1
|
Ma Y, Sun W, Bai J, Gao F, Ma H, Liu H, Hu J, Xu C, Zhang X, Liu Z, Yuan T, Sun C, Huang Y, Wang R. Targeting blood brain barrier-Remote ischemic conditioning alleviates cognitive impairment in female APP/PS1 rats. CNS Neurosci Ther 2024; 30:e14613. [PMID: 38379185 PMCID: PMC10879645 DOI: 10.1111/cns.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a significant global health concern, and it is crucial that we find effective methods to prevent or slow down AD progression. Recent studies have highlighted the essential role of blood vessels in clearing Aβ, a protein that contributes to AD. Scientists are exploring blood biomarkers as a potential tool for future AD diagnosis. One promising method that may help prevent AD is remote ischemic conditioning (RIC). RIC involves using sub-lethal ischemic-reperfusion cycles on limbs. However, a comprehensive understanding of how RIC can prevent AD and its long-term effectiveness is still lacking. Further research is essential to fully comprehend the potential benefits of RIC in preventing AD. METHODS Female wild-type (WT) and APP/PS1 transgenic rats, aged 12 months, underwent ovariectomy and were subsequently assigned to WT, APP/PS1, and APP/PS1 + RIC groups. RIC was conducted five times a week for 4 weeks. The rats' depressive and cognitive behaviors were evaluated using force swimming, open-field tests, novel objective recognition, elevated plus maze, and Barnes maze tests. Evaluation of the neurovascular unit (NVU), synapses, vasculature, astrocytes, and microglia was conducted using immunofluorescence staining (IF), Western blot (WB), and transmission electron microscopy (TEM). Additionally, the cerebro-vasculature was examined using micro-CT, and cerebral blood flow (CBF) was measured using Speckle Doppler. Blood-brain barrier (BBB) permeability was determined by measuring the Evans blue leakage. Finally, Aβ levels in the rat frontal cortex were measured using WB, ELISA, or IF staining. RESULTS RIC enhanced memory-related protein expression and rescued depressive-like behavior and cognitive decline in APP/PS1 transgenic rats. Additionally, the intervention protected NVU in the rat frontal cortex, as evidenced by (1) increased expression of TJ (tight junction) proteins, pericyte marker PDGFRβ, and glucose transporter 1 (GLUT1), as well as decreased VCAM1; (2) mitigation of ultrastructure impairment in neuron, cerebral vascular, and astrocyte; (3) upregulation of A2 astrocyte phenotype markers and downregulation of A1 phenotype markers, indicating a shift toward a healthier phenotype. Correspondingly, RIC intervention alleviated neuroinflammation, as evidenced by the decreased Iba1 level, a microglia marker. Meanwhile, RIC intervention elevated CBF in frontal cortex of the rats. Notably, RIC intervention effectively suppressed Aβ toxicity, as demonstrated by the enhancement of α-secretase and attenuation of β-secretase (BACE1) and γ- secretase and Aβ1-42 and Aβ1-40 levels as well. CONCLUSION Chronic RIC intervention exerts vascular and neuroprotective roles, suggesting that RIC could be a promising therapeutic strategy targeting the BBB and NVU during AD development.
Collapse
Affiliation(s)
- Yuxuan Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Wuxiang Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Jing Bai
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Fujia Gao
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Haoran Ma
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Huiyu Liu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Jiewei Hu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Chao Xu
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Xin Zhang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Zixuan Liu
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tao Yuan
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
| | - Chenxu Sun
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuanyuan Huang
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Ruimin Wang
- International Science & Technology Cooperation Base of GeriatricSchool of Public Health of North China University of Science and TechnologyTangshanHebeiChina
- School of Basic Medical ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
2
|
Zeng W, Sun L, Zhu H, Wu X, Xu L, Xu L. A composite arctigenin/caffeine/glucose formulation enhances anti-fatigue effect. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Akki R, Siracusa R, Cordaro M, Remigante A, Morabito R, Errami M, Marino A. Adaptation to oxidative stress at cellular and tissue level. Arch Physiol Biochem 2022; 128:521-531. [PMID: 31835914 DOI: 10.1080/13813455.2019.1702059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several in vitro and in vivo investigations have already proved that cells and tissues, when pre-exposed to low oxidative stress by different stimuli such as chemical, physical agents and environmental factors, display more resistance against subsequent stronger ischaemic injuries, resulting in an adaptive response known as ischaemic preconditioning (IPC). The aim of this review is to report the most recent knowledge about the complex adaptive mechanisms, including signalling transduction pathways, antioxidant systems, apoptotic and inflammation pathways, underlying cell protection against oxidative damage. In addition, an update about in vivo adaptation strategies in response to ischaemic/reperfusion episodes and brain trauma is also given.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohammed Errami
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Guo S, Wang R, Hu J, Sun L, Zhao X, Zhao Y, Han D, Hu S. Photobiomodulation Promotes Hippocampal CA1 NSC Differentiation Toward Neurons and Facilitates Cognitive Function Recovery Involving NLRP3 Inflammasome Mitigation Following Global Cerebral Ischemia. Front Cell Neurosci 2021; 15:731855. [PMID: 34489645 PMCID: PMC8417562 DOI: 10.3389/fncel.2021.731855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our recent study revealed that photobiomodulation (PBM) inhibits delayed neuronal death by preserving mitochondrial dynamics and function following global cerebral ischemia (GCI). In the current study, we clarified whether PBM exerts effective roles in endogenous neurogenesis and long-lasting neurological recovery after GCI. Adult male rats were treated with 808 nm PBM at 20 mW/cm2 irradiance for 2 min on cerebral cortex surface (irradiance ∼7.0 mW/cm2, fluence ∼0.8 J/cm2 on the hippocampus) beginning 3 days after GCI for five consecutive days. Cognitive function was evaluated using the Morris water maze. Neural stem cell (NSC) proliferation, immature neurons, and mature neurons were examined using bromodeoxyuridine (BrdU)-, doublecortin (DCX)-, and NeuN-staining, respectively. Protein expression, such as NLRP3, cleaved IL1β, GFAP, and Iba1 was detected using immunofluorescence staining, and ultrastructure of astrocyte and microglia was observed by transmission electron microscopy. The results revealed that PBM exerted a markedly neuroprotective role and improved spatial learning and memory ability at 58 days of ischemia/reperfusion (I/R) but not at 7 days of reperfusion. Mechanistic studies revealed that PBM suppressed reactive astrocytes and maintained astrocyte regeneration at 7 days of reperfusion, as well as elevated neurogenesis at 58 days of reperfusion, as evidenced by a significant decrease in the fluorescence intensity of GFAP (astrocyte marker) but unchanged the number of BrdU-GFAP colabeled cells at the early timepoint, and a robust elevation in the number of DCX-NeuN colabeled cells at the later timepoint in the PBM-treated group compared to the GCI group. Notably, PBM treatment protected the ultrastructure of astrocyte and microglia cells at 58 days but not 7 days of reperfusion in the hippocampal CA1 region. Furthermore, PBM treatment significantly attenuated the GCI-induced immunofluorescence intensity of NLRP3 (an inflammasome component), cleaved IL1β (reflecting inflammasome activation) and Iba1, as well as the colocalization of NLRP3/GFAP or cleaved IL-1β/GFAP, especially in animals subjected to I/R at 58 days. Taken together, PBM treatment performed postischemia exerted a long-lasting protective effect on astrocytes and promoted endogenous neurogenesis in the hippocampal CA1 region, which might contribute to neurological recovery after GCI.
Collapse
Affiliation(s)
- Sihan Guo
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jiewei Hu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Liping Sun
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Xinru Zhao
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Yufeng Zhao
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Dong Han
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Shuqun Hu
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Gerace E, Scartabelli T, Pellegrini-Giampietro DE, Landucci E. Tolerance Induced by (S)-3,5-Dihydroxyphenylglycine Postconditioning is Mediated by the PI3K/Akt/GSK3β Signalling Pathway in an In Vitro Model of Cerebral Ischemia. Neuroscience 2020; 433:221-229. [DOI: 10.1016/j.neuroscience.2019.12.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
|
6
|
Chang P, Tian Y, Williams AM, Bhatti UF, Liu B, Li Y, Alam HB. Inhibition of Histone Deacetylase 6 Protects Hippocampal Cells Against Mitochondria-mediated Apoptosis in a Model of Severe Oxygen-glucose Deprivation. Curr Mol Med 2019; 19:673-682. [DOI: 10.2174/1566524019666190724102755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022]
Abstract
Background:
Histone deacetylase (HDAC) 6 inhibitors have demonstrated
significant protective effects in traumatic injuries. However, their roles in neuroprotection
and underlying mechanisms are poorly understood. This study sought to investigate the
neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose
deprivation (OGD) in HT22 hippocampal cells.
Methods:
HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity
were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release
assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using
JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl-
2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β
were analyzed by Western blot analysis.
Results:
Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy.
Tub-A significantly increased cell viability and attenuated LDH release after exposure to
OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells
following OGD and preserved the mitochondrial membrane potential. Tub-A also
attenuated the release of cytochrome c from the mitochondria into the cytoplasm and
suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by
the increased phosphorylation of Akt and GSK3β signaling pathways.
Conclusion:
HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in
HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated
apoptosis.
