. Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Brandon Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Ricardo Pineda
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Brian K. Kaspar
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathrin Meyer
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
6
|
Soldati C, Lopez‐Fabuel I, Wanderlingh LG, Garcia‐Macia M, Monfregola J, Esposito A, Napolitano G, Guevara‐Ferrer M, Scotto Rosato A, Krogsaeter EK, Paquet D, Grimm CM, Montefusco S, Braulke T, Storch S, Mole SE, De Matteis MA, Ballabio A, Sampaio JL, McKay T, Johannes L, Bolaños JP, Medina DL. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med 2021; 13:e13742. [PMID: 34411438 PMCID: PMC8495452 DOI: 10.15252/emmm.202013742] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.
Collapse
Affiliation(s)
- Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Irene Lopez‐Fabuel
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Luca G Wanderlingh
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Marina Garcia‐Macia
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | | | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | - Anna Scotto Rosato
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Einar K Krogsaeter
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Christian M Grimm
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Thomas Braulke
- Department Osteology & BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stephan Storch
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sara E Mole
- Medical Research Council Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Maria A De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Napoli Federico IINaplesItaly
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
- Baylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
| | - Julio L Sampaio
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Tristan McKay
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterUK
| | - Ludger Johannes
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Juan P Bolaños
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| |
Collapse
|
7
|
Salpeter EM, Leonard BC, Lopez AJ, Murphy CJ, Thomasy S, Imai DM, Grimsrud K, Lloyd KCK, Yan J, Sanchez Russo R, Shankar SP, Moshiri A. Retinal degeneration in mice and humans with neuronal ceroid lipofuscinosis type 8. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1274. [PMID: 34532411 PMCID: PMC8421982 DOI: 10.21037/atm-20-4739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Background Ceroid lipofuscinosis type 8 belongs to a heterogenous group of vision and life-threatening neurodegenerative diseases, neuronal ceroid lipofuscinosis (NCL). Effective therapy is limited to a single drug for treatment of ceroid lipofuscinosis type 2, necessitating animal disease models to facilitate further therapeutic development. Murine models are advantageous for therapeutic development due to easy genetic manipulation and rapid breeding, however appropriate genetic models need to be identified and characterized before being used for therapy testing. To date, murine models of ocular disease associated with ceroid lipofuscinosis type 8 have only been characterized in motor neuron degeneration mice. Methods Cln8−/− mice were produced by CRISPR/Cas9 genome editing through the International Mouse Phenotyping Consortium. Ophthalmic examination, optical coherence tomography, electroretinography, and ocular histology was performed on Cln8−/− mice and controls at 16 weeks of age. Quantification of all retinal layers, retinal pigmented epithelium, and the choriocapillaris was performed using images acquired with ocular coherence tomography and planimetry of histologic sections. Necropsy was performed to investigate concurrent systemic abnormalities. Clinical correlation with human patients with CLN8-associated retinopathy is provided. Results Retinal degeneration characterized by retinal pigment epithelium mottling, scattered drusen, and retinal vascular attenuation was noted in all Cln8−/− mice. Loss of inner and outer photoreceptor segment demarcation was noted on optical coherence tomography, with significant thinning of the whole retina (P=1e-9), outer nuclear layer (P=1e-9), and combined photoreceptor segments (P=1e-9). A global reduction in scotopic and photopic electroretinographic waveforms was noted in all Cln8−/− mice. Slight thickening of the inner plexiform layer (P=0.02) and inner nuclear layer (P=0.004), with significant thinning of the whole retina (P=0.03), outer nuclear layer (P=0.01), and outer photoreceptor segments (P=0.001) was appreciated on histologic sections. Scattered lipid vacuoles were noted in splenic red pulp of all Cln8−/− mice, though no gross systemic abnormalities were detected on necropsy. Retinal findings are consistent with those seen in patients with ceroid lipofuscinosis type 8. Conclusions This study provides detailed clinical characterization of retinopathy in adult Cln8−/− mice. Findings suggest that Cln8−/− mice may provide a useful murine model for development of novel therapeutics needed for treating ocular disease in patients with ceroid lipofuscinosis type 8.
