1
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
3
|
Maiese K. Microglia: Formidable Players in Alzheimer's Disease and Other Neurodegenerative Disorders. Curr Neurovasc Res 2024; 20:515-518. [PMID: 37888824 DOI: 10.2174/1567202620999231027155308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 10/28/2023]
|
4
|
Roy TK, Uniyal A, Tiwari V. Multifactorial pathways in burn injury-induced chronic pain: novel targets and their pharmacological modulation. Mol Biol Rep 2022; 49:12121-12132. [PMID: 35842856 DOI: 10.1007/s11033-022-07748-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Burn injuries are among the highly prevalent medical conditions worldwide that occur mainly in children, military veterans and victims of fire accidents. It is one of the leading causes of temporary as well as permanent disabilities in patients. Burn injuries are accompanied by pain that persists even after recovery from tissue damage which puts immense pressure on the healthcare system. The pathophysiology of burn pain is poorly understood due to its complex nature and lack of considerable preclinical and clinical shreds of evidence, that creates a substantial barrier to the development of new analgesics. Burns damage the skin layers supplied with nociceptors such as NAV1.7, TRPV1, and TRPA1. Burn injury-mediated co-localization and simultaneous activation of TRPA1 and TRPV1 in nociceptive primary afferent C-fibers which contributes to the development and maintenance of chronic pain. Burn injuries are accompanied by central sensitization, a key feature of pain pathophysiology mainly driven by a series of cascades involving aberrations in the glutamatergic system, microglial activation, release of neuropeptides, cytokines, and chemokines. Activation of p38 mitogen-activated protein kinase, altered endogenous opioid signaling, and distorted genomic expression are other pathophysiological factors responsible for the development and maintenance of burn pain. Here we discuss comprehensive literature on molecular mechanisms of burn pain and potential targets that could be translated into near future therapeutics.
Collapse
Affiliation(s)
- Tapas Kumar Roy
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India
| | - Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India.
| |
Collapse
|
5
|
Kolos EA, Korzhevskii DE. Changes in the Microglial Population during Spinal Cord Formation Indicate an Involvement of Microglia in the Regulation of Neuronogenesis and Synaptogenesis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
He Q, Li Z, Li T, Zhang Z, Zhao J. ATP Stimulation Promotes Functional Recovery after Intracerebral Haemorrhage by Increasing the mBDNF/proBDNF Ratio. Neuroscience 2021; 459:104-117. [PMID: 33421569 DOI: 10.1016/j.neuroscience.2020.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), including mature BDNF (mBDNF) and precursor BDNF (proBDNF), plays a pivotal role in neuronal survival, synaptic plasticity and neurogenesis. However, the functional effect of the mBDNF/proBDNF ratio in haemorrhagic stroke remains unclear. ATP is a known mediator of BDNF production in neurons and glia. Therefore, we hypothesized that ATP could facilitate BDNF production, increase the mBDNF/proBDNF ratio and thereby alleviate cerebral haemorrhage-induced injury. In this experiment, a model of intracerebral haemorrhage (ICH) was produced by injecting 50 μL autologous blood into the right corpus striatum in healthy male rats. ATP was injected to promote BDNF production and increase the mBDNF/proBDNF ratio. After ATP pretreatment, P2X4R-shRNA and SB203580 were used to inhibit P2X4R and p38-MAPK, respectively. We provide direct evidence that ATP administration was successful in promoting mBDNF expression and increasing the mBDNF/proBDNF ratio after ICH injury. Additionally, ATP stimulation could significantly improve cerebral neurological function and alleviate neuronal damage. Furthermore, ATP injection was able to upregulate the expression of P2X4R and p-p38-MAPK. Moreover, both P2X4R-shRNA and SB203580 could effectively abolish the effect of ATP injection on the levels of P2X4R and p-p38-MAPK and the mBDNF/proBDNF ratio. Together, these findings show that ATP stimulation contributes to functional recovery after cerebral haemorrhage and that neuroprotection induced by ATP administration in ICH rats is accompanied by a strong increase in the mBDNF/proBDNF ratio. Here, we also show a significant role of P2X4R-p38-MAPK signalling in the ATP-induced increase in the mBDNF/proBDNF ratio in ICH.