Collapse
Affiliation(s)
- Panpan Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron M. Williams
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Umar F. Bhatti
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Baoling Liu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Hasan B. Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Zhan L, Liu D, Wen H, Hu J, Pang T, Sun W, Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J 2019; 33:9291-9307. [PMID: 31120770 DOI: 10.1096/fj.201802633r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wingless/Int (Wnt)/β-catenin pathway plays an essential role in cell survival. Although postconditioning with 8% oxygen can alleviate transient global cerebral ischemia (tGCI)-induced neuronal damage in hippocampal CA1 subregion in adult rats as demonstrated by our previous studies, little is understood about the role of Wnt/β-catenin pathway in hypoxic postconditioning (HPC)-induced neuroprotection. This study tried to investigate the involvement of Wnt/β-catenin pathway in HPC-induced neuroprotection against tGCI and explore the underlying molecular mechanism thereof. We observed that HPC elevated nuclear β-catenin level as well as increased Wnt3a and decreased Dickkopf-1 (Dkk1) expression in CA1 after tGCI. Accordingly, HPC enhanced the expression of survivin and reduced the ratio of B-cell lymphoma/lewkmia-2 (Bcl-2)-associated X protein (Bax) to Bcl-2 following reperfusion. Moreover, our study has shown that these effects of HPC were abolished by lentivirus-mediated overexpression of Dkk1, and that the overexpression of Dkk1 completely reversed HPC-induced neuroprotection. Furthermore, HPC suppressed the activity of glycogen synthase kinase-3β (GSK-3β) in CA1 after tGCI, and the inhibition of GSK-3β activity with SB216763 increased the nuclear accumulation of β-catenin, up-regulated the expression of survivin, and reduced the ratio of Bax to Bcl-2, thus preventing the delayed neuronal death after tGCI. Finally, the administration of LY294002, an inhibitor of PI3K, increased GSK-3β activity and blocked nuclear β-catenin accumulation, thereby decreasing survivin expression and elevating the Bax-to-Bcl-2 ratio after HPC. These results suggest that activation of the Wnt/β-catenin pathway through Dkk1 inhibition and PI3K/protein kinase B pathway-mediated GSK-3β inactivation contributes to the neuroprotection of HPC against tGCI.-Zhan, L., Liu, D., Wen, H., Hu, J., Pang, T., Sun, W., Xu, E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3β inactivation.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Haixia Wen
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jiaoyue Hu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Taoyan Pang
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
8
|
Neuroprotective Mechanism of Hypoxic Post-conditioning Involves HIF1-Associated Regulation of the Pentose Phosphate Pathway in Rat Brain. Neurochem Res 2018; 44:1425-1436. [PMID: 30448928 DOI: 10.1007/s11064-018-2681-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Post-conditioning is exposure of an injured organism to the same harmful factors but of milder intensity which mobilizes endogenous protective mechanisms. Recently, we have developed a novel noninvasive post-conditioning (PostC) protocol involving three sequential episodes of mild hypobaric hypoxia which exerts pronounced neuroprotective action. In particular, it prevents development of pathological cascades caused by severe hypobaric hypoxia (SH) such as cellular loss, lipid peroxidation, abnormal neuroendocrine responses and behavioural deficit in experimental animals. Development of these post-hypoxic pathological effects has been associated with the delayed reduction of hypoxia-inducible factor 1 (HIF1) regulatory α-subunit levels in rat hippocampus, whereas PostC up-regulated it. The present study has been aimed at experimental examination of the hypothesis that intrinsic mechanisms underlying the neuroprotective and antioxidant effects of PostC involves HIF1-dependent stimulation of the pentose phosphate pathway (PPP). We have observed that SH leads to a decrease of glucose-6-phosphate dehydrogenase (G6PD) activity in the hippocampus and neocortex of rats as well as to a reduction in NADPH and total glutathione levels. This depletion of the antioxidant defense system together with excessive lipid peroxidation during the reoxygenation phase resulted in increased oxidative stress and massive cellular death observed after SH. In contrast, PostC led to normalization of G6PD activity, stabilization of the NADPH and total glutathione levels and thereby resulted in recovery of the cellular redox state and prevention of neuronal death. Our data suggest that stabilization of the antioxidant system via HIF1-associated PPP regulation represents an important neuroprotective mechanism enabled by PostC.
Collapse
|
9
|
Doeppner TR, Zechmeister B, Kaltwasser B, Jin F, Zheng X, Majid A, Venkataramani V, Bähr M, Hermann DM. Very Delayed Remote Ischemic Post-conditioning Induces Sustained Neurological Recovery by Mechanisms Involving Enhanced Angioneurogenesis and Peripheral Immunosuppression Reversal. Front Cell Neurosci 2018; 12:383. [PMID: 30420796 PMCID: PMC6216109 DOI: 10.3389/fncel.2018.00383] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 01/06/2023] Open
Abstract
Ischemic conditioning is defined as a transient and subcritical period of ischemia integrated in an experimental paradigm that involves a stimulus of injurious ischemia, activating endogenous tissue repair mechanisms that lead to cellular protection under pathological conditions like stroke. Whereas ischemic pre-conditioning is irrelevant for stroke treatment, ischemic post-conditioning, and especially non-invasive remote ischemic post-conditioning (rPostC) is an innovative and potential strategy for stroke treatment. Although rPostC has been shown to induce neuroprotection in stroke models before, resulting in some clinical trials on the way, fundamental questions with regard to its therapeutic time frame and its underlying mechanisms remain elusive. Hence, we herein used a model of non-invasive rPostC of hind limbs after cerebral ischemia in male C57BL6 mice, studying the optimal timing for the application of rPostC and its underlying mechanisms for up to 3 months. Mice undergoing rPostC underwent three different paradigms, starting with the first cycle of rPostC 12 h, 24 h, or 5 days after stroke induction, which is a very delayed time point of rPostC that has not been studied elsewhere. rPostC as applied within 24 h post-stroke induces reduction of infarct volume on day three. On the contrary, very delayed rPostC does not yield reduction of infarct volume on day seven when first applied on day five, albeit long-term brain injury is significantly reduced. Likewise, very delayed rPostC yields sustained neurological recovery, whereas early rPostC (i.e., <24 h) results in transient neuroprotection only. The latter is mediated via heat shock protein 70 that is a well-known signaling protein involved in the pathophysiological cellular cascade of cerebral ischemia, leading to decreased proteasomal activity and decreased post-stroke inflammation. Very delayed rPostC on day five, however, induces a pleiotropic effect, among which a stimulation of angioneurogenesis, a modulation of the ischemic extracellular milieu, and a reversal of the stroke-induced immunosuppression occur. As such, very delayed rPostC appears to be an attractive tool for future adjuvant stroke treatment that deserves further preclinical attention before large clinical trials are in order, which so far have predominantly focused on early rPostC only.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Bozena Zechmeister
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan Zheng
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Vivek Venkataramani
- Department of Hematology & Oncology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
10
|
Yunoki M, Kanda T, Suzuki K, Uneda A, Hirashita K, Yoshino K. Ischemic Tolerance of the Brain and Spinal Cord: A Review. Neurol Med Chir (Tokyo) 2017; 57:590-600. [PMID: 28954945 PMCID: PMC5709712 DOI: 10.2176/nmc.ra.2017-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ischemic tolerance is an endogenous neuroprotective phenomenon induced by sublethal ischemia. Ischemic preconditioning (IPC), the first discovered form of ischemic tolerance, is widely seen in many species and in various organs including the brain and the spinal cord. Ischemic tolerance of the spinal cord is less familiar among neurosurgeons, although it has been reported from the viewpoint of preventing ischemic spinal cord injury during aortic surgery. It is important for neurosurgeons to have opportunities to see patients with spinal cord ischemia, and to understand ischemic tolerance of the spinal cord as well as the brain. IPC has a strong neuroprotective effect in animal models of ischemia; however, clinical application of IPC for ischemic brain and spinal diseases is difficult because they cannot be predicted. In addition, one drawback of preconditioning stimuli is that they are also capable of producing injury with only minor changes to their intensity or duration. Numerous methods to induce ischemic tolerance have been discovered that vary in their timing and the site at which short-term ischemia occurs. These methods include ischemic postconditioning (IPoC), remote ischemic preconditioning (RIPC), remote ischemic perconditioning (RIPerC) and remote ischemic postconditioning (RIPoC), which has had a great impact on clinical approaches to treatment of ischemic brain and spinal cord injury. Especially RIPerC and RIPoC to induce spinal cord tolerance are considered clinically useful, however the evidence supporting these methods is currently insufficient; further experimental or clinical research in this area is thus necessary.
Collapse
Affiliation(s)
| | | | - Kenta Suzuki
- Department of Neurosurgery, Kagawa Rosai Hospital
| | | | | | | |
Collapse
|
11
|
Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 2017; 107:43-56. [DOI: 10.1016/j.neuint.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 02/07/2023]
|
12
|
Wang S, Li M, Guo Y, Li C, Wu L, Zhou XF, Luo Y, An D, Li S, Luo H, Pu L. Effects of Panax notoginseng ginsenoside Rb1 on abnormal hippocampal microenvironment in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:138-146. [PMID: 28065779 DOI: 10.1016/j.jep.2017.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
UNLABELLED Cerebral ischemia damages central neurons, and abnormal microenvironment in ischemic condition is the key factor to the damages. The increase of local concentration of glutamic acid, the overload of Ca2+, and the mitochondrial stress caused by release of cytochrome C are important factors of abnormal microenvironment in cerebral ischemia. In this study ginsenoside Rb1, a compound from Panax Notoginseng, was used to intervene abnormal environment of neurons in the hippocampal CA1 region in two animal models (microperfusion model and photothrombosis model). RESULTS Compared with the vehicle in the sham group, ginsenoside had following effects. a) ginsenoside Rb1 increased the regional cerebral blood flow (rCBF) and the stability of neuronal ultrastructure in in the hippocampal CA1 region and improved the adaptability of neurons in two models. b) ginsenoside Rb1 improved the expression level of glial glutamate transporter1 (GLT-1) and reversed the uptake of glutamate (Glu) after ischemia, and as a result thereby decreased the excitability of Glu and the expression level of GLT-1 was proportional to the dose of ginsenoside Rb1 and similar to that of Nimodipine. c) ginsenoside Rb1 inhibited the expression level of NMDAR and the overload of Ca2+, thereby reducing neuronal damages. Meanwhile, the expression level of NMDAR was inversely proportional to the dose of ginsenoside Rb1, which was similar to that of Nimodipine. d) ginsenoside Rb1 decreased the release of cytochrome C (Cyt-C) and reduced the damages caused by neuronal mitochondrial stress. Meanwhile, the release of Cyt-C was inversely proportional to the dose of ginsenoside Rb1, which was similar to that of Nimodipine. Ginsenoside Rb1 may be as an effective drug for neuroprotection and improve cerebral blood flow after acute ischemia and prevent the secondary brain damage induced by stroke.
