1
|
Moxon JV, Pretorius C, Trollope AF, Mittal P, Klingler-Hoffmann M, Hoffmann P, Golledge J. A systematic review and in silico analysis of studies investigating the ischemic penumbra proteome in animal models of experimental stroke. J Cereb Blood Flow Metab 2024; 44:1709-1722. [PMID: 38639008 PMCID: PMC11504113 DOI: 10.1177/0271678x241248502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Ischaemic stroke results in the formation of a cerebral infarction bordered by an ischaemic penumbra. Characterising the proteins within the ischaemic penumbra may identify neuro-protective targets and novel circulating markers to improve patient care. This review assessed data from studies using proteomic platforms to compare ischaemic penumbra tissues to controls following experimental stroke in animal models. Proteins reported to differ significantly between penumbra and control tissues were analysed in silico to identify protein-protein interactions and over-represented pathways. Sixteen studies using rat (n = 12), mouse (n = 2) or primate (n = 2) models were included. Heterogeneity in the design of the studies and definition of the penumbra were observed. Analyses showed high abundance of p53 in the penumbra within 24 hours of permanent ischaemic stroke and was implicated in driving apoptosis, cell cycle progression, and ATM- MAPK- and p53- signalling. Between 1 and 7 days after stroke there were changes in the abundance of proteins involved in the complement and coagulation pathways. Favourable recovery 1 month after stroke was associated with an increase in the abundance of proteins involved in wound healing. Poor recovery was associated with increases in prostaglandin signalling. Findings suggest that p53 may be a target for novel therapeutics for ischaemic stroke.
Collapse
Affiliation(s)
- Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Cornea Pretorius
- Townsville University Hospital, Angus Smith Drive, Douglas, Townsville, Australia
| | - Alexandra F Trollope
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Parul Mittal
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Manuela Klingler-Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peter Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Australia
| |
Collapse
|
2
|
Wang Y, Xu X, Shui X, Ren R, Liu Y. Molecular subtype identification of cerebral ischemic stroke based on ferroptosis-related genes. Sci Rep 2024; 14:9350. [PMID: 38653998 PMCID: PMC11039763 DOI: 10.1038/s41598-024-53327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Cerebral ischemic stroke (CIS) has the characteristics of a high incidence, disability, and mortality rate. Here, we aimed to explore the potential pathogenic mechanisms of ferroptosis-related genes (FRGs) in CIS. Three microarray datasets from the Gene Expression Omnibus (GEO) database were utilized to analyze differentially expressed genes (DEGs) between CIS and normal controls. FRGs were obtained from a literature report and the FerrDb database. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network were used to screen hub genes. The receiver operating characteristic (ROC) curve was adopted to evaluate the diagnostic value of key genes in CIS, followed by analysis of immune microenvironment, transcription factor (TF) regulatory network, drug prediction, and molecular docking. In total, 128 CIS samples were divided into 2 subgroups after clustering analysis. Compared with cluster A, 1560 DEGs were identified in cluster B. After the construction of the WGCNA and PPI network, 5 hub genes, including MAPK3, WAS, DNAJC5, PRKCD, and GRB2, were identified for CIS. Interestingly, MAPK3 was a FRG that differentially expressed between cluster A and cluster B. The expression levels of 5 hub genes were all specifically highly in cluster A subtype. It is noted that neutrophils were the most positively correlated with all 5 real hub genes. PRKCD was one of the target genes of FASUDIL. In conclusion, five real hub genes were identified as potential diagnostic markers, which can distinguish the two subtypes well.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China.