Collapse
Affiliation(s)
- Qi He
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenyu Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tiegang Li
- Institute of Materia Medica, Peking Union Medical College Hospital, Peking, People's Republic of China
| | - Zhiqian Zhang
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Schulze J, Staecker H, Wedekind D, Lenarz T, Warnecke A. Expression pattern of brain-derived neurotrophic factor and its associated receptors: Implications for exogenous neurotrophin application. Hear Res 2020; 413:108098. [PMID: 33143996 DOI: 10.1016/j.heares.2020.108098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023]
Abstract
The application of neurotrophins such as brain-derived neurotrophic factor (BDNF) is a promising pharmacological approach in cochlear implant research. Several in vitro and in vivo studies demonstrated that treatment with neurotrophins support the spiral ganglion neuron (SGN) survival and the synapses. Of the more than 40 companies that are working in the field of inner ear therapeutics, only one company is currently advancing BDNF towards clinical translation. Thus, there are no approved clinical therapies with neurotrophins, their precursors or neurotrophin-like substances. For a better understanding of the mechanisms of BDNF in the inner ear, we analysed the expression of mature BDNF (mBDNF), its pro-form proBDNF and their respective receptors the low affinity p75 neurotrophin receptor (p75NTR) and the neurotrophic receptor tyrosine kinase 2 (NTRK2). In the adult murine inner ear, mBDNF is expressed in the inner and outer hair cells (IHC and OHC) of the organ of Corti and in the spiral ganglion of the Rosenthal's canal, whereas proBDNF is only detected in the supporting cells below the OHC. The corresponding receptors NTRK2 and p75NTR are expressed in the spiral ganglion whereof p75NTR is stronger expressed. For more insights in the effects of mBDNF and proBDNF on inner ear specific cells, we treated primary dissociated SGN with different concentrations of mBDNF and proBDNF alone and in combination. Interestingly, treatment with proBDNF is not toxic for SGN but simultaneously not protective. However, combined treatment of mBDNF and proBDNF maintained and perhaps slightly increased the protective effect of mBDNF. Thus, the mixture of mBDNF and proBDNF could be the new direction for the development of BDNF-based therapeutics in cochlear implantation and could represent more precisely the natural environment.
Collapse
Affiliation(s)
- Jennifer Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1).
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Dirk Wedekind
- Department of experimental animal science, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| |
Collapse
|
8
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
9
|
Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. Int J Mol Sci 2019; 20:ijms20164068. [PMID: 31434333 PMCID: PMC6720185 DOI: 10.3390/ijms20164068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the ‘backward’ conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3′,5′-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.
Collapse
|
10
|
Gu M, Li Y, Tang H, Zhang C, Li W, Zhang Y, Li Y, Zhao Y, Song C. Endogenous Omega (n)-3 Fatty Acids in Fat-1 Mice Attenuated Depression-Like Behavior, Imbalance between Microglial M1 and M2 Phenotypes, and Dysfunction of Neurotrophins Induced by Lipopolysaccharide Administration. Nutrients 2018; 10:nu10101351. [PMID: 30248907 PMCID: PMC6213921 DOI: 10.3390/nu10101351] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
n-3 polyunsaturated fatty acids (PUFAs) have been reported to improve depression. However, PUFA purities, caloric content, and ratios in different diets may affect the results. By using Fat-1 mice which convert n-6 to n-3 PUFAs in the brain, this study further evaluated anti-depressant mechanisms of n-3 PUFAs in a lipopolysaccharide (LPS)-induced model. Adult male Fat-1 and wild-type (WT) mice were fed soybean oil diet for 8 weeks. Depression-like behaviors were measured 24 h after saline or LPS central administration. In WT littermates, LPS reduced sucrose intake, but increased immobility in forced-swimming and tail suspension tests. Microglial M1 phenotype CD11b expression and concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-17 were elevated, while M2 phenotype-related IL-4, IL-10, and transforming growth factor (TGF)-β1 were decreased. LPS also reduced the expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (Trk B), while increasing glial fibrillary acidic protein expression and pro-BDNF, p75, NO, and iNOS levels. In Fat-1 mice, LPS-induced behavioral changes were attenuated, which were associated with decreased pro-inflammatory cytokines and reversed changes in p75, NO, iNOS, and BDNF. Gas chromatography assay confirmed increased n-3 PUFA levels and n-3/n-6 ratios in the brains of Fat-1 mice. In conclusion, endogenous n-3 PUFAs may improve LPS-induced depression-like behavior through balancing M1 and M2-phenotypes and normalizing BDNF function.