Collapse
Affiliation(s)
- Shiyun Wang
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China; Department of Pharmacology, Affiliated hospital of Xiangnan university, Chenzhou, Hunan, PR China
| | - Minghong Li
- Department of Physiology, College of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, PR China
| | - Ying Guo
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Chen Li
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Lanou Wu
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Xin-Fu Zhou
- School of Pharmacology and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Yaohui Luo
- Department of Basic Medical Experiment, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Dong An
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Shude Li
- Department of Biochemistry, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Haiyun Luo
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China.
| | - Lijin Pu
- Department of Cardiology, First affiliated hospital of Kunming medical university, Kunming, Yunnan, PR China.
| |
Collapse
|
13
|
Overview of Experimental and Clinical Findings regarding the Neuroprotective Effects of Cerebral Ischemic Postconditioning. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6891645. [PMID: 28473987 PMCID: PMC5394355 DOI: 10.1155/2017/6891645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022]
Abstract
Research on attenuating the structural and functional deficits observed following ischemia-reperfusion has become increasingly focused on the therapeutic potential of ischemic postconditioning. In recent years, various methods and animal models of ischemic postconditioning have been utilized. The results of these numerous studies have indicated that the mechanisms underlying the neuroprotective effects of ischemic postconditioning may involve reductions in the generation of free radicals and inhibition of calcium overload, as well as the release of endogenous active substances, alterations in membrane channel function, and activation of protein kinases. Here we review the novel discovery, mechanism, key factors, and clinical application of ischemic postconditioning and discuss its implications for future research and problem of clinical practice.
Collapse
|
14
|
Vetrovoy OV, Rybnikova EA, Samoilov MO. Cerebral mechanisms of hypoxic/ischemic postconditioning. BIOCHEMISTRY (MOSCOW) 2017; 82:392-400. [DOI: 10.1134/s000629791703018x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep 2017; 7:42660. [PMID: 28205591 PMCID: PMC5311994 DOI: 10.1038/srep42660] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
The current study examined whether the steroid hormone, 17β-estradiol (E2) can exert long-lasting beneficial effects upon axonal health, synaptic plasticity, dementia-related amyloid-beta (Aβ) protein expression, and hippocampal-dependent cognitive function in an animal model of chronic cerebral hypoperfusion and vascular dementia (VaD). Chronic cerebral hypoperfusion and VaD was induced by bilateral common carotid artery occlusion (BCCAO) in adult male Sprague Dawley rats. Low dose E2 administered for the first 3-months after BCCAO exerted long-lasting beneficial effects, including significant neuroprotection of hippocampal CA1 neurons and preservation of hippocampal-dependent cognitive function when examined at 6-months after BCCAO. E2 treatment also prevented BCCAO-induced damage to hippocampal myelin sheaths and oligodendrocytes, enhanced expression of the synaptic proteins synaptophysin and PSD95 in the hippocampus, and prevented BCCAO-induced loss of total and mushroom dendritic spines in the hippocampal CA1 region. Furthermore, E2-treatment also reduced BCCAO induction of dementia-related proteins expression such as p-tau (PHF1), total ubiquitin, and Aβ1-42, when examined at 6 m after BCCAO. Taken as a whole, the results suggest that low-dose E2 replacement might be a potentially promising therapeutic modality to attenuate or block negative neurological consequences of chronic cerebral hypoperfusion and VaD.
Collapse
|
16
|
Sun Y, Gong F, Yin J, Wang X, Wang X, Sun Q, Zhu Z, Su X, Zheng J, Liu L, Li Y, Hu X, Li J. Therapeutic effect of apocynin through antioxidant activity and suppression of apoptosis and inflammation after spinal cord injury. Exp Ther Med 2017; 13:952-960. [PMID: 28450925 PMCID: PMC5403360 DOI: 10.3892/etm.2017.4090] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting hundreds of thousands of people worldwide annually. SCI results in activation of the inflammatory response and apoptosis, and generates oxidative stress, which has deleterious effects on the recovery of motor function. Apocynin, an inhibitor of NADPH oxidase, has been demonstrated to improve neuronal functional recovery in rat models of SCI. However, the efficacy of apocynin treatment post-SCI has not been investigated. The aim of this study was to observe the effects of apocynin on the repair of acute spinal cord damage in rats and to examine the potential beneficial effects. A rat model of SCI was established, and apocynin (50 mg/kg) was administered intraperitoneally at 30 min after SCI and then every 12 h for 3 days. In order to examine oxidative tissue injury, the levels of malondialdehyde and glutathione and activities of myeloperoxidase and superoxide dismutase in the spinal cord tissues were measured. Histological evaluations were also conducted. NeuN labeling, TUNEL staining and caspase 3 immunohistochemical staining were performed to analyze neuronal damage and apoptosis around the lesion. Immunohistochemical analysis was also carried out to observe the expression of CD11b and glial fibrillary acidic protein. The expression levels of bax, bcl-2, tumor necrosis-α, interleukin (IL)-1β and IL-6 in the spinal cord tissue were assayed by western blotting. Finally, locomotor function was evaluated using the inclined plane test and Basso, Beattie and Bresnahan scores. The results showed that treatment with apocynin decreased oxidative damage, alleviated neuronal apoptosis, inhibited the inflammatory response and resulted in the promotion of locomotor function. Therefore, this study confirmed the therapeutic efficacy of apocynin in the repair of SCI, which was probably mediated via the inhibition of apoptosis and the inflammatory response, thus promoting the restoration of nerve function.
Collapse
Affiliation(s)
- Yijun Sun
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Futai Gong
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Jichao Yin
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaoyan Wang
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xiangyang Wang
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Qing Sun
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Zhiqiang Zhu
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaoqiang Su
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Jie Zheng
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Li Liu
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Yang Li
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xinglv Hu
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Jia Li
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
17
|
Wang Z, Ye Z, Huang G, Wang N, Wang E, Guo Q. Sevoflurane Post-conditioning Enhanced Hippocampal Neuron Resistance to Global Cerebral Ischemia Induced by Cardiac Arrest in Rats through PI3K/Akt Survival Pathway. Front Cell Neurosci 2016; 10:271. [PMID: 27965539 PMCID: PMC5127837 DOI: 10.3389/fncel.2016.00271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of this current study was to evaluate whether improvement of mitochondrial dysfunction was involved in the therapeutic effect of sevoflurane post-conditioning in global cerebral ischemia after cardiac arrest (CA) via the PI3K/Akt pathway. In the first experiment, animals were randomly divided into three groups: a sham group, a CA group, a CA+sevoflurane post-conditioning group (CA+SE). Sevoflurane post-conditioning was achieved by administration of 2.5% sevoflurane for 30 min after resuscitation. Sevoflurane post-conditioning has a significant neuroprotective effect by increasing survival rates and reducing neuronal apoptosis. Additionally, the gene and protein expression of PGC-1α, NRF-1, and TFAM, the master regulators of mitochondrial biogenesis, were up-regulated in the CA+SE group, when compared to the CA group. Similarly, in contrast to the CA group, mitochondria-specific antioxidant enzymes, including heat-shock protein 60 (HSP60), peroxiredoxin 3 (Prx3), and thioredoxin 2 (Trx2) were also increased in the CA+SE group. Finally, administration of sevoflurane ameliorated mitochondrial reactive oxygen species (ROS) formation and maintained mitochondrial integrity. In the second experiment, we investigated the relationship between the PI3K/Akt pathway and mitochondrial biogenesis and mitochondria-specific antioxidant enzymes in sevoflurane-induced neuroprotection. The selective PI3K inhibitor wortmannin not only eliminated the beneficial biochemical processes of sevoflurane by reducing the level of mitochondrial biogenesis-related proteins and aggravating mitochondrial integrity, but also reversed the elevation of mitochondria-specific antioxidant enzymes induced by sevoflurane. Therefore, our data suggested that sevoflurane post-conditioning provides neuroprotection via improving mitochondrial biogenesis and integrity, as well as increasing mitochondria-specific antioxidant enzymes by a mechanism involving the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South UniversityChangsha, China; Department of Anesthesiology, Hainan General HospitalHaikou, China
| | - Zhi Ye
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University Changsha, China
| | - Guoqing Huang
- Emergency Department, Affiliated Xiangya Hospital of Central South University Changsha, China
| | - Na Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University Changsha, China
| | - E Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University Changsha, China
| |
Collapse
|
18
|
Doeppner TR, Doehring M, Kaltwasser B, Majid A, Lin F, Bähr M, Kilic E, Hermann DM. Ischemic Post-Conditioning Induces Post-Stroke Neuroprotection via Hsp70-Mediated Proteasome Inhibition and Facilitates Neural Progenitor Cell Transplantation. Mol Neurobiol 2016; 54:6061-6073. [PMID: 27699598 DOI: 10.1007/s12035-016-0137-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
In view of the failure of pharmacological therapies, alternative strategies promoting post-stroke brain repair are needed. Post-conditioning is a potentially promising therapeutic strategy, which induces acute neuroprotection against ischemic injury. To elucidate longer lasting actions of ischemic post-conditioning, mice were exposed to a 60-min stroke and post-conditioning by an additional 10-min stroke that was induced 10 min after reperfusion onset. Animals were sacrificed 24 h or 28 days post-stroke. Post-conditioning reduced infarct volume and neurological deficits 24 h post-stroke, enhancing blood-brain barrier integrity, reducing brain leukocyte infiltration, and reducing oxidative stress. On the molecular level, post-conditioning yielded increased Hsp70 expression, whereas nuclear factor (NF)-κB and proteasome activities were decreased. Reduced infarct volume and proteasome inhibition were reversed by Hsp70 knockdown, suggesting a critical role of the Hsp70 proteasome pathway in ischemic post-conditioning. The survival-promoting effects of ischemic post-conditioning, however, were not sustainable as neuroprotection and neurological recovery were lost 28 days post-stroke. Although angioneurogenesis was not increased by post-conditioning, the favorable extracellular milieu facilitated intracerebral transplantation of neural progenitor cells 6 h post-stroke, resulting in persisted neuroprotection and neurological recovery. Thus, post-conditioning might support brain repair processes, but in view of its transient, neuroprotection is unlikely useful as stroke therapy in its current form.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany. .,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey. .,Department of Neurology, University of Göttingen Medical School, Göttingen, Germany.