| | - Xinjuan Xu
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Xinjun Shui
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Ruilin Ren
- Department of Neurosurgery, Shanxi Cardiovascular Hospital, No.18, Yifen Street, Taiyuan City, 030024, Shanxi Province, China
| | - Yu Liu
- Department of Surgical, Peking University First Hospital Taiyuan, Taiyuan, China
| |
Collapse
|
3
|
Villa RF, Ferrari F, Gorini A. Effects of Chronic Hypertension on the Energy Metabolism of Cerebral Cortex Mitochondria in Normotensive and in Spontaneously Hypertensive Rats During Aging. Neuromolecular Med 2024; 26:2. [PMID: 38393429 DOI: 10.1007/s12017-023-08772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
Abstract
In this study the subcellular modifications undergone by cerebral cortex mitochondrial metabolism in chronic hypertension during aging were evaluated. The catalytic properties of regulatory energy-linked enzymes of Tricarboxylic Acid Cycle (TCA), Electron Transport Chain (ETC) and glutamate metabolism were assayed on non-synaptic mitochondria (FM, located in post-synaptic compartment) and on intra-synaptic mitochondria of pre-synaptic compartment, furtherly divided in "light" (LM) and "heavy" (HM) mitochondria, purified form cerebral cortex of normotensive Wistar Kyoto Rats (WKY) versus Spontaneously Hypertensive Rats (SHR) at 6, 12 and 18 months. During physiological aging, the metabolic machinery was differently expressed in pre- and post-synaptic compartments: LM and above all HM were more affected by aging, displaying lower ETC activities. In SHR at 6 months, FM and LM showed an uncoupling between TCA and ETC, likely as initial adaptive response to hypertension. During pathological aging, HM were particularly affected at 12 months in SHR, as if the adaptive modifications in FM and LM at 6 months granted a mitochondrial functional balance, while at 18 months all the neuronal mitochondria displayed decreased metabolic fluxes versus WKY. This study describes the effects of chronic hypertension on cerebral mitochondrial energy metabolism during aging through functional proteomics of enzymes at subcellular levels, i.e. in neuronal soma and synapses. In addition, this represents the starting point to envisage an experimental physiopathological model which could be useful also for pharmacological studies, to assess drug actions during the development of age-related pathologies that could coexist and/or are provoked by chronic hypertension.
Collapse
Affiliation(s)
- Roberto Federico Villa
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Federica Ferrari
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
- School of Neurology, Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi. 21, 27100, Pavia, Italy
| | - Antonella Gorini
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| |
Collapse
|
4
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
5
|
Sun S, Li Z, Xiao Q, Tan S, Hu B, Jin H. An updated review on prediction and preventive treatment of post-stroke depression. Expert Rev Neurother 2023; 23:721-739. [PMID: 37427452 DOI: 10.1080/14737175.2023.2234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Post-stroke depression (PSD), one of the most common complications following stroke, affects approximately one-third of stroke patients and is significantly associated with increased disability and mortality as well as decreased quality of life, which makes it an important public health concern. Treatment of PSD significantly ameliorates depressive symptoms and improves the prognosis of stroke. AREAS COVERED The authors discuss the critical aspects of the clinical application of prediction and preventive treatment of PSD. Then, the authors update the biological factors associated with the onset of PSD. Furthermore, they summarize the recent progress in pharmacological preventive treatment in clinical trials and propose potential treatment targets. The authors also discuss the current roadblocks in the preventive treatment of PSD. Finally, the authors put postulate potential directions for future studies so as to discover accurate predictors and provide individualized preventive treatment. EXPERT OPINION Sorting out high-risk PSD patients using reliable predictors will greatly assist PSD management. Indeed, some predictors not only predict the incidence of PSD but also predict prognosis, which indicates that they might also aid the development of an individualized treatment scheme. Preventive application of antidepressants may also be considered.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghui Xiao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Brain Bioenergetics in Chronic Hypertension: Risk Factor for Acute Ischemic Stroke. Biochem Pharmacol 2022; 205:115260. [PMID: 36179931 DOI: 10.1016/j.bcp.2022.115260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Chronic hypertension is one of the key modifiable risk factors for acute ischemic stroke, also contributing to determine greater neurological deficits and worse functional outcome when an acute cerebrovascular event would occur. A tight relationship exists between cerebrovascular autoregulation, neuronal activity and brain bioenergetics. In chronic hypertension, progressive adaptations of these processes occur as an attempt to cope with the demanding necessity of brain functions, creating a new steady-state homeostatic condition. However, these adaptive modifications are insufficient to grant an adequate response to possible pathological perturbations of the established fragile hemodynamic and metabolic homeostasis. In this narrative review, we will discuss the main mechanisms by which alterations in brain bioenergetics and mitochondrial function in chronic hypertension could lead to increased risk of acute ischemic stroke, stressing the interconnections between hemodynamic factors (i.e. cerebral autoregulation and neurovascular coupling) and metabolic processes. Both experimental and clinical pieces of evidence will be discussed. Moreover, the potential role of mitochondrial dysfunction in determining, or at least sustaining, the pathogenesis and progression of chronic neurogenic hypertension will be considered. In the perspective of novel therapeutic strategies aiming at improving brain bioenergetics, we propose some determinant factors to consider in future studies focused on the cause-effect relationships between chronic hypertension and brain bioenergetic abnormalities (and vice versa), so to help translational research in this so-far unfilled gap.