Collapse
Affiliation(s)
- Minqing Gu
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yuyu Li
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Haiting Tang
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Cai Zhang
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Wende Li
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang 524023, China.
- Guangdong Key laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China.
| | - Yongping Zhang
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Yajuan Li
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yuntao Zhao
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Cai Song
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
11
|
Ghazale H, Ramadan N, Mantash S, Zibara K, El-Sitt S, Darwish H, Chamaa F, Boustany RM, Mondello S, Abou-Kheir W, Soueid J, Kobeissy F. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behav Brain Res 2018; 340:1-13. [PMID: 29126932 DOI: 10.1016/j.bbr.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the subventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule-1, IBA-1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI-induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA+NSCs treated animals showed decreased levels of 38kDa GFAP-BDP (breakdown product) and 145kDa αII-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.
Collapse
Affiliation(s)
- Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Sara Mantash
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Hala Darwish
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rose Mary Boustany
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, A.O.U. "Policlinico G. Martino", Via Consolare Valeria, Messina, 98125, Italy
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Zhang WL, Cao YA, Xia J, Tian L, Yang L, Peng CS. Neuroprotective effect of tanshinone IIA weakens spastic cerebral palsy through inflammation, p38MAPK and VEGF in neonatal rats. Mol Med Rep 2017; 17:2012-2018. [PMID: 29257210 DOI: 10.3892/mmr.2017.8069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
As one of main active ingredients of salvia miltiorrhizae, which is a traditional Chinese medicine, tanshinone IIA is the basis of its pharmacological activities. In the present study, the effect of tanshinone IIA on weakening spastic cerebral palsy (SCP) in neonatal rats was investigated. Radial arm water maze and holding tests were used to measure the alterations of spastic cerebral palsy, inflammation was measured using an ELISA kit, and western blot analysis was used to analyze the protein expression of p‑p38 mitogen‑activated protein kinase (MAPK) and vascular endothelial growth factor (VEGF). The central mechanisms involved in the mediation or modulation of inflammation, p‑p38 MAPK and VEGF were also investigated. Treatment with tanshinone IIA effectively inhibited spastic cerebral palsy, and the activities of interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, monocyte chemoattractant protein 1, cyclooxygenase‑2 and prostaglandin E2 in a neonatal rat model of SCP. Tanshinone IIA effectively suppressed the protein expression of inducible nitric oxide synthase (NOS), phosphorylated (p‑) nuclear factor (NF)‑κB, p‑p38MAPK and VEGF, and activated the phosphorylation of inhibitor of NF‑κB and the protein expression of neuronal NOS in the SCP rat model. These results suggested that the neuroprotective effect of tanshinone IIA weakened SCP through inflammation, p38MAPK and VEGF in the neonatal rats.