| | - Maria Doehring
- Oberhavel Kliniken, Department of Internal Medicine, Oranienburg, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Fengyan Lin
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
19
|
Ahmed ME, Dong Y, Lu Y, Tucker D, Wang R, Zhang Q. Beneficial Effects of a CaMKIIα Inhibitor TatCN21 Peptide in Global Cerebral Ischemia. J Mol Neurosci 2016; 61:42-51. [PMID: 27604243 DOI: 10.1007/s12031-016-0830-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022]
Abstract
Aberrant calcium influx is a common feature following ischemic reperfusion (I/R) in transient global cerebral ischemia (GCI) and causes delayed neuronal cell death in the CA1 region of the hippocampus. Activation of calcium-calmodulin (CaM)-dependent protein kinase IIα (CaMKIIα) is a key event in calcium signaling in ischemic injury. The present study examined the effects of intracerebroventricular (icv) injection of tatCN21 in ischemic rats 3 h after GCI reperfusion. Cresyl violet and NeuN staining revealed that tatCN21 exerted neuroprotective effects against delayed neuronal cell death of hippocampal CA1 pyramidal neurons 10 days post-GCI. In addition, TatCN21 administration ameliorated GCI-induced spatial memory deficits in the Barnes maze task as well as anxiety-like behaviors and spontaneous motor activity in the elevated plus maze and open field test, respectively. Mechanistic studies showed that the administration of tatCN21 decreased GCI-induced phosphorylation, translocation, and membrane targeting of CaMKIIα. Treatment with tatCN21 also inhibited the level of CaMKIIα-NR2B interaction and NR2B phosphorylation. Our results revealed an important role of tatCN21 in inhibiting CaMKIIα activation and its beneficial effects in neuroprotection and memory preservation in an ischemic brain injury model.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Yi JH, Beak SJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH. Danggui-Jakyak-San enhances hippocampal long-term potentiation through the ERK/CREB/BDNF cascade. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:481-489. [PMID: 26453932 DOI: 10.1016/j.jep.2015.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 07/14/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui-Jakyak-San (DJS), a traditional herbal prescription, has long been used to treat gerontological disorders due to insufficient blood supply. AIM OF THE STUDY Previously, we reported that DJS increased hippocampal neurogenesis and enhanced learning and memory. However, the precise mechanism of DJS and its effects on learning and memory are still not well understood. In this study, we investigated the effect of DJS on hippocampal long-term potentiation (LTP), a cellular mechanism thought to underlie learning and memory. MATERIALS AND METHODS To understand the effect of DJS on LTP, we used acute mouse hippocampal slices and delivered one train of high frequency stimulation (100 Hz, 100 pulses). Western blots were used to analyze the changes in protein levels induced by DJS. Morris water maze test was used to evaluate the effect of DJS on spatial long-term memory. RESULTS DJS enhanced LTP in the Schaffer-collateral pathway of the hippocampus in a concentration-dependent manner. Extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) were activated by DJS. Moreover, brain-derived neurotropic factor (BDNF) was also increased by DJS. Blockade of ERK1/2 activation with PD198306 blocked the DJS-induced activation of the ERK1/2/CREB/BDNF cascade and LTP enhancement. In vivo, DJS improved spatial long-term memory and upregulated the hippocampal CREB/BDNF cascade. CONCLUSION These results suggest that DJS enhances hippocampal LTP and spatial memory through the ERK/CREB/BDNF cascade.
Collapse
Affiliation(s)
- Jee Hyun Yi
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Soo Ji Beak
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju 501-757, Republic of Korea
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan, Republic of Korea
| | - Byeong C Kim
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju 501-757, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Sciences and,College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
21
|
Wong H, Levenga J, Cain P, Rothermel B, Klann E, Hoeffer C. RCAN1 overexpression promotes age-dependent mitochondrial dysregulation related to neurodegeneration in Alzheimer's disease. Acta Neuropathol 2015; 130:829-43. [PMID: 26497675 DOI: 10.1007/s00401-015-1499-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Aging is the largest risk factor for Alzheimer's disease (AD). Patients with Down syndrome (DS) develop symptoms consistent with early-onset AD, suggesting that overexpression of chromosome 21 genes such as Regulator of Calcineurin 1 (RCAN1) plays a role in AD pathogenesis. RCAN1 levels are increased in the brain of DS and AD patients but also in the human brain with normal aging. RCAN1 has been implicated in several neuronal functions, but whether its increased expression is correlative or causal in the aging-related progression of AD remains elusive. We show that brain-specific overexpression of the human RCAN1.1S isoform in mice promotes early age-dependent memory and synaptic plasticity deficits, tau pathology, and dysregulation of dynamin-related protein 1 (DRP1) activity associated with mitochondrial dysfunction and oxidative stress, reproducing key AD features. Based on these findings, we propose that chronic RCAN1 overexpression during aging alters DRP1-mediated mitochondrial fission and thus acts to promote AD-related progressive neurodegeneration.
Collapse
Affiliation(s)
- Helen Wong
- Center for Neural Science, New York University, New York, NY, USA
| | - Josien Levenga
- Department of Integrated of Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Peter Cain
- Department of Integrated of Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Beverly Rothermel
- Department of Cardiology, University of Texas-Southwestern, Dallas, TX, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA
| | - Charles Hoeffer
- Department of Integrated of Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
- New York University School of Medicine, New York, NY, USA.
- Linda Crnic Institute, Denver, CO, USA.
| |
Collapse
|
22
|
Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci U S A 2015; 112:E6673-82. [PMID: 26627258 DOI: 10.1073/pnas.1516729112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
17-β estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3β (GSK3β)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3β, E2 modulates interaction of PELP1 with GSK3β, and PELP1 is a novel substrate for GSK3β. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/β-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain.
Collapse
|
23
|
Gao C, Cai Y, Zhang X, Huang H, Wang J, Wang Y, Tong X, Wang J, Wu J. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy. PLoS One 2015; 10:e0137146. [PMID: 26325184 PMCID: PMC4556686 DOI: 10.1371/journal.pone.0137146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/12/2015] [Indexed: 12/04/2022] Open
Abstract
The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.
Collapse
Affiliation(s)
- Chunlin Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Ying Cai
- Department of Neuroscience, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Huiling Huang
- Department of Neuroscience, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Yajing Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Xiaoguang Tong
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Jinhuan Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
- * E-mail:
| |
Collapse
|
24
|
Kaur H, Kumar A, Jaggi AS, Singh N. Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice. J Surg Res 2015; 197:191-200. [DOI: 10.1016/j.jss.2015.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
|
25
|
Mahi N, Kumar A, Jaggi AS, Singh N, Dhawan R. Possible role of pannexin 1/P2x7 purinoceptor in neuroprotective mechanism of ischemic postconditioning in mice. J Surg Res 2015; 196:190-9. [DOI: 10.1016/j.jss.2015.02.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
|
26
|
Yang Y, Wang J, Li Y, Fan C, Jiang S, Zhao L, Di S, Xin Z, Wang B, Wu G, Li X, Li Z, Gao X, Dong Y, Qu Y. HO-1 Signaling Activation by Pterostilbene Treatment Attenuates Mitochondrial Oxidative Damage Induced by Cerebral Ischemia Reperfusion Injury. Mol Neurobiol 2015; 53:2339-53. [PMID: 25983033 DOI: 10.1007/s12035-015-9194-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/22/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED Ischemia reperfusion (IR) injury (IRI) is harmful to the cerebral system and causes mitochondrial oxidative stress. The antioxidant response element (ARE)-mediated antioxidant pathway plays an important role in maintaining the redox status of the brain. Heme oxygenase-1 (HO-1), combined with potent AREs in the promoter of HO-1, is a highly effective therapeutic target for protection against cerebral IRI. Pterostilbene (PTE), a natural dimethylated analog of resveratrol from blueberries, is a strong natural antioxidant. PTE has been shown to be beneficial for some nervous system diseases and may regulate HO-1 signaling. This study was designed to investigate the protective effects of PTE on cerebral IRI and to elucidate potential mechanisms underlying those effects. Mouse brains and cultured HT22 neuron cells were subjected to IRI. Prior to this procedure, the brains or cells were exposed to PTE in the absence or presence of the HO-1 inhibitor ZnPP or HO-1 small interfering RNA (siRNA). PTE conferred a cerebral protective effect, as shown by increased neurological scores, viable neurons and decreased brain edema as well as a decreased ion content and apoptotic ratio in vivo. PTE also increased the cell viability and decreased the lactate dehydrogenase (LDH) leakage and apoptotic ratio in vitro. ZnPP and HO-1 siRNA both blocked PTE-mediated cerebral protection by inhibiting HO-1 signaling and further inhibited two HO-1 signaling-related antioxidant molecules: NAD(P)H quinone oxidoreductase 1 (NQO1) and glutathione S-transferases (GSTs), which are induced by PTE. PTE also promoted a well-preserved mitochondrial membrane potential (MMP), mitochondria complex I activity, and mitochondria complex IV activity, increased the mitochondrial cytochrome c level, and decreased the cytosolic cytochrome c level. However, this PTE-elevated mitochondrial function was reversed by ZnPP or HO-1 siRNA treatment. In summary, our results demonstrate that PTE treatment attenuates cerebral IRI by reducing IR-induced mitochondrial oxidative damage through the activation of HO-1 signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jiayi Wang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yue Li
- Department of Air Logistics, The 463rd Hospital of PLA, 46 Xiaoheyan Road, Shenyang, 110042, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Shuai Jiang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Lei Zhao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhenlong Xin
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Bodong Wang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Guiling Wu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Zhiqing Li
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, 110016, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, 110016, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, 110016, China.
