1
|
Nogueira NDS, Portal TM, Nogueira TDS, Miranda AES, Campos E, Monteiro de Barros C. Neuronal degeneration, mitochondrial dysfunction, and disturbance of movements induced by rotenone in the ascidian Styela plicata. Neurotoxicology 2025; 108:69-80. [PMID: 40074177 DOI: 10.1016/j.neuro.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Parkinson's disease (PD), a movement disorder caused by dopaminergic degeneration in the midbrain, has been induced in various organisms after injection of different neurotoxins, such as rotenone (ROT), which affect mitochondrial complex I. Due to the conserved characteristics of ascidians, these animals constitute an interesting model for comparative and genetic studies of neurodegenerative diseases. In this study, we investigated the effects of ROT on the ascidian nervous system, evaluating apoptosis, catecholaminergic enzymes, behavioral deficits, and mitochondrial dysfunction. The study revealed morphological disorganization, inducing vacuolation in the ascidian brain. Neuronal death was confirmed by elevated transcriptional levels of caspase-3 and intense caspase-3 staining by immunofluorescence. In addition, there was reduced staining for dopa-decarboxylase (DDC), which is involved in dopamine biosynthesis. Furthermore, the mitochondria exhibited dysfunction in their membrane potential, followed by a decrease in the hydrolytic activity of ATP synthase and high transcriptional levels of ubiquitin. Finally, after administration of the drug l-3,4-dihydroxyphenylalanine (L-DOPA), recovery of motor movements was observed, as revealed by behavioral tests. Overall, the current research provides new data on the effects of rotenone on the ascidian brain, inducing neuronal death, mitochondrial dysfunction, and siphon movement disorders in the ascidian Styela plicata.
Collapse
Affiliation(s)
- Nathany da Silva Nogueira
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil.
| | - Taynan Motta Portal
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil; Programa de Pós-graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campo dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| | - Thuany da Silva Nogueira
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil.
| | - Aurenita Emile Sá Miranda
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil.
| | - Eldo Campos
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil.
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Macaé 27965-045, Brazil.
| |
Collapse
|
2
|
Hua W, Ma S, Pang Y, Liu Q, Wang Y, Liu Z, Zhao N, Ren N, Jin S, Wang B, Song Y, Qi J. Intracerebral Hemorrhage-Induced Brain Injury: the Role of Lysosomal-Associated Transmembrane Protein 5. Mol Neurobiol 2023; 60:7060-7079. [PMID: 37525083 DOI: 10.1007/s12035-023-03484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Intracerebral hemorrhage (ICH) is a lethal stroke with high mortality or disability. However, effective therapy for ICH damage is generally lacking. Previous investigations have suggested that lysosomal protein transmembrane 5 (LAPTM5) is involved in various pathological processes, including autophagy, apoptosis, and inflammation. In this study, we aimed to identify the expression and functions of LAPTM5 in collagenase-induced ICH mouse models and hemoglobin-induced cell models. We found that LAPTM5 was highly expressed in brain tissues around the hematoma, and double immunostaining studies showed that LAPTM5 was co-expressed with microglia cells, neurons, and astrocytes. Following ICH, the mice presented increased brain edema, blood-brain barrier permeability, and neurological deficits, while pathological symptoms were alleviated after the LAPTM5 knockdown. Adeno-associated virus 9-mediated downregulation of LAPTM5 also improves ICH-induced secondary cerebral damage, including neuronal degeneration, the polarization of M1-like microglia, and inflammatory cascades. Furthermore, LAPTM5 promoted activation of the nuclear factor kappa-B (NF-κB) pathway in response to neuroinflammation. Further investigations indicated that brain injury improved by LAPTM5 knockdown was further exacerbated after the overexpression of receptor-interacting protein kinase 1 (RIP1), which is revealed to trigger the NF-κB pathway. In vitro experiments demonstrated that LAPTM5 silencing inhibited hemoglobin-induced cell function and confirmed regulation between RIP1 and LAPTM5. In conclusion, the present study indicates that LAPTM5 may act as a positive regulator in the context of ICH by modulating the RIP1/NF-κB pathway. Thus, it may be a candidate gene for further study of molecular or therapeutic targets.