Collapse
Affiliation(s)
- Elyse M Salpeter
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Brian C Leonard
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Antonio J Lopez
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Christopher J Murphy
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Sara Thomasy
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kristin Grimsrud
- Mouse Biology Program, University of California, Davis, Davis, California, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, Davis, California, USA.,Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Jiong Yan
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | | | - Suma P Shankar
- Department of Pediatrics & Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
8
|
Seifert C, Storch S, Bähring R. Modulation of Kv4.2/KChIP3 interaction by the ceroid lipofuscinosis neuronal 3 protein CLN3. J Biol Chem 2020; 295:12099-12110. [PMID: 32641494 PMCID: PMC7443505 DOI: 10.1074/jbc.ra120.013828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated potassium (Kv) channels of the Kv4 subfamily associate with Kv channel-interacting proteins (KChIPs), which leads to enhanced surface expression and shapes the inactivation gating of these channels. KChIP3 has been reported to also interact with the late endosomal/lysosomal membrane glycoprotein CLN3 (ceroid lipofuscinosis neuronal 3), which is modified because of gene mutation in juvenile neuronal ceroid lipofuscinosis (JNCL). The present study was undertaken to find out whether and how CLN3, by its interaction with KChIP3, may indirectly modulate Kv4.2 channel expression and function. To this end, we expressed KChIP3 and CLN3, either individually or simultaneously, together with Kv4.2 in HEK 293 cells. We performed co-immunoprecipitation experiments and found a lower amount of KChIP3 bound to Kv4.2 in the presence of CLN3. In whole-cell patch-clamp experiments, we examined the effects of CLN3 co-expression on the KChIP3-mediated modulation of Kv4.2 channels. Simultaneous co-expression of CLN3 and KChIP3 with Kv4.2 resulted in a suppression of the typical KChIP3-mediated modulation; i.e. we observed less increase in current density, less slowing of macroscopic current decay, less acceleration of recovery from inactivation, and a less positively shifted voltage dependence of steady-state inactivation. The suppression of the KChIP3-mediated modulation of Kv4.2 channels was weaker for the JNCL-related missense mutant CLN3R334C and for a JNCL-related C-terminal deletion mutant (CLN3ΔC). Our data support the notion that CLN3 is involved in Kv4.2/KChIP3 somatodendritic A-type channel formation, trafficking, and function, a feature that may be lost in JNCL.
Collapse
Affiliation(s)
- Carolin Seifert
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Storch
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Pädiatrische Forschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
10
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
11
|
Cellular models of Batten disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165559. [PMID: 31655107 PMCID: PMC7338907 DOI: 10.1016/j.bbadis.2019.165559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future. Developments made in cellular models for neuronal ceroid lipofuscinosis (NCL) in basic biology and use as therapeutic platforms. Cellular models elucidating function of NCL proteins. NCL proteins implicated in the mTor signalling pathway. Patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types providing insights into the molecular pathogenesis of NCL.
Collapse
|
12
|
Kauss V, Dambrova M, Medina DL. Pharmacological approaches to tackle NCLs. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165553. [PMID: 31521819 DOI: 10.1016/j.bbadis.2019.165553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Neuronal ceroid lipofuscinoses, also collectively known as Batten disease, are a group of rare monogenic disorders caused by mutations in at least 13 different genes. They are characterized by the accumulation of lysosomal storage material and progressive neurological deterioration with dementia, epilepsy, retinopathy, motor disturbances, and early death [1]. Although the identification of disease-causing genes provides an important step for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, compared to other diseases, obstacles to the development of therapies for these rare diseases include less extensive physiopathology knowledge, limited number of patients to test treatments, and poor commercial interest from the industry. Current therapeutic strategies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. In this review, we will focus in the emerging therapies based in the identification of small-molecules. Recent advances in high- throughput and high-content screening (HTS and HCS) using relevant cell-based assays and applying automation and imaging analysis algorithms, will allow the screening of a large number of compounds in lesser time. These approaches are particularly useful for drug repurposing for Batten disease, that takes the advantage to search for compounds that have already been tested in humans, thereby reducing significantly the resources needed for translation to clinics.
Collapse
Affiliation(s)
- Valerjans Kauss
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga LV-1007, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga LV-1007, Latvia
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
13
|
Bosch ME, Kielian T. Astrocytes in juvenile neuronal ceroid lipofuscinosis (CLN3) display metabolic and calcium signaling abnormalities. J Neurochem 2018; 148:612-624. [PMID: 29964296 DOI: 10.1111/jnc.14545] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a lysosomal storage disease caused by autosomal recessive mutations in ceroid lipofuscinosis 3 (CLN3). Children with JNCL experience progressive visual, cognitive, and motor deterioration with a decreased life expectancy (late teens-early 20s). Neuronal loss is thought to occur, in part, via glutamate excitotoxicity; however, little is known about astrocyte glutamate regulation in JNCL. Spontaneous Ca2+ oscillations were reduced in murine Cln3Δex7/8 astrocytes, which were also observed following glutamate or cytokine exposure. Astrocyte glutamate transport is an energy-demanding process and disruptions in metabolic pathways could influence glutamate homeostasis in Cln3Δex7/8 astrocytes. Indeed, basal mitochondrial respiration and ATP production were significantly reduced in Cln3Δex7/8 astrocytes. These changes were not attributable to reduced mitochondria, since mitochondrial DNA levels were similar between wild type and Cln3Δex7/8 astrocytes. Interestingly, despite these functional deficits in Cln3Δex7/8 astrocytes, glutamate transporter expression and glutamate uptake were not dramatically affected. Concurrent with impaired astrocyte metabolism and Ca2+ signaling, murine Cln3Δex7/8 neurons were hyper-responsive to glutamate, as reflected by heightened and prolonged Ca2+ signals. These findings identify intrinsic metabolic and Ca2+ signaling defects in Cln3Δex7/8 astrocytes that may contribute to neuronal dysfunction in CLN3 disease. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Megan E Bosch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
14
|
Studniarczyk D, Needham EL, Mitchison HM, Farrant M, Cull-Candy SG. Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease. eNeuro 2018; 5:ENEURO.0387-17.2018. [PMID: 29780879 PMCID: PMC5956745 DOI: 10.1523/eneuro.0387-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study, we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knock-out mice. In Cln3Δex1-6 cells, the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1-6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs.