| | - Yan Qu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
27
|
Han D, Scott EL, Dong Y, Raz L, Wang R, Zhang Q. Attenuation of mitochondrial and nuclear p38α signaling: a novel mechanism of estrogen neuroprotection in cerebral ischemia. Mol Cell Endocrinol 2015; 400:21-31. [PMID: 25462588 DOI: 10.1016/j.mce.2014.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
P38 mitogen-activated protein kinase (MAPK) is a pro-apoptotic and pro-inflammatory protein that is activated in response to cellular stress. While p38 is known to be activated in response to cerebral ischemia, the precise role of p38 and its isoforms in ischemia-induced neuronal apoptosis remains unclear. In the current study, we examined the differential activation and functional roles of p38α and p38β MAPK isoforms in short-term ovariectomized female rats treated with either the neuroprotective ovarian hormone 17beta-estradiol (E2) or placebo in a model of global cerebral ischemia (GCI). GCI induced biphasic activation of total p38 in the hippocampal CA1, with peaks at 30 min and 1 day after 10-min ischemia-reperfusion. Further study demonstrated that activated p38α, but not p38β, translocated to the nucleus 30 min and 3 h post reperfusion, and that this event coincided with increased phosphorylation of activating transcription factor 2 (ATF2), a p38 target protein. Intriguingly, activated p38α was also enhanced in mitochondrial fractions of CA1 neurons 1 day after GCI, and there was loss of mitochondrial membrane potential, as well as enhanced cytochrome c release and caspase-3 cleavage at 2 days post GCI. Importantly, E2 prevented the biphasic activation of p38, as well as both nuclear and mitochondrial translocation of p38α after GCI, and these findings correlated with attenuation of mitochondrial dysfunction and delayed neuronal cell death in the hippocampal CA1. Furthermore, administration of a p38 inhibitor was able to mimic the neuroprotective effects of E2 in the hippocampal CA1 region by preventing nuclear and mitochondrial translocation of p38α, loss of mitochondrial membrane potential, and neuronal apoptosis. As a whole, this study suggests that changes in subcellular localization of the activated p38α isoform are required for neuronal apoptosis following GCI, and that E2 exerts robust neuroprotection, in part, through dual inhibition of activation and subcellular trafficking of p38α.
Collapse
Affiliation(s)
- Dong Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Jiangsu 221004, China
| | - Erin L Scott
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Limor Raz
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Neurobiology Institute of Medical Research Centre, Hebei United University, Tangshan, Hebei 06300, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
28
|
Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, Brann D, Wang R. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus 2014; 25:286-96. [PMID: 25271147 DOI: 10.1002/hipo.22372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 11/11/2022]
Abstract
Ischemic postconditioning (Post C), which involves administration of a brief ischemia after the initial ischemic event, has been demonstrated to be strongly neuroprotective against global cerebral ischemia (GCI) and to improve cognitive outcome. To enhance understanding of the underlying mechanisms, the current study examined the role of NMDA receptors in mediating the beneficial effects of Post C (3 min ischemia) administered 2 days after GCI in adult male rats. The results revealed that Post C was strongly neuroprotective against GCI, and that this effect was blocked by administration of the NMDA receptor antagonist MK-801. Further work revealed that the NR2A-type NMDA receptors mediate the Post C beneficial effects as administration of a NR2A-preferring antagonist (NVP-A) blocked Post C neuroprotection and cognitive enhancement, while administration of a NR2B-preferring antagonist (Ro25) was without effect. Post C significantly up-regulated NR2A levels and phosphorylation of NR2A in the hippocampal CA1 region after Post C. Post C also increased Ca(2+) influx and activation/phosphorylation of CamKIIα at Thr(286), effects that were NR2A mediated as they were blocked by NVP-A. Phosphorylation of ERK and CREB was also increased by Post C, as were two downstream CREB-dependent prosurvival factors, brain derived neurotropic factor (BDNF) and Bcl2, effects that were blocked by the NR2A antagonist, NVP-A. Taken as a whole, the current study provides evidence that NR2A-activation and downstream prosurvival signaling is a critical mediator of Post C-induced neuroprotection and cognitive enhancement following GCI.
Collapse
Affiliation(s)
- Xi Zhang
- Neurobiology Institute of Medical Research Center, Hebei United University, Tangshan, Hebei, 063000, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Biological networks in ischemic tolerance - rethinking the approach to clinical conditioning. Transl Stroke Res 2014; 4:114-29. [PMID: 24223074 DOI: 10.1007/s12975-012-0244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adaptive response (conditioning) to environmental stressors evokes evolutionarily conserved programs in uni- and multicellular organisms that result in increased fitness and resistance to stressor induced injury. Although the concept of conditioning has been around for a while, its translation into clinical therapies targeting neurovascular diseases has only recently begun. The slow pace of clinical adoption might be partially explained by our poor understanding of underpinning mechanisms and of the complex responses of the organism to the stressor. At the 2(nd) Translational Preconditioning Meeting participants engaged in an intense discussion addressing whether the time has come to more aggressively implement clinical conditioning protocols in the treatment of cerebrovascular diseases or whether it would be better to wait until preclinical data would help to minimize clinical empiricism. This review addresses the complex involvement of biological networks in establishing ischemic tolerance at the organism level using two clinically promising conditioning modalities, namely remote ischemic preconditioning, and per- or post-conditioning, as examples.
Collapse
|
30
|
Lin HC, Narasimhan P, Liu SY, Chan PH, Lai IR. Postconditioning mitigates cell death following oxygen and glucose deprivation in PC12 cells and forebrain reperfusion injury in rats. J Neurosci Res 2014; 93:140-8. [PMID: 25082329 DOI: 10.1002/jnr.23460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 07/05/2014] [Indexed: 11/09/2022]
Abstract
Postconditioning mitigates ischemia-induced cellular damage via a modified reperfusion procedure. Mitochondrial permeability transition (MPT) is an important pathophysiological change in reperfusion injury. This study explores the role of MPT modulation underlying hypoxic postconditioning (HPoC) in PC12 cells and studies the neuroprotective effects of ischemic postconditioning (IPoC) on rats. Oxygen-glucose deprivation (OGD) was performed for 10 hr on PC12 cells. HPoC was induced by three cycles of 10-min reoxygenation/10-min rehypoxia after OGD. The MPT inhibitor N-methyl-4-isoleucine cyclosporine (NIM811) and the MPT inducer carboxyatractyloside (CATR) were administered to selective groups before OGD. Cellular death was evaluated by flow cytometry and Western blot analysis. JC-1 fluorescence signal was used to estimate the mitochondrial membrane potential (△Ψm ). Transient global cerebral ischemia (tGCI) was induced via the two-vessel occlusion and hypotension method in male Sprague Dawley rats. IPoC was induced by three cycles of 10-sec reperfusion/10-sec reocclusion after index ischemia. HPoC and NIM811 administration attenuated cell death, cytochrome c release, and caspase-3 activity and maintained △Ψm of PC12 cells after OGD. The addition of CATR negated the protection conferred by HPoC. IPoC reduced neuronal degeneration and cytochrome c release and cleaved caspase-9 expression of hippocampal CA1 neurons in rats after tGCI. HPoC protected PC12 cells against OGD by modulating the MPT. IPoC attenuated degeneration of hippocampal neurons after cerebral ischemia.