Collapse
Affiliation(s)
- Wen-Luo Zhang
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Yue-An Cao
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Jing Xia
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Li Tian
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Lu Yang
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| | - Chao-Sheng Peng
- Department of Special Medical Division, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
13
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
14
|
Pius-Sadowska E, Machaliński B. BDNF - A key player in cardiovascular system. J Mol Cell Cardiol 2017; 110:54-60. [PMID: 28736262 DOI: 10.1016/j.yjmcc.2017.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
15
|
Marcos J, Galleguillos D, Pelissier T, Hernández A, Velásquez L, Villanueva L, Constandil L. Role of the spinal TrkB-NMDA receptor link in the BDNF-induced long-lasting mechanical hyperalgesia in the rat: A behavioural study. Eur J Pain 2017; 21:1688-1696. [DOI: 10.1002/ejp.1075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2017] [Indexed: 11/05/2022]
Affiliation(s)
- J.L. Marcos
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
- Laboratory of Veterinary Pharmacology and Therapeutics; School of Veterinary Science; Viña del Mar University; Chile
| | - D. Galleguillos
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
| | - T. Pelissier
- Program of Molecular and Clinical Pharmacology; Institute of Biomedical Sciences (ICBM); Faculty of Medicine; University of Chile; Santiago Chile
| | - A. Hernández
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
| | - L. Velásquez
- Center for Integrative Medicine and Innovative Science (CIMIS); Faculty of Medicine; Andres Bello University; Santiago Chile
| | - L. Villanueva
- Centre de Psychiatrie et Neurosciences; INSERM UMR 894; Paris France
| | - L. Constandil
- Laboratory of Neurobiology; Department of Biology; Faculty of Chemistry and Biology; University of Santiago of Chile; Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA); University of Santiago of Chile; Chile
| |
Collapse
|
16
|
Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao M, Hu F, Zhang H. TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice. J Neuroimmunol 2017; 310:38-45. [PMID: 28778443 DOI: 10.1016/j.jneuroim.2017.06.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) initiates inflammatory responses that result in an enduring cascade of secondary neuronal loss and behavioural impairment. Toll-like receptor 4 (TLR4), predominantly expressed by microglia, recognizes damage-associated molecular patterns (DAMPs) and regulates inflammatory processes. Interestingly, the switch of microglial M1/M2 phenotypes after TBI is highly important regarding damage and restoration of neurological function. Therefore, we investigated the role and mechanisms of the TLR4 signalling pathway in regulating microglial M1/M2 phenotypes. Using a controlled cortical impact (CCI) model, we found that TLR4 knockout (KO) mice exhibited decreased infarct volumes and improved outcomes in behavioural tests. In addition, mice lacking TLR4 had higher expression of M2 phenotype biomarkers but lower expression of M1 phenotype biomarkers. Compared with microglia derived from wild-type (WT) mice, increased expression of M2 phenotype biomarkers and decreased expression of M1 phenotype biomarkers were also noted in primary cultures of microglia from TLR4 KO mice. In TLR4 KO mice, the expression levels of downstream signalling molecules of TLR4, such as active Rac-1 and phospho-AKT, were higher, while MyD88 and phospho-NF-κB p65 expression levels were lower than in WT mice. Our results demonstrate that the absence of TLR4 induces microglial polarization toward the M2 phenotype and promotes microglial migration and, in turn, alleviates the development of neuroinflammation, which indicates potential neuroprotective effects in the TBI mouse model. Furthermore, up-regulation of IL-4 expression in TLR4 KO mice could contribute to anti-inflammatory functions and promote microglial polarization toward the M2 phenotype, which might be mediated by active Rac-1 expression. Taken together, TLR4 deficiency contributes to regulating microglia to switch to the M2 phenotype, which ameliorates neurological impairment after TBI.
Collapse
Affiliation(s)
- Xiaolong Yao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Ding
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Pengjie Yue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
17
|
Dalwadi DA, Kim S, Schetz JA. Activation of the sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia. Neurochem Int 2017; 105:21-31. [PMID: 28188803 PMCID: PMC5375023 DOI: 10.1016/j.neuint.2017.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
Abstract
Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists.
Collapse
Affiliation(s)
- Dhwanil A Dalwadi
- Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas, 76107, United States
| | - Seongcheol Kim
- Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas, 76107, United States
| | - John A Schetz
- Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas, 76107, United States; Institute for Healthy Aging, Center for Neuroscience Discovery, United States.
| |
Collapse
|
18
|
Transcranial LED therapy on amyloid-β toxin 25-35 in the hippocampal region of rats. Lasers Med Sci 2017; 32:749-756. [PMID: 28255783 DOI: 10.1007/s10103-017-2156-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
Excessive Aβ deposition in the brain is associated with the formation of senile plaques, and their diffuse distribution is related to Alzheimer's disease. Thirty rats (EG) were irradiated with light-emitting diode (photobiomodulation (PBM)) in the frontal region of the skull after being inoculated with the Aβ toxin in the hippocampus; 30 rats were used as the control group (CG). The analysis was conducted at 7, 14, and 21 days after irradiation. We observed a decreased in Aβ deposits in treated animals compared with animals in the CG. The behavioral and motor assessment revealed that the EG group covered a larger ground distance and explored the open field than the CG group on days 14 and 21 (p < 0.05). The EG group was statistically significant in the spatial memory test compared to the CG group on day 14. The use of PBM significantly reduced the presence of Aβ plaques and improved spatial memory and behavioral and motor skills in treated animals on day 21.