Collapse
Affiliation(s)
- Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shuainan Ma
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuxin Pang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yueying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhiyi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Nan Zhao
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Naixin Ren
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sinan Jin
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Benshuai Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Woo MS, Ufer F, Rothammer N, Di Liberto G, Binkle L, Haferkamp U, Sonner JK, Engler JB, Hornig S, Bauer S, Wagner I, Egervari K, Raber J, Duvoisin RM, Pless O, Merkler D, Friese MA. Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med 2021; 218:e20201290. [PMID: 33661276 PMCID: PMC7938362 DOI: 10.1084/jem.20201290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with continuous neuronal loss. Treatment of clinical progression remains challenging due to lack of insights into inflammation-induced neurodegenerative pathways. Here, we show that an imbalance in the neuronal receptor interactome is driving glutamate excitotoxicity in neurons of MS patients and identify the MS risk-associated metabotropic glutamate receptor 8 (GRM8) as a decisive modulator. Mechanistically, GRM8 activation counteracted neuronal cAMP accumulation, thereby directly desensitizing the inositol 1,4,5-trisphosphate receptor (IP3R). This profoundly limited glutamate-induced calcium release from the endoplasmic reticulum and subsequent cell death. Notably, we found Grm8-deficient neurons to be more prone to glutamate excitotoxicity, whereas pharmacological activation of GRM8 augmented neuroprotection in mouse and human neurons as well as in a preclinical mouse model of MS. Thus, we demonstrate that GRM8 conveys neuronal resilience to CNS inflammation and is a promising neuroprotective target with broad therapeutic implications.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Ufer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Lars Binkle
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Jana K. Sonner
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Hornig
- Experimentelle Neuropädiatrie, Klinik für Kinder und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Kristof Egervari
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Manuel A. Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Ahsan A, Zheng Y, Ma S, Liu M, Cao M, Li Y, Zheng W, Zhou X, Xin M, Hu WW, Chen Z, Zhang X. Tomatidine protects against ischemic neuronal injury by improving lysosomal function. Eur J Pharmacol 2020; 882:173280. [PMID: 32580039 DOI: 10.1016/j.ejphar.2020.173280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a severe neurological disorder with limited therapy. Autophagy refers to the intracellular degradation process via an autophagosome-lysosome pathway. Emerging studies indicated the neuroprotective effects of autophagy against ischemic neuronal injury, suggesting the potential neuroprotection of autophagy-inducing compounds. Tomatidine is a gut microbiota-derived metabolite from unripe tomatoes. Tomatidine activates autophagy either in mammal cells or C elegans. However, potential neuroprotection of tomatidine against ischemic neuronal injury has not been determined. In the present investigation, N2a cells and primary cultured mice cortical neurons were subjected to oxygen-glucose deprivation followed by reperfusion (OGD/R). Cell injury was determined by MTT and lactate dehydrogenase release. Autophagosomes and autolysosomes were visualized by transfecting mCherry-GFP-tandem fluorescent LC3. The protein levels of LC3, Cathepsin D, Cathepsin B, and transcription factor EB (TFEB) were detected by Western blot. Lysosomes were stained with LysoTracker Red and dequenched-bovine serum albumin (DQ-BSA red). Tomatidine alleviated OGD/R-induced injury in N2a cells and neurons. Interestingly, tomatidine treatment attenuated, rather than reinforced, the OGD/R-elevated LC3-II, which can be reversed by lysosome inhibitor. These results indicated enhanced lysosomal activity rather than autophagosome generation with tomatidine treatment in our models. Indeed, tomatidine increased the lysosome number, proteolytic activities, as well as the expression of Cathepsin D and Cathepsin B. In addition, tomatidine increased the expression and nucleus translocation of (TFEB). Besides, lysosomal inhibitors chloroquine and bafilomycin, but not wortmannin, abolished the protection of tomatidine. In conclusion, the present study revealed the neuroprotection of tomatidine against ischemic injury by promoting lysosomal activity, possibly with the involvement of TFEB-related mechanisms.