Collapse
Affiliation(s)
- Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Elizabeth L. Needham
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Hannah M. Mitchison
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Stuart G. Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Grünewald B, Lange MD, Werner C, O'Leary A, Weishaupt A, Popp S, Pearce DA, Wiendl H, Reif A, Pape HC, Toyka KV, Sommer C, Geis C. Defective synaptic transmission causes disease signs in a mouse model of juvenile neuronal ceroid lipofuscinosis. eLife 2017; 6:28685. [PMID: 29135436 PMCID: PMC5724993 DOI: 10.7554/elife.28685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease) caused by mutations in the CLN3 gene is the most prevalent inherited neurodegenerative disease in childhood resulting in widespread central nervous system dysfunction and premature death. The consequences of CLN3 mutation on the progression of the disease, on neuronal transmission, and on central nervous network dysfunction are poorly understood. We used Cln3 knockout (Cln3Δex1-6) mice and found increased anxiety-related behavior and impaired aversive learning as well as markedly affected motor function including disordered coordination. Patch-clamp and loose-patch recordings revealed severely affected inhibitory and excitatory synaptic transmission in the amygdala, hippocampus, and cerebellar networks. Changes in presynaptic release properties may result from dysfunction of CLN3 protein. Furthermore, loss of calbindin, neuropeptide Y, parvalbumin, and GAD65-positive interneurons in central networks collectively support the hypothesis that degeneration of GABAergic interneurons may be the cause of supraspinal GABAergic disinhibition.
Collapse
Affiliation(s)
- Benedikt Grünewald
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Integrated Research and Treatment Center-Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Maren D Lange
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Christian Werner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Weishaupt
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Sandy Popp
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, United States
| | - Heinz Wiendl
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University of Münster, Münster, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Hans C Pape
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Klaus V Toyka
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Geis
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Integrated Research and Treatment Center-Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Parviainen L, Dihanich S, Anderson GW, Wong AM, Brooks HR, Abeti R, Rezaie P, Lalli G, Pope S, Heales SJ, Mitchison HM, Williams BP, Cooper JD. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol Commun 2017; 5:74. [PMID: 29041969 PMCID: PMC5645909 DOI: 10.1186/s40478-017-0476-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 11/18/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs or Batten disease) are a group of inherited, fatal neurodegenerative disorders of childhood. In these disorders, glial (microglial and astrocyte) activation typically occurs early in disease progression and predicts where neuron loss subsequently occurs. We have found that in the most common juvenile form of NCL (CLN3 disease or JNCL) this glial response is less pronounced in both mouse models and human autopsy material, with the morphological transformation of both astrocytes and microglia severely attenuated or delayed. To investigate their properties, we isolated glia and neurons from Cln3-deficient mice and studied their basic biology in culture. Upon stimulation, both Cln3-deficient astrocytes and microglia also showed an attenuated ability to transform morphologically, and an altered protein secretion profile. These defects were more pronounced in astrocytes, including the reduced secretion of a range of neuroprotective factors, mitogens, chemokines and cytokines, in addition to impaired calcium signalling and glutamate clearance. Cln3-deficient neurons also displayed an abnormal organization of their neurites. Most importantly, using a co-culture system, Cln3-deficient astrocytes and microglia had a negative impact on the survival and morphology of both Cln3-deficient and wildtype neurons, but these effects were largely reversed by growing mutant neurons with healthy glia. These data provide evidence that CLN3 disease astrocytes are functionally compromised. Together with microglia, they may play an active role in neuron loss in this disorder and can be considered as potential targets for therapeutic interventions.
Collapse
|
17
|
Self-Complementary AAV9 Gene Delivery Partially Corrects Pathology Associated with Juvenile Neuronal Ceroid Lipofuscinosis (CLN3). J Neurosci 2017; 36:9669-82. [PMID: 27629717 DOI: 10.1523/jneurosci.1635-16.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by autosomal-recessive mutations in CLN3 for which no treatment exists. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline and premature death (late teens to 20s). We explored a gene delivery approach for JNCL by generating two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and β-actin promoters to drive low versus high transgene expression, respectively. This approach was based on the expectation that low CLN3 levels are required for cellular homeostasis due to minimal CLN3 expression postnatally, although this had not yet been demonstrated in vivo One-month-old Cln3(Δex7/8) mice received one systemic (intravenous) injection of scAAV9/MeCP2-hCLN3 or scAAV9/β-actin-hCLN3, with green fluorescent protein (GFP)-expressing viruses as controls. A promoter-dosage effect was observed in all brain regions examined, in which hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/β-actin-hCLN3 versus scAAV9/MeCP2-hCLN3. However, a disconnect occurred between CLN3 levels and disease improvement, because only the scAAV9 construct driving low CLN3 expression (scAAV9/MeCP2-hCLN3) corrected motor deficits and attenuated microglial and astrocyte activation and lysosomal pathology. This may have resulted from preferential promoter usage because transgene expression after intravenous scAAV9/MeCP2-GFP injection was primarily detected in NeuN(+) neurons, whereas scAAV9/β-actin-GFP drove transgene expression in GFAP(+) astrocytes. This is the first demonstration of a systemic delivery route to restore CLN3 in vivo using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals. SIGNIFICANCE STATEMENT Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by CLN3 mutations. We explored a gene delivery approach using two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and β-actin promoters. hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/β-actin-hCLN3 versus scAAV9/MeCP2-hCLN3 after a single systemic injection. However, only scAAV9/MeCP2-hCLN3 corrected motor deficits and attenuated glial activation and lysosomal pathology. This may reflect preferential promoter usage because transgene expression with scAAV9/MeCP2-green fluorescent protein (GFP) was primarily in neurons, whereas scAAV9/β-actin-GFP drove transgene expression in astrocytes. This is the first demonstration of systemic delivery for CLN3 using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals.