Collapse
Affiliation(s)
- Han-Chen Lin
- Department of Anatomy and Cell Biology, Medical College, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Li X, Zhang J, Chai S, Wang X. Progesterone alleviates hypoxic-ischemic brain injury via the Akt/GSK-3β signaling pathway. Exp Ther Med 2014; 8:1241-1246. [PMID: 25187832 PMCID: PMC4151699 DOI: 10.3892/etm.2014.1858] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022] Open
Abstract
This aim of this study was to investigate whether progesterone (PROG) alleviates the neuronal apoptosis in neonatal rats with hypoxic-ischemic (HI) brain damage through the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK-3β) signaling pathway. A total of 96 newborn Wistar rats aged 7 days were randomly divided into four groups: sham surgery, HI, drug prevention (PROG) and Akt inhibitor groups. HI animal models were established by a conventional method. All animals were sacrificed 24 h after hypoxia. Immunohistochemistry was used to detect the distribution and expression of phosphorylated Akt (p-Akt) and the GSK-3β proteins in the brain, and western blot analysis was used to determine the p-Akt and GSK-3β protein contents. An enzyme-linked immunosorbent assay was also used to determine the GSK-3β content of the brain tissue, and flow cytometry was used to evaluate the apoptosis rate of neural cells. The expression of p-Akt protein was reduced in the brain tissues of the HI group, whereas GSK-3β expression was increased. In addition, the GSK-3β content of the brain and the neuronal apoptosis rate were significantly increased. PROG pre-treatment increased p-Akt expression, decreased GSK-3β expression and GSK-3β content, and also reduced neuronal apoptosis. Following administration of the Akt inhibitor wortmannin, p-Akt expression decreased, GSK-3β expression increased, and the GSK-3β content and neuronal apoptosis rate significantly increased (P<0.05). In conclusion, PROG activates the PI3K/Akt/GSK-3β pathway to promote Akt activation, enhance p-Akt expression and inhibit GSK-3β expression, thereby inhibiting neuronal apoptosis, alleviating HI brain injury and inducing a cerebroprotective effect.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shujie Chai
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
32
|
Burda R, Danielisova V, Gottlieb M, Nemethova M, Bonova P, Matiasova M, Morochovic R, Burda J. Delayed remote ischemic postconditioning protects against transient cerebral ischemia/reperfusion as well as kainate-induced injury in rats. Acta Histochem 2014; 116:1062-7. [PMID: 24935779 DOI: 10.1016/j.acthis.2014.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
To test the appropriateness of using delayed remote ischemic postconditioning against damage caused to the hippocampus by ischemia or apoptosis inducing intoxication, we chose 10-min normothermic ischemia induced by four-vessel occlusion or kainate injection (8 mg/kg i.p.) in rats. Ischemia alone caused the number of degenerated CA1 neurons after 7 days lasting reperfusion to be significantly (p<0.001) increased by 72.77%. Delayed remote ischemic postconditioning lasting 20 min was able to prevent massive increase in the neurodegeneration. The group with 10 min of ischemia and postconditioning after 2 days of reperfusion had only 15.87% increase in the number of apoptotic neurons. Seven days after kainic acid injection the number of surviving neurons was 42.8% (p<0.001), but the portion of surviving pyramidal cells in the postconditioning group is more than 98%. Our data show that remote postconditioning, performed with 20 min of tourniquet ischemia applied to the hind limb, is a simple method able to effectively stop the onset of neurodegeneration and prevent occurrence of massive muscle cell necrosis, even when used 2 days after the end of the adverse event. Surviving neurons retained a substantial part of their learning and memory ability.
Collapse
|
33
|
Wang GH, Lan R, Zhen XD, Zhang W, Xiang J, Cai DF. An-Gong-Niu-Huang Wan protects against cerebral ischemia induced apoptosis in rats: up-regulation of Bcl-2 and down-regulation of Bax and caspase-3. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:156-162. [PMID: 24690773 DOI: 10.1016/j.jep.2014.03.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The An-Gong-Niu-Huang Wan (AGNH), a Chinese traditional medicine, has been used for treatment of cerebral diseases for centuries in China and other Asian countries, and is approved by the State Food and Drug Administration of China for the treatment of stroke. The aim of present study is to test the neuroprotective effects of AGNH on cerebral ischemia in rats and to explore the underlying mechanisms. MATERIALS AND METHODS 75 Male Sprague-Dawley rats were randomly divided into 5 groups: sham, ischemia-reperfusion (I/R), and I/R plus 0.065 g/kg/d AGNH, 0.125 g/kg/d AGNH and 0.25 g/kg/d AGNH. Cerebral ischemia was induced by 1.5h of middle cerebral artery occlusion (MCAO). Neurological functional deficits were evaluated according to Zea longa׳s score, cerebral infarct area was measured by tetrazolium staining. Cell injury and apoptosis were assessed by Nissl staining and DNA fragmentation assay. The expression of Bax, Bcl-2 and caspase-3 were analyzed by Western blot. RESULTS Rats subjected to MCAO exhibited worsened neurological score, infarct area, cell damage and apoptosis. These were all attenuated by AGNH (0.125 and 0.25 g/kg/d). Moreover, AGNH reversed cerebral ischemia induced decreases in Bcl-2 expression and increases in Bax and caspase-3 expression. CONCLUSIONS These results suggest that AGNH exerts neuroprotective effects, and the neuroprotection is likely to relate to depressed Bax/Bcl-2 ratio and caspase-3 level, leading to inhibition of apoptotic cell death.
Collapse
Affiliation(s)
- Guo-Hua Wang
- Department of Integrative Medicine, Zhongshan Hospital, and Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Rui Lan
- Department of Integrative Medicine, Zhongshan Hospital, and Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Xin-De Zhen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, and Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, and Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Ding-Fang Cai
- Department of Integrative Medicine, Zhongshan Hospital, and Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Ma XD, Song JN, Zhang M, An JY, Zhao YL, Zhang BF. Advances in research of the neuroprotective mechanisms of cerebral ischemic postconditioning. Int J Neurosci 2014; 125:161-9. [PMID: 24754439 DOI: 10.3109/00207454.2014.917413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ischemic postconditioning refers to controlling reperfusion blood flow during reperfusion after ischemia, which can induce an endogenous neuroprotective effect and reduce ischemia-reperfusion injury. Activation of endogenous neuroprotective mechanisms plays a key role in protecting against brain ischemia-reperfusion injury. The mechanisms of cerebral ischemic postconditioning are not completely clear, and the following aspects may be involved: downregulation of oxidative stress, attenuating mitochondrial dysfunction, attenuating endoplasmic reticulum stress, accelerating the elimination of glutamate, increasing rCBF, inhibiting apoptosis, inhibiting autophagy, and regulating signal transduction.
Collapse
Affiliation(s)
- Xu-Dong Ma
- Department of Neurosurgery, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
35
|
Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 2014; 115:246-69. [PMID: 24407111 PMCID: PMC3969942 DOI: 10.1016/j.pneurobio.2013.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Stroke is deemed a worldwide leading cause of neurological disability and death, however, there is currently no promising pharmacotherapy for acute ischemic stroke aside from intravenous or intra-arterial thrombolysis. Yet because of the narrow therapeutic time window involved, thrombolytic application is very restricted in clinical settings. Accumulating data suggest that non-pharmaceutical therapies for stroke might provide new opportunities for stroke treatment. Here we review recent research progress in the mechanisms and clinical implications of non-pharmaceutical therapies, mainly including neuroprotective approaches such as hypothermia, ischemic/hypoxic conditioning, acupuncture, medical gases and transcranial laser therapy. In addition, we briefly summarize mechanical endovascular recanalization devices and recovery devices for the treatment of the chronic phase of stroke and discuss the relative merits of these devices.
Collapse
Affiliation(s)
- Fan Chen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Yuming Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Taylor Hinchliffe
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridian, Shanghai 201203, China
| | - Ying Xia
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China.
| |
Collapse
|
36
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
37
|
Kumar A, Jaggi AS, Singh N. Pharmacological investigations on possible role of Src kinases in neuroprotective mechanism of ischemic postconditioning in mice. Int J Neurosci 2014; 124:777-86. [DOI: 10.3109/00207454.2013.879869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Role of P2X7 purinoceptors in neuroprotective mechanism of ischemic postconditioning in mice. Mol Cell Biochem 2014; 390:161-73. [DOI: 10.1007/s11010-014-1967-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023]
|
39
|
Yang YW, Cheng WP, Lu JK, Dong XH, Wang CB, Zhang J, Zhao LY, Gao ZF. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischaemia-reperfusion injury in rats. Br J Anaesth 2013; 113:168-76. [PMID: 24277726 DOI: 10.1093/bja/aet352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study was designed to assess the neuroprotective effect of xenon-induced delayed postconditioning on spinal cord ischaemia-reperfusion injury (IRI) and to determine the time of administration for best neuroprotection in a rat model of spinal cord IRI. METHODS Fifty male rats were randomly divided equally into a sham group, control group, and three xenon postconditioning groups (n=10 per group). The control group underwent spinal cord IRI and immediately inhaled 50% nitrogen/50% oxygen for 3 h at the initiation of reperfusion. The three xenon postconditioning groups underwent the same surgical procedure and immediately inhaled 50% xenon/50% oxygen for 3 h at the initiation of reperfusion or 1 and 2 h after reperfusion. The sham operation group underwent the same surgical procedure without aortic occlusion, and inhaled 50% nitrogen/50% oxygen. Neurological function was assessed using the Basso, Beattie, and Bresnahan score at 4, 24, and 48 h of reperfusion. Histological examination was performed using Nissl staining and immunohistochemistry, and apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling staining. RESULTS Compared with the control group, the three xenon postconditioning groups showed improvements in neurological outcomes, and had more morphologically normal neurones at 48 h of reperfusion. Apoptotic cell death was reduced and the ratio of Bcl-2/Bax immunoreactivity increased in xenon-treated rats compared with controls. CONCLUSIONS Xenon postconditioning up to 2 h after reperfusion provided protection against spinal cord IRI in rats, but the greatest neuroprotection occurred with administration of xenon for 1 h at reperfusion.