Collapse
Affiliation(s)
- Anil Ahsan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Mengru Liu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Ming Cao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Wanqing Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Zhou
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Minhang Xin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Wei Hu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Granat L, Hunt RJ, Bateman JM. Mitochondrial retrograde signalling in neurological disease. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190415. [PMID: 32362256 DOI: 10.1098/rstb.2019.0415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal mitochondrial dysfunction causes primary mitochondrial diseases and likely contributes to neurodegenerative diseases including Parkinson's and Alzheimer's disease. Mitochondrial dysfunction has also been documented in neurodevelopmental disorders such as tuberous sclerosis complex and autism spectrum disorder. Only symptomatic treatments exist for neurodevelopmental disorders, while neurodegenerative diseases are largely untreatable. Altered mitochondrial function activates mitochondrial retrograde signalling pathways, which enable signalling to the nucleus to reprogramme nuclear gene expression. In this review, we discuss the role of mitochondrial retrograde signalling in neurological diseases. We summarize how mitochondrial dysfunction contributes to neurodegenerative disease and neurodevelopmental disorders. Mitochondrial signalling mechanisms that have relevance to neurological disease are discussed. We then describe studies documenting retrograde signalling pathways in neurons and glia, and in animal models of neuronal mitochondrial dysfunction and neurological disease. Finally, we suggest how specific retrograde signalling pathways can be targeted to develop novel treatments for neurological diseases. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Rachel J Hunt
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
7
|
Buratta S, Chiaradia E, Tognoloni A, Gambelunghe A, Meschini C, Palmieri L, Muzi G, Urbanelli L, Emiliani C, Tancini B. Effect of Curcumin on Protein Damage Induced by Rotenone in Dopaminergic PC12 Cells. Int J Mol Sci 2020; 21:E2761. [PMID: 32316110 PMCID: PMC7215629 DOI: 10.3390/ijms21082761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is considered to be a key factor of the pathogenesis of Parkinson's disease, a multifactorial neurodegenerative disorder characterized by reduced dopaminergic neurons in the substantia nigra pars compacta and accumulated protein aggregates. Rotenone is a worldwide-used pesticide that induces the most common features of Parkinson's by direct inhibition of the mitochondrial complex I. Rotenone-induced Parkinson's models, as well as brain tissues from Parkinson's patients, are characterized by the presence of both lipid peroxidation and protein oxidation markers resulting from the increased level of free radical species. Oxidation introduces several modifications in protein structure, including carbonylation and nitrotyrosine formation, which severely compromise cell function. Due to the link existing between oxidative stress and Parkinson's disease, antioxidant molecules could represent possible therapeutic tools for this disease. In this study, we evaluated the effect of curcumin, a natural compound known for its antioxidant properties, in dopaminergic PC12 cells treated with rotenone, a cell model of Parkinsonism. Our results demonstrate that the treatment of PC12 cells with rotenone causes severe protein damage, with formation of both carbonylated and nitrotyrosine-derived proteins, whereas curcumin (10 µM) co-exposure exerts protective effects by reducing the levels of oxidized proteins. Curcumin also promotes proteasome activation, abolishing the inhibitory effect exerted by rotenone on this degradative system.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.B.); (C.M.); (L.P.); (L.U.); (C.E.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (E.C.); (A.T.)
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (E.C.); (A.T.)
| | - Angela Gambelunghe
- Department of Medicine, University of Perugia, 06132 Perugia, Italy; (A.G.); (G.M.)
| | - Consuelo Meschini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.B.); (C.M.); (L.P.); (L.U.); (C.E.)
| | - Luigi Palmieri
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.B.); (C.M.); (L.P.); (L.U.); (C.E.)
| | - Giacomo Muzi
- Department of Medicine, University of Perugia, 06132 Perugia, Italy; (A.G.); (G.M.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.B.); (C.M.); (L.P.); (L.U.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.B.); (C.M.); (L.P.); (L.U.); (C.E.)
| | - Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (S.B.); (C.M.); (L.P.); (L.U.); (C.E.)
| |
Collapse
|
8
|
Li J, Xiang X, Xu Z. Cilostazol protects against myocardial ischemia and reperfusion injury by activating transcription factor EB (TFEB). Biotechnol Appl Biochem 2019; 66:555-563. [PMID: 30994947 DOI: 10.1002/bab.1754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Although cilostazol was proved to have antitumor biological effects, its function in myocardial ischemia and reperfusion (I/R) injury and the underlying mechanisms were not fully illustrated yet. In this study, a rat model of I/R injury was constructed and quantitative real-time PCR, Western blot, and immunofluorescence (IF) assay were performed. Our results showed that cilostazol increased LC3 II/LC3 I ratio, reduced p62 abundance, and promoted the expressions of LAMP1, LAMP2, cathepsin B, and cathepsin D, indicating that cilostazol could activate autophagy and elevated lysosome activation. Following analysis showed that cilostazol enhanced nuclear protein expression of transcription factor EB (TFEB), an important regulator of autophagy-lysosome pathway. Furthermore, CCI-779, an inhibitor of TFEB, could reverse the effects of cilostazol on autophagic activity and lysosome activation. Importantly, cilostazol suppressed I/R injury-induced apoptosis by decreasing the cleavage of caspase 3 and PARP. Enzyme-linked immunosorbent assay showed that cilostazol reduced the serum levels of CTn1 and CK-MB and decreased infract size caused by I/R injuries. Altogether this study suggested that cilostazol protects against I/R injury by regulating autophagy, lysosome, and apoptosis in a rat model of I/R injury. The protective mechanism of cilostazol was partially through increasing the transcriptional activity of TFEB.