Collapse
|
18
|
Ku CA, Hull S, Arno G, Vincent A, Carss K, Kayton R, Weeks D, Anderson GW, Geraets R, Parker C, Pearce DA, Michaelides M, MacLaren RE, Robson AG, Holder GE, Heon E, Raymond FL, Moore AT, Webster AR, Pennesi ME. Detailed Clinical Phenotype and Molecular Genetic Findings in CLN3-Associated Isolated Retinal Degeneration. JAMA Ophthalmol 2017; 135:749-760. [PMID: 28542676 DOI: 10.1001/jamaophthalmol.2017.1401] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Mutations in genes traditionally associated with syndromic retinal disease are increasingly found to cause nonsyndromic inherited retinal degenerations. Mutations in CLN3 are classically associated with juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease with early retinal degeneration and progressive neurologic deterioration, but have recently also been identified in patients with nonsyndromic inherited retinal degenerations. To our knowledge, detailed clinical characterization of such cases has yet to be reported. Objective To provide detailed clinical, electrophysiologic, structural, and molecular genetic findings in nonsyndromic inherited retinal degenerations associated with CLN3 mutations. Design, Setting, and Participants A multi-institutional case series of 10 patients who presented with isolated nonsyndromic retinal disease and mutations in CLN3. Patient ages ranged from 16 to 70 years; duration of follow-up ranged from 3 to 29 years. Main Outcomes and Measures Longitudinal clinical evaluation, including full ophthalmic examination, multimodal retinal imaging, perimetry, and electrophysiology. Molecular analyses were performed using whole-genome sequencing or whole-exome sequencing. Electron microscopy studies of peripheral lymphocytes and CLN3 transcript analysis with polymerase chain reaction amplification were performed in a subset of patients. Results There were 7 females and 3 males in this case series, with a mean (range) age at last review of 37.1 (16-70) years. Of the 10 patients, 4 had a progressive late-onset rod-cone dystrophy, with a mean (range) age at onset of 29.7 (20-40) years, and 6 had an earlier onset rod-cone dystrophy, with a mean (range) age at onset of 12.1 (7-17) years. Ophthalmoscopic examination features included macular edema, mild intraretinal pigment migration, and widespread atrophy in advanced disease. Optical coherence tomography imaging demonstrated significant photoreceptor loss except in patients with late-onset disease who had a focal preservation of the ellipsoid zone and outer nuclear layer in the fovea. Electroretinography revealed a rod-cone pattern of dysfunction in 6 patients and were completely undetectable in 2 patients. Six novel CLN3 variants were identified in molecular analyses. Conclusions and Relevance This report describes detailed clinical, imaging, and genetic features of CLN3-associated nonsyndromic retinal degeneration. The age at onset and natural progression of retinal disease differs greatly between syndromic and nonsyndromic CLN3 disease, which may be associated with genotypic differences.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Sarah Hull
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Keren Carss
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England
| | - Robert Kayton
- Pathology Department, Oregon Health & Science University, Portland
| | - Douglas Weeks
- Pathology Department, Oregon Health & Science University, Portland
| | - Glenn W Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, England
| | - Ryan Geraets
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Camille Parker
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota10Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Robert E MacLaren
- Moorfields Eye Hospital, London, England11Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, England12Oxford University Hospitals National Health Service Foundation Trust, Oxford, England
| | - Anthony G Robson
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - F Lucy Raymond
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England13Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge, England
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England14Department of Ophthalmology, University of California, San Francisco Medical School, San Francisco
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland
| |
Collapse
|
19
|
Meyer M, Kovács AD, Pearce DA. Decreased sensitivity of palmitoyl protein thioesterase 1-deficient neurons to chemical anoxia. Metab Brain Dis 2017; 32:275-279. [PMID: 27722792 PMCID: PMC5335868 DOI: 10.1007/s11011-016-9919-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 01/12/2023]
Abstract
Infantile CLN1 disease, also known as infantile neuronal ceroid lipofuscinosis, is a fatal childhood neurodegenerative disorder caused by mutations in the CLN1 gene. CLN1 encodes a soluble lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1), and it is still unclear why neurons are selectively vulnerable to the loss of PPT1 enzyme activity in infantile CLN1 disease. To examine the effects of PPT1 deficiency on several well-defined neuronal signaling and cell death pathways, different toxic insults were applied in cerebellar granule neuron cultures prepared from wild type (WT) and palmitoyl protein thioesterase 1-deficient (Ppt1 -/- ) mice, a model of infantile CLN1 disease. Glutamate uptake inhibition by t-PDC (L-trans-pyrrolidine-2,4-dicarboxylic acid) or Zn2+-induced general mitochondrial dysfunction caused similar toxicity in WT and Ppt1 -/- cultures. Ppt1 -/- neurons, however, were more sensitive to mitochondrial complex I inhibition by MPP+ (1-methyl-4-phenylpyridinium), and had significantly decreased sensitivity to chemical anoxia induced by the mitochondrial complex IV inhibitor, sodium azide. Our results indicate that PPT1 deficiency causes alterations in the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Meredith Meyer