Collapse
Affiliation(s)
- Y W Yang
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - W P Cheng
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - J K Lu
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - X H Dong
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - C B Wang
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - J Zhang
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - L Y Zhao
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Z F Gao
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
40
|
Wang R, Tu J, Zhang Q, Zhang X, Zhu Y, Ma W, Cheng C, Brann DW, Yang F. Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus 2013; 23:634-47. [PMID: 23536494 DOI: 10.1002/hipo.22126] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2013] [Indexed: 11/06/2022]
Abstract
Global cerebral ischemia, such as occurs following cardiac arrest, can lead to oxidative stress, hippocampal neuronal cell death, and cognitive defects. The current study examined the potential beneficial effect and underlying mechanisms of post-treatment with the naturally occurring isoflavonic phytoestrogen, genistein, which has been implicated to attenuate oxidative stress. Genistein (1 mg kg(-1)) was administered i.v. 5 min after reperfusion in rats subjected to four-vessel global cerebral ischemia (GCI). The results revealed that genistein exerted significant neuroprotection of hippocampal CA1 neurons following GCI, as evidenced by an increase in NeuN-positive neurons and the decrease in TUNEL-positive neurons. Furthermore, genistein treatment also resulted in significantly improved spatial learning and memory as compared to vehicle control animals. The beneficial effects of genistein appear to be mediated by an increase of phosphorylation/activation of eNOS, with subsequent activation of the antioxidant/detoxification Nrf2/Keap1 transcription system. Along these lines, genistein increased keap1 S-nitrosylation, with a corresponding nuclear accumulation and enhanced DNA binding activity of Nrf2. Genistein also enhanced levels of the Nrf2 downstream antioxidant protein, heme oxygenase (HO)-1, as compared to vehicle control groups. In accordance with its induction of Nrf2 activation, genistein exerted a robust attenuation of oxidative DNA damage and lipid peroxidative damage in hippocampal CA1 neurons after GCI, as measured by immunofluorescence staining of the oxidative stress markers, 8-hydroxy-2-deoxyguanosine (8-OHdG) and 4-Hydroxynonenal (4-HNE). Interestingly, the aforementioned effects of genistein were abolished by pretreatment with L-NAME, an inhibitor of eNOS activation. In conclusion, the results of the study demonstrate that low dose genistein can exert significant antioxidant, neuroprotective, and cognitive-enhancing effects in the hippocampal CA1 region following GCI. Mechanistically, the beneficial effects of genistein appear to be mediated by enhanced eNOS phosphorylation/activation and nitric oxide (NO)-mediated thiol modification of Keap1, with subsequent upregulation of the Nrf2/HO-1 antioxidative signaling pathway and a resultant attenuation of oxidative stress.
Collapse
Affiliation(s)
- Ruimin Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:459467. [PMID: 23781261 PMCID: PMC3678438 DOI: 10.1155/2013/459467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/31/2013] [Accepted: 04/09/2013] [Indexed: 11/18/2022]
Abstract
In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3 β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway.
Collapse
|
42
|
Liang JM, Xu HY, Zhang XJ, Li X, Zhang HB, Ge PF. Role of mitochondrial function in the protective effects of ischaemic postconditioning on ischaemia/reperfusion cerebral damage. J Int Med Res 2013; 41:618-27. [PMID: 23569028 DOI: 10.1177/0300060513476587] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the effects of ischaemic postconditioning on brain injury and mitochondria in focal ischaemia and reperfusion, in rats. Methods Adult male Wistar rats ( n = 15 per group) underwent sham surgery, ischaemia (2-h middle cerebral artery occlusion), or ischaemia followed by ischaemic postconditioning (three cycles of 30 s reperfusion/30 s reocclusion). Brain infarction size, neurological function, mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential and mitochondrial swelling were evaluated 24 h postsurgery. Results Infarct size was significantly smaller, and neurological function was significantly better, in the ischaemic postconditioning group than in the ischaemia group. Ischaemia resulted in significant increases in mitochondrial ROS production and swelling, and a reduction in mitochondrial membrane potential, all of which were significantly reversed by postconditioning. Conclusions The protective role of ischaemic postconditioning in focal ischaemia/reperfusion may be due to decreased mitochondrial ROS production, reduced mitochondrial membrane potential and suppressed mitochondria swelling. Mitochondria are potential targets for new therapies to prevent brain damage caused by ischaemia and reperfusion.
Collapse
Affiliation(s)
- Jian-min Liang
- Department of Peediatrics, First Bethune Hospital of Jilin University, Changchun, China
| | - Hai-yang Xu
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| | - Xiao-jie Zhang
- Department of Surgery, Changchun Children’s Hospital, Changchun, China
| | - Xungeng Li
- Department of Breast Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Hong-bo Zhang
- Department of Peediatrics, First Bethune Hospital of Jilin University, Changchun, China
| | - Peng-fei Ge
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Yang F, Zhang X, Sun Y, Wang B, Zhou C, Luo Y, Ge P. Ischemic postconditioning decreases cerebral edema and brain blood barrier disruption caused by relief of carotid stenosis in a rat model of cerebral hypoperfusion. PLoS One 2013; 8:e57869. [PMID: 23469092 PMCID: PMC3585273 DOI: 10.1371/journal.pone.0057869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/27/2013] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose Complications due to brain edema and breakdown of blood brain barrier are an important factor affecting the treatment effects of patients with severe carotid stenosis. In this study, we investigated the protective effects of ischemic postconditioning on brain edema and disruption of blood brain barrier via establishing rat model of hypoperfusion due to severe carotid stenosis. Methods Wistar rat model of hypoperfusion due to severe carotid stenosis was established by binding a stainless microtube to both carotid arteries. Ischemic postconditioning procedure consisted of three cycles of 30 seconds ischemia and 30 seconds reperfusion. Brain edema was evaluated by measuring cerebral water content, and blood brain barrier permeability was assayed by examining cerebral concentration of Evans' Blue (EB) and fluorescein sodium (NaF). ELISA was used to analyze the expression of MMP-9, claudin-5 and occludin. The activity and location of MMP-9 was analyzed by gelatin zymography and in situ zymography, respectively. The distribution of tight junction proteins claudin-5 and occludin was observed by immunohistochemistry. Results The increased brain water content and cerebral concentration of EB and NaF were suppressed by administration of ischemic postconditioning prior to relief of carotid stenosis. Zymographic studies showed that MMP-9 was mainly located in the cortex and its activity was significantly improved by relief of carotid stenosis and, but the elevated MMP-9 activity was inhibited markedly by ischemic postconditioning. Immunohistochemistry revealed that ischemic postconditioning improved the discontinuous distribution of claudin-5 and occludin. ELISA detected that the expression of up-regulated MMP-9 and down-regulated claudin-5 and occludin caused by carotid relief were all attenuated by ischemic postconditioning. Conclusions Ischemic postconditioning is an effective method to prevent brain edema and improve BBB permeability and could be used during relief of severe carotid stenosis.
Collapse
Affiliation(s)
- Fuwei Yang
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| | - Xiaojie Zhang
- Department of Neurosurgery, Changchun Children Hospital, Changchun, China
| | - Ying Sun
- Department of Neurosurgery, Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Boyu Wang
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| | - Chuibing Zhou
- Department of Neurosurgery, Changchun Children Hospital, Changchun, China
| | - Yinan Luo
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
44
|
Bonova P, Burda J, Danielisova V, Nemethova M, Gottlieb M. Delayed post-conditioning reduces post-ischemic glutamate level and improves protein synthesis in brain. Neurochem Int 2013; 62:854-60. [PMID: 23454191 DOI: 10.1016/j.neuint.2013.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/23/2013] [Accepted: 02/03/2013] [Indexed: 11/16/2022]
Abstract
In the clinic delayed post-conditioning would represent an attractive strategy for the survival of vulnerable neurons after an ischemic event. In this paper we studied the impact of ischemia and delayed post-conditioning on blood and brain tissue concentrations of glutamate and protein synthesis. We designed two groups of animals for analysis of brain tissues and blood after global ischemia and post-conditioning, and one for analysis of blood glutamate after transient focal ischemia. Our results showed elevated blood glutamate in two models of transient brain ischemia and decreases in blood glutamate to control in the first 20min of post-conditioning recirculation followed by a consecutive drop of about 20.5% on the first day. Similarly, we recorded reduced protein synthesis in hippocampus and cortex 2 and 3days after ischemia. However, increased glutamate was registered only in the hippocampus. Post-conditioning improves protein synthesis in CA1 and dentate gyrus and, surprisingly, leads to 50% reduction in glutamate in whole hippocampus and cortex. In conclusion, ischemia leads to meaningful elevation of blood and tissue glutamate. Post-conditioning activates mechanisms resulting in rapid elimination of glutamate from brain tissue and/or in the circulatory system that could otherwise impede brain-to-blood glutamate efflux mechanisms. Moreover, post-conditioning induces protein synthesis renewing in ischemia affected tissues that could also contribute to elimination of excitotoxicity. In addition, the potential of glutamate for monitoring the progress of ischemia and efficacy of therapy was shown.