Collapse
Affiliation(s)
- Jiangjin Li
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, People's Republic of China
| | - Xiaoli Xiang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, People's Republic of China
| | - Zuo Xu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett 2017; 592:663-678. [PMID: 29086414 DOI: 10.1002/1873-3468.12890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
Abstract
Mitochondria generate the majority of cellular ATP and are essential for neuronal function. Loss of mitochondrial activity leads to primary mitochondrial diseases and may contribute to neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Mitochondria communicate with the cell through mitochondrial retrograde signaling pathways. These signaling pathways are triggered by mitochondrial dysfunction and allow the organelle to control nuclear gene transcription. Neuronal mitochondrial retrograde signaling pathways have been identified in disease model systems and targeted to restore neuronal function and prevent neurodegeneration. In this review, we describe yeast and mammalian cellular models that have paved the way in the investigation of mitochondrial retrograde mechanisms. We then discuss the evidence for retrograde signaling in neurons and our current knowledge of retrograde signaling mechanisms in neuronal model systems. We argue that targeting mitochondrial retrograde pathways has the potential to lead to novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Rachel J Hunt
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| | - Joseph M Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| |
Collapse
|
10
|
Vidoni C, Follo C, Savino M, Melone MAB, Isidoro C. The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders. Med Res Rev 2016; 36:845-70. [DOI: 10.1002/med.21394] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinic and Experimental Medicine and Surgery; Second University of Naples; Naples Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| |
Collapse
|
11
|
Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun 2016; 7:11173. [PMID: 27029645 PMCID: PMC4821887 DOI: 10.1038/ncomms11173] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders.
Collapse
Affiliation(s)
- Brandon L. Pearson
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| | - Jeremy M. Simon
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| | - Eric S. McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Giulia Fragola
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
| | - Mark J. Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7545, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599-7255, USA
| |
Collapse
|
12
|
Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy-Lysosomal Pathway. Neurochem Res 2015; 41:554-67. [PMID: 26318862 DOI: 10.1007/s11064-015-1666-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.
Collapse
Affiliation(s)
- Yann Wan Yap
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Roxana M Llanos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nam Sang Cheung
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
13
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
14
|
Ambrosi G, Ghezzi C, Sepe S, Milanese C, Payan-Gomez C, Bombardieri CR, Armentero MT, Zangaglia R, Pacchetti C, Mastroberardino PG, Blandini F. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1385-94. [PMID: 24854107 DOI: 10.1016/j.bbadis.2014.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a complex disease and the current interest and focus of scientific research is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable to clinical practice. METHODS Primary fibroblast cultures were established from skin biopsies. Increased susceptibility to the PD-related toxin rotenone was determined with apoptosis- and necrosis-specific cell death assays. Protein quality control was evaluated assessing the efficiency of the Ubiquitin Proteasome System (UPS) and protein levels of autophagic markers. Changes in cellular bioenergetics were monitored by measuring oxygen consumption and glycolysis-dependent medium acidification. The oxido-reductive status was determined by detecting mitochondrial superoxide production and oxidation levels in proteins and lipids. RESULTS PD fibroblasts showed higher vulnerability to necrotic cell death induced by complex I inhibitor rotenone, reduced UPS function and decreased maximal and rotenone-sensitive mitochondrial respiration. No changes in autophagy and redox markers were detected. CONCLUSIONS Our study shows that increased susceptibility to rotenone and the presence of proteolytic and bioenergetic deficits that typically sustain the neurodegenerative process of PD can be detected in fibroblasts from idiopathic PD patients. Fibroblasts might therefore represent a powerful and minimally invasive tool to investigate PD pathogenic mechanisms, which might translate into considerable advances in clinical management of the disease.
Collapse
Affiliation(s)
- Giulia Ambrosi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Sepe
- Department of Genetics, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Chiara Milanese
- Department of Genetics, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands; RiMED Foundation, Palermo, Italy
| | - Cesar Payan-Gomez
- Department of Genetics, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands; Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Cintia R Bombardieri
- Department of Genetics, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Marie-Therese Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | - Roberta Zangaglia
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | - Claudio Pacchetti
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | | | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia, Italy.
| |
Collapse
|
15
|
The Contribution of Cdc2 in Rotenone-Induced G2/M Arrest and Caspase-3-Dependent Apoptosis. J Mol Neurosci 2013; 53:31-40. [DOI: 10.1007/s12031-013-0185-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/24/2022]
|