Collapse
|
19
|
Shi W, Ding Y, Yu A, Wang Q, Zhang Z, Zhang LC. BDNF/TRK/KCC2 pathway in nicotine withdrawal-induced hyperalgesia. Transl Neurosci 2015; 6:208-213. [PMID: 28123805 PMCID: PMC4936630 DOI: 10.1515/tnsci-2015-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/09/2015] [Indexed: 01/19/2023] Open
Abstract
Purpose To investigate the effect of brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase (Trk) on potassium chloride cotransporter 2 (KCC2) in rats following nicotine withdrawal and the roles played by BDNF/Trk/KCC2 pathway in nicotine withdrawal-induced hyperalgesia. Methods Seventy-eight rats were randomly assigned to five groups: control group (n = 12) without any treatment, normal saline group (NS group, n = 12) and nicotine withdrawal group (NW group, n = 30) receiving a subcutaneous injection of saline or nicotine for 7 days, respectively. The NW + dimethyl sulfoxide (DMSO) (n = 12) and NW+ Trk antagonist K252a groups (n = 12) received an intrathecal injection of DMSO (10 μl) and K252a (10 μg/10 μl) for 3 days after nicotine withdrawal, respectively. Nicotine withdrawal was precipitated by subcutaneous injection of nonselective and noncompetitive antagonist of nicotinic acetylcholine receptors mecamylamine. Pain was tested using thermal withdrawal latency (TWL). A Western blot was used to examine the expression of BDNF and KCC2. Results The TWL was significantly decreased in NW group relative to control and NS groups (P < 0.01). Compared with the NW group, the NW+K252a group manifested a significantly higher latency (P < 0.01). The BDNF expression was increased and KCC2 was decreased in NW group compared with the control group (P < 0.01). K252a reduced KCC2 downregulation. Conclusion BDNF/Trk signaling may contribute to nicotine withdrawal-induced hyperalgesia via downregulation of KCC2.
Collapse
Affiliation(s)
- Wenhui Shi
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| | - Yonghong Ding
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| | - Ailan Yu
- Department of Anesthesiology, Laocheng People’s Hospital, Liaocheng, Shandong 252000, P. R. China
| | - Qinghe Wang
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| | - Zongwang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
- Department of Anesthesiology, Laocheng People’s Hospital, Liaocheng, Shandong 252000, P. R. China
- E-mail:
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, Jiangsu 221000, P. R. China
| |
Collapse
|
20
|
Littlefield AM, Setti SE, Priester C, Kohman RA. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflammation 2015. [PMID: 26224094 PMCID: PMC4518639 DOI: 10.1186/s12974-015-0362-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Microglia can acquire various phenotypes of activation that mediate their inflammatory and neuroprotective effects. Aging causes microglia to become partially activated towards an inflammatory phenotype. As a result, aged animals display a prolonged neuroinflammatory response following an immune challenge. Currently unknown is whether this persistent neuroinflammation leads to greater reductions in hippocampal neurogenesis. Exercise has been shown to alter microglia activation in aged animals, but the nature of these changes has yet to be fully elucidated. The present study assessed whether aged mice show enhanced reductions in hippocampal neurogenesis following an acute immune challenge with lipopolysaccharide (LPS). Further, we assessed whether voluntary wheel running protects against the effects of LPS. Methods Adult (4 months) and aged (22 months) male C57BL6/J mice were individually housed with or without a running wheel for a total of 9 weeks. After 5 weeks, mice received a single intraperitoneal LPS or saline injection in combination with four daily injections of bromodeoxyuridine (BrdU) to label dividing cells. Tissue was collected 4 weeks later and immunohistochemistry was conducted to measure new cell survival, new neuron numbers, and microglia activation. Results Data show that LPS reduced the number of new neurons in aged, but not adult, mice. These LPS-induced reductions in neurogenesis in the aged mice were prevented by wheel running. Further, exercise increased the proportion of microglia co-labeled with brain-derived neurotrophic factor (BDNF) in the aged. Conclusions Collectively, findings indicate that voluntary wheel running may promote a neuroprotective microglia phenotype and protect against inflammation-induced reductions in hippocampal neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Alyssa M Littlefield
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Sharay E Setti
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Carolina Priester
- Department of Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Rachel A Kohman
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| |
Collapse
|
21
|
George PM, Steinberg GK. Novel Stroke Therapeutics: Unraveling Stroke Pathophysiology and Its Impact on Clinical Treatments. Neuron 2015; 87:297-309. [PMID: 26182415 PMCID: PMC4911814 DOI: 10.1016/j.neuron.2015.05.041] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stroke remains a leading cause of death and disability in the world. Over the past few decades our understanding of the pathophysiology of stroke has increased, but greater insight is required to advance the field of stroke recovery. Clinical treatments have improved in the acute time window, but long-term therapeutics remain limited. Complex neural circuits damaged by ischemia make restoration of function after stroke difficult. New therapeutic approaches, including cell transplantation or stimulation, focus on reestablishing these circuits through multiple mechanisms to improve circuit plasticity and remodeling. Other research targets intact networks to compensate for damaged regions. This review highlights several important mechanisms of stroke injury and describes emerging therapies aimed at improving clinical outcomes.