Collapse
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
45
|
Kong Y, Rogers MR, Qin X. Effective neuroprotection by ischemic postconditioning is associated with a decreased expression of RGMa and inflammation mediators in ischemic rats. Neurochem Res 2013; 38:815-25. [PMID: 23389659 DOI: 10.1007/s11064-013-0984-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 12/25/2022]
Abstract
Whether ischemic postconditioning (IPC) can significantly alleviate ischemic injury hinges on the appropriate measure. In this study, the expression RGMa and IL-1β, IL-6 are investigated to estimate the therapeutic benefits of various postconditioning strategies after cerebral ischemia/reperfusion. The study consists of the sham-operated group and five treatment groups: ischemia/reperfusion (I/R), two proximate ischemic postconditioning (IPC-S and IPC-M), remote postconditioning (RIPC) and delayed postconditioning (DIPC) groups. We find that rats in IPC and RIPC groups exhibit significantly less neural deficit and lower infarct volume than that in I/R and DIPC groups after ischemia/reperfusion. Moreover, in ischemic cortex and hippocampus, the mRNA level of RGMa is much lower in IPC and RIPC groups. Immunohistochemical analysis indicates that the expression of RGMa, IL-1β and IL-6 are reduced in IPC and RIPC groups (especially in IPC-S group). Furthermore, neurofilament staining reveals that the rats in IPC and RIPC groups have less axonal injury than that in I/R and DIPC groups. Our studies suggest that the optimal strategy to attenuate cerebral ischemia/reperfusion is achieved by early, short-term, and multiple cycles of proximal IPC. The cerebral protective effect of IPC may be associated with the decreased expression of RGMa and inflammation mediators.
Collapse
Affiliation(s)
- Yuhan Kong
- Department of Neurology and Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | | | | |
Collapse
|
46
|
Zhao H. Hurdles to clear before clinical translation of ischemic postconditioning against stroke. Transl Stroke Res 2013; 4:63-70. [PMID: 23524538 DOI: 10.1007/s12975-012-0243-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ischemic postconditioning has been established for its protective effects against stroke in animal models. It is performed after post-stroke reperfusion and refers to a series of induced ischemia or a single brief one. This review article addresses major hurdles in clinical translation of ischemic postconditioning to stroke patients, including potential hazards, the lack of well-defined protective paradigms, and the paucity of deeply-understood protective mechanisms. A hormetic model, often used in toxicology to describe a dose-dependent response to a toxic agent, is suggested to study both beneficial and detrimental effects of ischemic postconditioning. Experimental strategies are discussed, including how to define the hazards of ischemic (homologous) postconditioning and the possibility of employing non-ischemic (heterologous) postconditioning to facilitate clinical translation. This review concludes that a more detailed assessment of ischemic postconditioning and studies of a broad range of heterologous postconditioning models are warranted for future clinical translation.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5327, USA
| |
Collapse
|
47
|
Li ZY, Liu B, Yu J, Yang FW, Luo YN, Ge PF. Ischaemic postconditioning rescues brain injury caused by focal ischaemia/reperfusion via attenuation of protein oxidization. J Int Med Res 2013; 40:954-66. [PMID: 22906268 DOI: 10.1177/147323001204000314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the effects of ischaemic postconditioning on brain injury and protein oxidization in focal ischaemia/reperfusion. METHODS Adult male Wistar rats (n = 30) were randomly divided into sham-operated, ischaemia, and ischaemic postconditioning groups. Ischaemia was produced by middle cerebral artery occlusion and ischaemic postconditioning was performed using three cycles of 30-s/30-s reperfusion/reocclusion after 2 h of ischaemia. Brain infarction size, hydrogen peroxide concentration, superoxide dismutase (SOD), catalase (CAT) and proteasome activities, protein carbonyl derivatives and advanced oxidized protein products (AOPPs) were evaluated. RESULTS The size of brain infarction after ischaemic postconditioning was significantly smaller compared with the ischaemia group, and was concomitant with significant reduction in protein carbonyl derivatives and AOPPs. The activities of SOD, CAT and proteasomes were elevated by ischaemic postconditioning compared with the ischaemia group. CONCLUSIONS Ischaemic postconditioning is an effective way of reducing the size and effects of brain infarction caused by focal ischaemia/reperfusion, possibly due to a decrease in oxidized protein levels. Decreasing protein oxidization may, therefore, be a useful target for preventing cerebral injury.
Collapse
Affiliation(s)
- Z Y Li
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| | | | | | | | | | | |
Collapse
|
48
|
Feng C, Luo T, Qi L, Wang B, Luo Y, Ge P. Ischemic postconditioning alleviates neuronal injury caused by relief of carotid stenosis in a rat model of cerebral hypoperfusion. Int J Mol Sci 2012. [PMID: 23202956 PMCID: PMC3497330 DOI: 10.3390/ijms131013338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effects of early relief of heavy bilateral carotid stenosis and ischemic postconditioning on hippocampus CA1 neurons are still unclear. In this study, we used a rat model to imitate severe bilateral carotid stenosis in humans. The rats were divided into sham group, carotid stenosis group, stenosis relief group and ischemic postconditioning group. Ischemic postconditioning consisted of three cycles of 30 s ischemia and 30 s reperfusion. The cerebral blood flow was measured with a laser Doppler flowmeter. Neuronal death in the CA1 region was observed by hematoxylin-eosin staining, and the number of live neurons was assessed by cell counting under a light microscope. The levels of oxidative products MDA and 8-iso-PGF2α, inflammatory factors IL-1β and TNF-α, and the activities of anti-oxidative enzymes SOD and CAT were assayed by specific enzyme-linked immunosorbent assay (ELISA) kits, respectively. We found that relief of carotid stenosis and ischemic postconditioning could increase cerebral blood flow. When stenosis was relieved, the percentage of live neurons was 66.6% ± 6.2% on day 3 and 62.3% ± 9.8% on day 27, which was significantly higher than 55.5% ± 4.8% in stenosis group. Ischemic postconditioning markedly improved the live neurons to 92.5% ± 6.7% on day 3 and 88.6% ± 9.1% on day 27. Further study showed that, neuronal death caused by relief of stenosis is associated with increased oxidative stress and enhanced inflammatory response, and the protection of ischemic postconditioning is related to inhibition of oxidative stress and suppression of inflammatory response.
Collapse
Affiliation(s)
- Chunsheng Feng
- Department of Anesthesiology, First Bethune Hospital of Jilin University, Changchun 130021, China; E-Mail:
| | - Tianfei Luo
- Department of Neurology, First Bethune Hospital of Jilin University, Changchun 130021, China; E-Mail:
| | - Li Qi
- Department of Neurology, Affiliated Hospital of Guilin Medical College, Guilin 541001, China; E-Mail:
| | - Boyu Wang
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun 130021, China; E-Mails: (B.W.); (Y.L.)
| | - Yinan Luo
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun 130021, China; E-Mails: (B.W.); (Y.L.)
| | - Pengfei Ge
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun 130021, China; E-Mails: (B.W.); (Y.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-431-8878-2264; Fax: +86-431-8878-2466
| |
Collapse
|
49
|
Zhao H, Ren C, Chen X, Shen J. From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets 2012; 13:173-87. [PMID: 22204317 DOI: 10.2174/138945012799201621] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 01/13/2023]
Abstract
Ischemic postconditioning is a concept originally defined to contrast with that of ischemic preconditioning. While both preconditioning and postconditioning confer a neuroprotective effect on brain ischemia, preconditioning is a sublethal insult performed in advance of brain ischemia, and postconditioning, which conventionally refers to a series of brief occlusions and reperfusions of the blood vessels, is conducted after ischemia/reperfusion. In this article, we first briefly review the history of preconditioning, including the experimentation that initially uncovered its neuroprotective effects and later revealed its underlying mechanisms-of-action. We then discuss how preconditioning research evolved into that of postconditioning--a concept that now represents a broad range of stimuli or triggers, including delayed postconditioning, pharmacological postconditioning, remote postconditioning--and its underlying protective mechanisms involving the Akt, MAPK, PKC and K(ATP) channel cell-signaling pathways. Because the concept of postconditioning is so closely associated with that of preconditioning, and both share some common protective mechanisms, we also discuss whether a combination of preconditioning and postconditioning offers greater protection than preconditioning or postconditioning alone.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5327, USA.
| | | | | | | |
Collapse
|
50
|
Liu XR, Luo M, Yan F, Zhang CC, Li SJ, Zhao HP, Ji XM, Luo YM. Ischemic postconditioning diminishes matrix metalloproteinase 9 expression and attenuates loss of the extracellular matrix proteins in rats following middle cerebral artery occlusion and reperfusion. CNS Neurosci Ther 2012; 18:855-63. [PMID: 22925005 DOI: 10.1111/j.1755-5949.2012.00366.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/27/2012] [Accepted: 07/01/2012] [Indexed: 11/27/2022] Open
Abstract
AIMS Ischemic postconditioning (IPostC) has been proved to have neuroprotective effects for cerebral ischemia, but the underlying mechanism remains elusive. This study aimed at validating the neuroprotective effects of IPostC and investigating whether the neuroprotection of IPostC is associated with matrix metalloproteinase 9 (MMP9) and the extracellular matrix proteins, laminin and fibronectin, following cerebral ischemia/reperfusion in rats. METHODS The rats in middle cerebral artery occlusion (MCAO) group underwent MCAO and reperfusion, and the animals in MCAO + IPostC group were treated by occluding bilateral common carotid arteries for 10 seconds and then reperfusing for 10 seconds for five episodes at the beginning of MCAO. Apoptosis was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of MMP9, laminin, and fibronectin was measured with immunofluorescence and enzyme-linked immunosorbent assay. RESULTS IPostC reduced brain edema and infarct volume and improved the neurological function. Furthermore, IPostC decreased cell apoptosis compared with the MCAO group. Compared to the MCAO group, IPostC treatment reduced MMP9 expression. Moreover, the results showed that the expression of laminin and fibronectin significantly increased in the MCAO + IPostC group compared to the MCAO group. CONCLUSION These findings indicated that diminishment of MMP9 expression and the attenuation of degradation of laminin and fibronectin may be involved in the protective mechanisms of postconditioning against cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Xiang-Rong Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|