Collapse
|
7
|
Ferrari F, Moretti A, Villa RF. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural Regen Res 2022; 17:292-299. [PMID: 34269190 PMCID: PMC8463990 DOI: 10.4103/1673-5374.317959] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a number of non-diabetic patients after acute ischemic stroke, presumably as a stress response. The aim of this review is to summarize the main effects of hyperglycemia when associated to ischemic injury in acute stroke patients, highlighting the clinical and neurological outcomes in these conditions and after the administration of the currently approved pharmacological treatment, i.e. insulin. The disappointing results of the clinical trials on insulin (including the hypoglycemic events) demand a change of strategy based on more focused therapies. Starting from the comprehensive evaluation of the physiopathological alterations occurring in the ischemic brain during hyperglycemic conditions, the effects of various classes of glucose-lowering drugs are reviewed, such as glucose-like peptide-1 receptor agonists, DPP-4 inhibitors and sodium glucose cotransporter 2 inhibitors, in the perspective of overcoming the up-to-date limitations and of evaluating the effectiveness of new potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| | - Antonio Moretti
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| | - Roberto Federic Villa
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| |
Collapse
|
8
|
Villa RF, Gorini A, Ferrari F. Clonidine and Brain Mitochondrial Energy Metabolism: Pharmacodynamic Insights Beyond Receptorial Effects. Neurochem Res 2022; 47:1429-1441. [DOI: 10.1007/s11064-022-03541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022]
|
9
|
Elexpe A, Nieto N, Fernández-Cuétara C, Domínguez-Fernández C, Morera-Herreras T, Torrecilla M, Miguélez C, Laso A, Ochoa E, Bailen M, González-Coloma A, Angulo-Barturen I, Astigarraga E, Barreda-Gómez G. Study of Tissue-Specific Reactive Oxygen Species Formation by Cell Membrane Microarrays for the Characterization of Bioactive Compounds. MEMBRANES 2021; 11:membranes11120943. [PMID: 34940444 PMCID: PMC8705675 DOI: 10.3390/membranes11120943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/26/2023]
Abstract
The production of reactive oxygen species (ROS) increases considerably in situations of cellular stress, inducing lipid peroxidation and multiple alterations in proteins and nucleic acids. However, sensitivity to oxidative damage varies between organs and tissues depending on the triggering process. Certain drugs used in the treatment of diverse diseases such as malaria have side effects similar to those produced by oxidative damage, although no specific study has been conducted. For this purpose, cell membrane microarrays were developed and the superoxide production evoked by the mitochondrial activity was assayed in the presence of specific inhibitors: rotenone, antimycin A and azide. Once the protocol was set up on cell membrane isolated from rat brain areas, the effect of six antimalarial drugs (atovaquone, quinidine, doxycycline, mefloquine, artemisinin, and tafenoquine) and two essential oils (Rosmarinus officinalis and Origanum majoricum) were evaluated in multiple human samples. The basal activity was different depending on the type of tissue, the liver, jejunum and adrenal gland being the ones with the highest amount of superoxide. The antimalarial drugs studied showed specific behavior according to the type of human tissue analyzed, with atovaquone and quinidine producing the highest percentage of superoxide formation, and doxycycline the lowest. In conclusion, the analysis of superoxide production evaluated in cell membranes of a collection of human tissues allowed for the characterization of the safety profile of these antimalarial drugs against toxicity mediated by oxidative stress.
Collapse
Affiliation(s)
- Ane Elexpe
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Nerea Nieto
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Claudia Fernández-Cuétara
- Department of Preventive Medicine and Public Health and Microbiology, Faculty of Medicine, Autonomus University of Madrid UAM, 28029 Madrid, Spain; (C.F.-C.); (M.B.)
| | - Celtia Domínguez-Fernández
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Instiute, 48903 Barakaldo, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
| | - Cristina Miguélez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (T.M.-H.); (M.T.); (C.M.)