Collapse
Affiliation(s)
- Paul M George
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Molecular regulation of synaptogenesis during associative learning and memory. Brain Res 2014; 1621:239-51. [PMID: 25485772 DOI: 10.1016/j.brainres.2014.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Synaptogenesis plays a central role in associative learning and memory. The biochemical pathways that underlie synaptogenesis are complex and incompletely understood. Nevertheless, research has so far identified three conceptually distinct routes to synaptogenesis: cell-cell contact mediated by adhesion proteins, cell-cell biochemical signaling from astrocytes and other cells, and neuronal signaling through classical ion channels and cell surface receptors. The cell adhesion pathways provide the physical substrate to the new synaptic connection, while cell-cell signaling may provide a global or regional signal, and the activity-dependent pathways provide the neuronal specificity that is required for the new synapses to produce functional neuronal networks capable of storing associative memories. These three aspects of synaptogenesis require activation of a variety of interacting biochemical pathways that converge on the actin cytoskeleton and strengthen the synapse in an information-dependent manner. This article is part of a Special Issue titled SI: Brain and Memory.
Collapse
|
23
|
Sengupta MB, Basu M, Iswarari S, Mukhopadhyay KK, Sardar KP, Acharyya B, Mohanty PK, Mukhopadhyay D. CSF proteomics of secondary phase spinal cord injury in human subjects: perturbed molecular pathways post injury. PLoS One 2014; 9:e110885. [PMID: 25350754 PMCID: PMC4211693 DOI: 10.1371/journal.pone.0110885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Recovery of sensory and motor functions following traumatic spinal cord injury (SCI) is dependent on injury severity. Here we identified 49 proteins from cerebrospinal fluid (CSF) of SCI patients, eight of which were differentially abundant among two severity groups of SCI. It was observed that the abundance profiles of these proteins change over a time period of days to months post SCI. Statistical analysis revealed that these proteins take part in several molecular pathways including DNA repair, protein phosphorylation, tRNA transcription, iron transport, mRNA metabolism, immune response and lipid and ATP catabolism. These pathways reflect a set of mechanisms that the system may adopt to cope up with the assault depending on the injury severity, thus leading to observed physiological responses. Apart from putting forward a picture of the molecular scenario at the injury site in a human study, this finding further delineates consequent pathways and molecules that may be altered by external intervention to restrict neural degeneration.