- Sanford Children's Health Research Center, Sanford Research, 2301 E. 60th Street, Sioux Falls, SD, 57104, USA
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, 2301 E. 60th Street, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, Sioux Falls, SD, 57104, USA
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, 2301 E. 60th Street, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
20
|
Aldrich A, Bosch ME, Fallet R, Odvody J, Burkovetskaya M, Rama Rao KV, Cooper JD, Drack AV, Kielian T. Efficacy of phosphodiesterase-4 inhibitors in juvenile Batten disease (CLN3). Ann Neurol 2016; 80:909-923. [PMID: 27804148 PMCID: PMC5215570 DOI: 10.1002/ana.24815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Juvenile neuronal ceroid lipofuscinosis (JNCL), or juvenile Batten disease, is a pediatric lysosomal storage disease caused by autosomal recessive mutations in CLN3, typified by blindness, seizures, progressive cognitive and motor decline, and premature death. Currently, there is no treatment for JNCL that slows disease progression, which highlights the need to explore novel strategies to extend the survival and quality of life of afflicted children. Cyclic adenosine monophosphate (cAMP) is a second messenger with pleiotropic effects, including regulating neuroinflammation and neuronal survival. Here we investigated whether 3 phosphodiesterase-4 (PDE4) inhibitors (rolipram, roflumilast, and PF-06266047) could mitigate behavioral deficits and cell-specific pathology in the Cln3Δex7/8 mouse model of JNCL. METHODS In a randomized, blinded study, wild-type (WT) and Cln3Δex7/8 mice received PDE4 inhibitors daily beginning at 1 or 3 months of age and continuing for 6 to 9 months, with motor deficits assessed by accelerating rotarod testing. The effect of PDE4 inhibitors on cAMP levels, astrocyte and microglial activation (glial fibrillary acidic protein and CD68, respectively), lysosomal pathology (lysosomal-associated membrane protein 1), and astrocyte glutamate transporter expression (glutamate/aspartate transporter) were also examined in WT and Cln3Δex7/8 animals. RESULTS cAMP levels were significantly reduced in the Cln3Δex7/8 brain, and were restored by PF-06266047. PDE4 inhibitors significantly improved motor function in Cln3Δex7/8 mice, attenuated glial activation and lysosomal pathology, and restored glutamate transporter expression to levels observed in WT animals, with no evidence of toxicity as revealed by blood chemistry analysis. INTERPRETATION These studies reveal neuroprotective effects for PDE4 inhibitors in Cln3Δex7/8 mice and support their therapeutic potential in JNCL patients. Ann Neurol 2016;80:909-923.
Collapse
Affiliation(s)
- Amy Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Megan E Bosch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Rachel Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Jessica Odvody
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Maria Burkovetskaya
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | | | - Jonathan D Cooper
- Department of Basic & Clinical Neuroscience, King's College, London, United Kingdom.,Los Angeles Biomedical Research Institute and David Geffen School of Medicine at UCLA, Harbor UCLA Medical Center, Torrance, CA
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
21
|
Oetjen S, Kuhl D, Hermey G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J Neurochem 2016; 139:456-470. [DOI: 10.1111/jnc.13744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sandra Oetjen
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
22
|
Kovács AD, Pearce DA. Finding the most appropriate mouse model of juvenile CLN3 (Batten) disease for therapeutic studies: the importance of genetic background and gender. Dis Model Mech 2016; 8:351-61. [PMID: 26035843 PMCID: PMC4381334 DOI: 10.1242/dmm.018804] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations in the CLN3 gene cause a fatal neurodegenerative disorder: juvenile CLN3 disease, also known as juvenile Batten disease. The two most commonly utilized mouse models of juvenile CLN3 disease are Cln3-knockout (Cln3−/−) and Cln3Δex7/8-knock-in mice, the latter mimicking the most frequent disease-causing human mutation. To determine which mouse model has the most pronounced neurological phenotypes that can be used as outcome measures for therapeutic studies, we compared the exploratory activity, motor function and depressive-like behavior of 1-, 3- and 6-month-old Cln3−/− and Cln3Δex7/8-knock-in mice on two different genetic backgrounds (129S6/SvEv and C57BL/6J). Although, in many cases, the behavior of Cln3−/− and Cln3Δex7/8 mice was similar, we found genetic-background-, gender- and age-dependent differences between the two mouse models. We also observed large differences in the behavior of the 129S6/SvEv and C57BL/6J wild-type strains, which highlights the strong influence that genetic background can have on phenotype. Based on our results, Cln3−/− male mice on the 129S6/SvEv genetic background are the most appropriate candidates for therapeutic studies. They exhibit motor deficits at 1 and 6 months of age in the vertical pole test, and they were the only mice to show impaired motor coordination in the rotarod test at both 3 and 6 months. Cln3−/− males on the C57BL/6J background and Cln3Δex7/8 males on the 129S6/SvEv background also provide good outcome measures for therapeutic interventions. Cln3−/− (C57BL/6J) males had serious difficulties in climbing down (at 1 and 6 months) and turning downward on (at 1, 3 and 6 months) the vertical pole, whereas Cln3Δex7/8 (129S6/SvEv) males climbed down the vertical pole drastically slower than wild-type males at 3 and 6 months of age. Our study demonstrates the importance of testing mouse models on different genetic backgrounds and comparing males and females in order to find the most appropriate disease model for therapeutic studies.
Collapse
Affiliation(s)
- Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA. Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA.
| |
Collapse
|
23
|
Wavre-Shapton ST, Calvi AA, Turmaine M, Seabra MC, Cutler DF, Futter CE, Mitchison HM. Photoreceptor phagosome processing defects and disturbed autophagy in retinal pigment epithelium of Cln3Δex1-6 mice modelling juvenile neuronal ceroid lipofuscinosis (Batten disease). Hum Mol Genet 2015; 24:7060-74. [PMID: 26450516 PMCID: PMC4654058 DOI: 10.1093/hmg/ddv406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3(Δex1-6) null mice, revealing classic 'fingerprint' lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F0-ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3(Δex1) (-6) RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3(Δex1) (-) (6)-derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3(Δex1) (-) (6) RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE.
Collapse
Affiliation(s)
- Silène T Wavre-Shapton
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK, Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Alessandra A Calvi
- Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore 138648, Singapore
| | - Mark Turmaine
- Faculty of Life Sciences, Division of Biosciences and
| | - Miguel C Seabra
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Daniel F Cutler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK and MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, London, UK
| | - Clare E Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK,
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK,
| |
Collapse
|
24
|
Bosch ME, Kielian T. Neuroinflammatory paradigms in lysosomal storage diseases. Front Neurosci 2015; 9:417. [PMID: 26578874 PMCID: PMC4627351 DOI: 10.3389/fnins.2015.00417] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
Lysosomal storage diseases (LSDs) include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.
Collapse
Affiliation(s)
- Megan E. Bosch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, USA
| | - Tammy Kielian
- Pathology and Microbiology, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
25
|
Kovács AD, Hof C, Pearce DA. Abnormally increased surface expression of AMPA receptors in the cerebellum, cortex and striatum of Cln3(-/-) mice. Neurosci Lett 2015; 607:29-34. [PMID: 26375929 DOI: 10.1016/j.neulet.2015.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 11/16/2022]
Abstract
Mutations in the CLN3 gene cause a fatal neurodegenerative disorder, juvenile CLN3 disease. Exploring the cause of the motor coordination deficit in the Cln3(-/-) mouse model of the disease we have previously found that attenuation of AMPA receptor activity in 1-month-old Cln3(-/-) mice significantly improves their motor coordination [20]. To elucidate the mechanism of the abnormally increased AMPA receptor function in Cln3(-/-) mice, we examined the surface expression of AMPA receptors using surface cross-linking in brain slices from 1-month-old wild type (WT) and Cln3(-/-) mice. In surface cross-linked brain samples, Western blotting for AMPA receptor subunits revealed significantly increased surface levels of GluA1 and GluA2 in the cerebellum, and of GluA2 in the cortex and striatum of Cln3(-/-) mice as compared to WT mice. Expression levels of the GluA4 subunit were similar in the cerebellum of WT and Cln3(-/-) mice. While intracellular GluA1 levels in the WT and Cln3(-/-) cerebellum or cortex were similar, the intracellular expression of GluA1 in the Cln3(-/-) striatum was decreased to 56% of the WT level. Our results show a prominent increase in AMPA receptor surface expression in the brain of Cln3(-/-) mice and suggest that CLN3 is involved in the regulation of AMPA receptor surface expression.