Collapse
Affiliation(s)
- Mohor Biplab Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Mahashweta Basu
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Sourav Iswarari
- Department of Physical Medicine & Rehabilitation, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Kiran Kumar Mukhopadhyay
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Krishna Pada Sardar
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Biplab Acharyya
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Pradeep K. Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
24
|
Hong JH, Park HM, Byun KH, Lee BH, Kang WC, Jeong GB. BDNF expression of macrophages and angiogenesis after myocardial infarction. Int J Cardiol 2014; 176:1405-8. [DOI: 10.1016/j.ijcard.2014.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 01/09/2023]
|
25
|
Arduini A, Escobar J, Vento M, Escrig R, Quintás G, Sastre J, Saugstad OD, Solberg R. Metabolic adaptation and neuroprotection differ in the retina and choroid in a piglet model of acute postnatal hypoxia. Pediatr Res 2014; 76:127-34. [PMID: 24819373 DOI: 10.1038/pr.2014.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hypoxic-ischemic insults to the neonatal brain may cause neurodevelopmental disorders. Vulnerability of different areas of the neural tissue to hypoxic-ischemic stress might be explained by either heterogeneous sensitivity to oxygen or neuroprotective capability. Our understanding of regional heterogeneity is still incomplete in terms of metabolic reconfiguration and/or activation of neuroprotective mechanisms. METHODS We studied, by western blotting, reverse-transcriptase PCR, and tandem mass spectrometry, the response of retina and choroid at protein, gene, and metabolic levels during hypoxia in a piglet model of acute postnatal hypoxia. RESULTS We evidenced a metabolic shift towards glycolysis in choroid after hypoxia while retina experienced a dramatic energy stress with decreased mitochondrial metabolites. Hypoxia-inducible transcription factor-1α (HIF-1α) was not stabilized in retina during hypoxia, supported by a deficient signaling from v-akt murine thymoma viral oncogene (AKT) and ERK1/2, and unchanged glutathione redox status. In retina, but not in choroid, phosphorylation of p65 (NF-κB) and increased transcription of target genes may have a major role during hypoxic stress. CONCLUSION We showed that the retina engages a distinct pattern of signaling and transcriptional events than observed in the choroid. Retina and choroid may reflect regional sensitivity to hypoxia. While prolonged and intense hypoxia may jeopardize retinal cell survival, choroid sets up a different pattern of response, which promotes adaptation to these adverse conditions.
Collapse
Affiliation(s)
- Alessandro Arduini
- 1] Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain [2] Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Javier Escobar
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain
| | - Maximo Vento
- 1] Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain [2] Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Raquel Escrig
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Guillermo Quintás
- Leitat Technological Center, Bio In Vitro Division, Barcelona, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Institute for Surgical Research, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Institute for Surgical Research, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Peruzzotti-Jametti L, Donegá M, Giusto E, Mallucci G, Marchetti B, Pluchino S. The role of the immune system in central nervous system plasticity after acute injury. Neuroscience 2014; 283:210-221. [PMID: 24785677 DOI: 10.1016/j.neuroscience.2014.04.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization.
Collapse
Affiliation(s)
| | - Matteo Donegá
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Elena Giusto
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Giulia Mallucci
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,Department of Brain and Behavioural sciences, National Neurological Institute C. Mondino, 27100 Pavia, Italy
| | - Bianca Marchetti
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School, University of Catania, 95125 Catania, Italy.,OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,NIHR Biomedical Research Centre.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, CB2 0PY, UK
| |
Collapse
|
27
|
Fractalkine signaling in microglia contributes to ectopic orofacial pain following trapezius muscle inflammation. J Neurosci 2013; 33:7667-80. [PMID: 23637160 DOI: 10.1523/jneurosci.4968-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fractalkine (FKN) signaling is involved in mechanical allodynia in the facial skin following trapezius muscle inflammation. Complete Freund's adjuvant (CFA) injection into the trapezius muscle produced mechanical allodynia in the ipsilateral facial skin that was not associated with facial skin inflammation and resulted in FKN but not FKN receptor (CX3CR1) expression, and microglial activation was enhanced in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). Intra-cisterna magna anti-CX3CR1 or anti-interleukin (IL)-1β neutralizing antibody administration decreased the enhanced excitability of Vc and C1-C2 neurons in CFA-injected rats, whereas intra-cisterna magna FKN administration induced microglial activation and mechanical allodynia in the facial skin. IL-1β expression and p38 mitogen-activated protein kinase phosphorylation were enhanced in activated microglia after CFA injection. The excitability of neurons whose receptive fields was located in the facial skin was significantly enhanced in CFA-injected rats, and the number of cells expressing phosphorylated extracellular signal-regulated kinase (pERK) following noxious mechanical stimulation of the facial skin was significantly increased in Vc and C1-C2. We also observed mechanical allodynia of the trapezius muscle as well as microglial activation and increased pERK expression in C2-C6 after noxious stimulation of the trapezius muscle in facial skin-inflamed rats. These findings suggest that FKN expression was enhanced in Vc and C1-C2 or C2-C6 following trapezius muscle or facial skin inflammation, microglia are activated via FKN signaling, IL-1β is released from the activated microglia, and the excitability of neurons in Vc and C1-C2 or C2-C6 is enhanced, resulting in the ectopic mechanical allodynia.