Collapse
Affiliation(s)
- Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Caitlin Hof
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA.
| |
Collapse
|
26
|
Retamal MA, Reyes EP, García IE, Pinto B, Martínez AD, González C. Diseases associated with leaky hemichannels. Front Cell Neurosci 2015; 9:267. [PMID: 26283912 PMCID: PMC4515567 DOI: 10.3389/fncel.2015.00267] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
Hemichannels (HCs) and gap junction channels (GJCs) formed by protein subunits called connexins (Cxs) are major pathways for intercellular communication. While HCs connect the intracellular compartment with the extracellular milieu, GJCs allow the interchange of molecules between cytoplasm of two contacting cells. Under physiological conditions, HCs are mostly closed, but they can open under certain stimuli allowing the release of autocrine and paracrine molecules. Moreover, some pathological conditions, like ischemia or other inflammation conditions, significantly increase HCs activity. In addition, some mutations in Cx genes associated with human diseases, such as deafness or cataracts, lead to the formation of more active HCs or “leaky HCs.” In this article we will revise cellular and molecular mechanisms underlying the appearance of leaky HCs, and the consequences of their expression in different cellular systems and animal models, in seeking a common pattern or pathological mechanism of disease.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Edison P Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile
| | - Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Bernardo Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
27
|
Bosch M, Kielian T. Hemichannels in neurodegenerative diseases: is there a link to pathology? Front Cell Neurosci 2014; 8:242. [PMID: 25191227 PMCID: PMC4138772 DOI: 10.3389/fncel.2014.00242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022] Open
Abstract
Although originally considered a structural component of gap junctions, connexin hemichannels (HCs) are now recognized as functional entities capable of influencing metabolic gradients within the CNS, allowing direct communication between the intra- and extracellular milieus. Besides connexins, HCs can also be formed by pannexins, which are not capable of gap junction assembly. Both positive and negative effects have been attributed to HC activity in the context of neurodegenerative diseases. For example, HCs can exert neuroprotective effects by promoting the uptake of neurotoxic molecules, whereas chronic HC opening can disrupt molecular gradients leading to cellular dysfunction and death. The latter scenario has been suggested for multiple neurodegenerative disorders, including Alzheimer’s disease (AD) and more recently, lysosomal storage disorders, which are the focus of this perspective. Currently available evidence suggests a complex role for HCs in neurodegenerative disorders, which sets the stage for future studies to determine whether targeting HC action may improve disease outcomes.
Collapse
Affiliation(s)
- Megan Bosch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
28
|
Burkovetskaya M, Karpuk N, Xiong J, Bosch M, Boska MD, Takeuchi H, Suzumura A, Kielian T. Evidence for aberrant astrocyte hemichannel activity in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL). PLoS One 2014; 9:e95023. [PMID: 24736558 PMCID: PMC3988164 DOI: 10.1371/journal.pone.0095023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/23/2014] [Indexed: 12/14/2022] Open
Abstract
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3 that leads to vision loss, progressive cognitive and motor decline, and premature death. Morphological evidence of astrocyte activation occurs early in the disease process and coincides with regions where neuronal loss eventually ensues. However, the consequences of CLN3 mutation on astrocyte function remain relatively ill-defined. Astrocytes play a critical role in CNS homeostasis, in part, by their ability to regulate the extracellular milieu via the formation of extensive syncytial networks coupled by gap junction (GJ) channels. In contrast, unopposed hemichannels (HCs) have been implicated in CNS pathology by allowing the non-discriminant passage of molecules between the intracellular and extracellular milieus. Here we examined acute brain slices from CLN3 mutant mice (CLN3Δex7/8) to determine whether CLN3 loss alters the balance of GJ and HC activity. CLN3Δex7/8 mice displayed transient increases in astrocyte HC opening at postnatal day 30 in numerous brain regions, compared to wild type (WT) animals; however, HC activity steadily decreased at postnatal days 60 and 90 in CLN3Δex7/8 astrocytes to reach levels lower than WT cells. This suggested a progressive decline in astrocyte function, which was supported by significant reductions in glutamine synthetase, GLAST, and connexin expression in CLN3Δex7/8 mice compared to WT animals. Based on the early increase in astrocyte HC activity, CLN3Δex7/8 mice were treated with the novel carbenoxolone derivative INI-0602 to inhibit HCs. Administration of INI-0602 for a one month period significantly reduced lysosomal ceroid inclusions in the brains of CLN3Δex7/8 mice compared to WT animals, which coincided with significant increases in astrocyte GJ communication and normalization of astrocyte resting membrane potential to WT levels. Collectively, these findings suggest that alterations in astrocyte communication may impact the progression of JNCL and could offer a potential therapeutic target.