Collapse
|
28
|
Abstract
Abstract
Microglia are a special type of supporting cells in the nervous system. between the functions they perform are myelin production, structural support, regulation of extracellular fluid, glial scar formation among others. This cell type for its versatility, is also related to pathological events, where his multiple roles and the release of proinflammatory factors can contribute to understand especially in traumatic brain injury, as secondary injury and the healing process, important aspects the context of brain injury.
Collapse
|
29
|
Soliman ML, Combs CK, Rosenberger TA. Modulation of inflammatory cytokines and mitogen-activated protein kinases by acetate in primary astrocytes. J Neuroimmune Pharmacol 2012; 8:287-300. [PMID: 23233245 DOI: 10.1007/s11481-012-9426-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023]
Abstract
Acetate supplementation attenuates neuroglia activation in a rat model of neuroinflammation by a mechanism associated with an increase in brain acetyl-CoA, an alteration in histone acetylation, and reduction of interleukin (IL)-1β expression. We propose that reduced astroglial activation occurs by disrupting astrocyte-derived inflammatory signaling and cytokine release. Using primary astroglial cultures, we found that LPS (0-25 ng/ml, 4 h) increased tumor necrosis factor (TNF-α) and IL-1β in a concentration-dependent manner, which was reduced by treatment with sodium acetate (12 mM). LPS did not alter H3K9 acetylation or IL-6 levels, whereas acetate treatment increased H3K9 acetylation by 2-fold and decreased basal levels of IL-6 by 2-fold. Acetate treatment attenuated the LPS-induced increase in TNF-α mRNA, but did not reverse the mRNA levels of other pro-inflammatory cytokines. By contrast, LPS decreased TGF-β1 and IL-4 protein and TGF-β1 mRNA, all of which was reversed with acetate treatment. Further, we found that acetate treatment completely reversed LPS-induced phosphorylation of MAPK p38 and decreased basal levels of phosphorylated extracellular signal-regulated kinases1/2 (ERK1/2) by 2-fold. Acetate treatment also reversed LPS-elevated NF-κB p65, CCAAT/enhancer-binding protein beta protein levels, and reduced basal levels of phosphorylated NF-κB p65 at serine 536. These results suggest that acetate treatment has a net anti-inflammatory effect in LPS-stimulated astrocytes that is largely associated with a disruption in MAPK and NF-κB signaling.
Collapse
Affiliation(s)
- Mahmoud L Soliman
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Room 3742, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
30
|
Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem Res 2012; 37:2686-96. [PMID: 22878646 DOI: 10.1007/s11064-012-0858-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/15/2012] [Accepted: 07/28/2012] [Indexed: 12/19/2022]
Abstract
Resveratrol has several beneficial effects, including reductions of oxidative stress, inflammatory responses and apoptosis. It has been known that resveratrol is a sirtuin 1 (SIRT1) activator and protective effects of resveratrol are mediated by Akt and mitogen-activated protein kinases. However, it is not examined whether these pathways are regulated by resveratrol in the ischemic brain. Previously, we found that acute resveratrol treatment reduces brain injury induced by transient focal ischemic stroke. In the present study, we defined the signaling pathways modulated by resveratrol in ischemia by examining SIRT1 expression and phosphorylation of Akt, ERK1/2 and p38 in the ischemic cortex. Resveratrol increased expression of SIRT1 and phosphorylation of Akt and p38 but inhibited the increase in phosphorylation of ERK1/2. Gene and protein levels of peroxisome proliferator-activated receptor γ coactivator 1α, a downstream molecule of SIRT1, and mRNA levels of its target genes antioxidative superoxide dismutase 2 and uncoupling protein 2 were elevated. Resveratrol also increased phosphorylation of cyclic AMP-response-element-binding protein and transcription of the anti-apoptotic gene Bcl-2. These results suggest that various neuroprotective actions of resveratrol, including anti-oxidative, anti-apoptotic and inflammatory effects, are mediated via modulation of multiple signaling pathways in the ischemic brain.
Collapse
|