Collapse
Affiliation(s)
- Maria Burkovetskaya
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Nikolay Karpuk
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Juan Xiong
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Megan Bosch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael D. Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tammy Kielian
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
29
|
Xiong J, Kielian T. Microglia in juvenile neuronal ceroid lipofuscinosis are primed toward a pro-inflammatory phenotype. J Neurochem 2013; 127:245-58. [PMID: 23919525 DOI: 10.1111/jnc.12385] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3. Regions of microglial activation precede and predict areas of neuronal loss in JNCL; however, the functional role of activated microglia remains to be defined. The inflammasome is a key molecular pathway for activating pro-IL-1β in microglia, and IL-1β is elevated in the brains of JNCL patients and can induce neuronal cell death. Here, we utilized primary microglia isolated from CLN3(Δex7/8) mutant and wild-type (WT) mice to examine the impact of CLN3 mutation on microglial activation and inflammasome function. Treatment with neuronal lysates and ceramide, a lipid intermediate elevated in the JNCL brain, led to inflammasome activation and IL-1β release in CLN3(Δex7/8) microglia but not WT cells, as well as increased expression of additional pro-inflammatory mediators. Similar effects were observed following either TNF-α or IL-1β treatment, suggesting that CLN3(Δex7/8) microglia exist in primed state and hyper-respond to several inflammatory stimuli compared to WT cells. CLN3(Δex7/8) microglia displayed constitutive caspase-1 activity that when blocked led to increased glutamate release that coincided with hemichannel opening. Conditioned medium from activated CLN3(Δex7/8) or WT microglia induced significant cell death in CLN3(Δex7/8) but not WT neurons, demonstrating that intrinsically diseased CLN3(Δex7/8) neurons are less equipped to withstand cytotoxic insults generated by activated microglia. Collectively, aberrant microglial activation may contribute to the pathological chain of events leading to neurodegeneration during later stages of JNCL.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
30
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
32
|
Staropoli JF, Haliw L, Biswas S, Garrett L, Hölter SM, Becker L, Skosyrski S, Da Silva-Buttkus P, Calzada-Wack J, Neff F, Rathkolb B, Rozman J, Schrewe A, Adler T, Puk O, Sun M, Favor J, Racz I, Bekeredjian R, Busch DH, Graw J, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Lopez E, Harati H, Hill E, Krause DS, Guide J, Dragileva E, Gale E, Wheeler VC, Boustany RM, Brown DE, Breton S, Ruether K, Gailus-Durner V, Fuchs H, de Angelis MH, Cotman SL. Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. PLoS One 2012; 7:e38310. [PMID: 22701626 PMCID: PMC3368842 DOI: 10.1371/journal.pone.0038310] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/08/2012] [Indexed: 12/29/2022] Open
Abstract
Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development.
Collapse
Affiliation(s)
- John F. Staropoli
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Larissa Haliw
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sunita Biswas
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Lore Becker
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | | | | | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Anja Schrewe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Oliver Puk
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Minxuan Sun
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Jack Favor
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Ildikó Racz
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Raffi Bekeredjian
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Otto-Meyerhof-Zentrum, Heidelberg, Germany
| | - Dirk H. Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Entwicklungsgenetik, TUM, Freising-Weihenstephan, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. Site Munich, Munich, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Edith Lopez
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hayat Harati
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Eric Hill
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniela S. Krause
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jolene Guide
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ella Dragileva
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Evan Gale
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rose-Mary Boustany
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Diane E. Brown
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Klaus Ruether
- Augenabteilung Sankt Gertrauden Krankenhaus, Berlin, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Experimentelle Genetik, TUM, Freising-Weihenstephan, Germany
| | - Susan L. Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull 2012; 88:43-57. [PMID: 22502604 DOI: 10.1016/j.brainresbull.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/04/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL, also known as Batten disease) is a devastating neurodegenerative diseases caused by mutations in either soluble enzymes or membrane-associated structural proteins that result in lysosome dysfunction. Different forms of NCL were defined initially by age of onset, affected population and/or type of storage material but collectively represent the most prevalent pediatric hereditary neurovisceral storage disorder. Specific gene mutations are now known for each subclass of NCL in humans that now largely define the disease: cathepsin D (CTSD) for congenital (CLN10 form); palmitoyl protein thioesterase 1 (PPT1) for infantile (CLN1 form); tripeptidyl peptidase 1 (TPP1) for classic late infantile (CLN2 form); variant late infantile-CLN5, CLN6 or CLN8 for variant late infantile forms; and CLN3 for juvenile (CLN3 form). Several mouse models of NCL have been developed, or in some cases exist sporadically, that exhibit mutations producing a progressive neurodegenerative phenotype similar to that observed in human NCL. The study of these mouse models of NCL has dramatically advanced our knowledge of NCL pathophysiology and in some cases has helped delineate the function of proteins mutated in human NCL. In addition, NCL mutant mice have been tested for several different therapeutic approaches and as such they have become important pre-clinical models for validating treatment options. In this review we will assess the current state of mouse models of NCL with regards to their unique pathophysiology and how these mice have helped investigators achieve a better understanding of human NCL disease and therapy.
Collapse
Affiliation(s)
- John J Shacka
- Neuropathology Division, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Cotman SL, Staropoli JF. The juvenile Batten disease protein, CLN3, and its role in regulating anterograde and retrograde post-Golgi trafficking. ACTA ACUST UNITED AC 2012; 7:79-91. [PMID: 22545070 DOI: 10.2217/clp.11.70] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Loss-of-function mutations in CLN3 are responsible for juvenile-onset neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which is an incurable lysosomal disease that manifests with vision loss, followed by seizures and progressive neurodegeneration, robbing children of motor skills, speech and cognition, and eventually leading to death in the second or third decade of life. Emerging clinical evidence points to JNCL pathology outside of the CNS, including the cardiovascular system. The CLN3 gene encodes an unusual transmembrane protein, CLN3 or battenin, whose elusive function has been the subject of intense study for more than 10 years. Owing to the detailed characterization of a large number of disease models, our knowledge of CLN3 protein function is finally coming into focus. This review will describe the most current understanding of CLN3 structure, function and dysfunction in JNCL.
Collapse
Affiliation(s)
- Susan L Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|