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Instiute, 48903 Barakaldo, Spain
| | - Antonio Laso
- Research and Development Division, AleoVitro, 48160 Derio, Spain; (A.L.); (E.O.)
| | - Eneko Ochoa
- Research and Development Division, AleoVitro, 48160 Derio, Spain; (A.L.); (E.O.)
| | - María Bailen
- Department of Preventive Medicine and Public Health and Microbiology, Faculty of Medicine, Autonomus University of Madrid UAM, 28029 Madrid, Spain; (C.F.-C.); (M.B.)
| | - Azucena González-Coloma
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | | | - Egoitz Astigarraga
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48160 Derio, Spain; (A.E.); (N.N.); (C.D.-F.); (E.A.)
- Correspondence: ; Tel.: +34-94-4316-577; Fax: +34-94-6013-455
| |
Collapse
|
10
|
Borneol in cardio-cerebrovascular diseases: Pharmacological actions, mechanisms, and therapeutics. Pharmacol Res 2021; 169:105627. [PMID: 33892091 DOI: 10.1016/j.phrs.2021.105627] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
With the coming acceleration of global population aging, the incidence rate of cardio-cerebrovascular diseases (CVDs) is increasing. It has become the leading cause of human mortality. As a natural drug, borneol (BO) not only has anti-inflammatory, anti-oxidant, anti-apoptotic, anti-coagulant activities and improves energy metabolism but can also promote drugs to enter the target organs or tissues through various physiological barriers, such as the blood-brain barrier (BBB), mucous membrane, skin. Thus, it has a significant therapeutic effect on various CVDs, which has been confirmed in a large number of studies. However, the pharmacological actions and mechanisms of BO on CVDs have not been fully investigated. Hence, this review summarizes the pharmacological actions and possible mechanisms of BO, which provides novel ideas for the treatment of CVDs.
Collapse
|
11
|
Musazzi L, Sala N, Tornese P, Gallivanone F, Belloli S, Conte A, Di Grigoli G, Chen F, Ikinci A, Treccani G, Bazzini C, Castiglioni I, Nyengaard JR, Wegener G, Moresco RM, Popoli M. Acute Inescapable Stress Rapidly Increases Synaptic Energy Metabolism in Prefrontal Cortex and Alters Working Memory Performance. Cereb Cortex 2019; 29:4948-4957. [DOI: 10.1093/cercor/bhz034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
Brain energy metabolism actively regulates synaptic transmission and activity. We have previously shown that acute footshock (FS)-stress induces fast and long-lasting functional and morphological changes at excitatory synapses in prefrontal cortex (PFC). Here, we asked whether FS-stress increased energy metabolism in PFC, and modified related cognitive functions. Using positron emission tomography (PET), we found that FS-stress induced a redistribution of glucose metabolism in the brain, with relative decrease of [18F]FDG uptake in ventro-caudal regions and increase in dorso-rostral ones. Absolute [18F]FDG uptake was inversely correlated with serum corticosterone. Increased specific hexokinase activity was also measured in purified PFC synaptosomes (but not in total extract) of FS-stressed rats, which positively correlated with 2-Deoxy [3H] glucose uptake by synaptosomes. In line with increased synaptic energy demand, using an electron microscopy-based stereological approach, we found that acute stress induced a redistribution of mitochondria at excitatory synapses, together with an increase in their volume. The fast functional and metabolic activation of PFC induced by acute stress, was accompanied by rapid and sustained alterations of working memory performance in delayed response to T-maze test. Taken together, the present data suggest that acute stress increases energy consumption at PFC synaptic terminals and alters working memory.
Collapse
Affiliation(s)
- Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Nathalie Sala
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Alessandra Conte
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Di Grigoli
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Fengua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Ayşe Ikinci
- Department of Clinical Medicine, Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus C, Denmark
| | - Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Chiara Bazzini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Jens R Nyengaard
- Department of Clinical Medicine, Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus C, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Rosa M Moresco
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
12
|
Ferrari F, Viscardi P, Gorini A, Villa RF. Synaptic ATPases system of rat frontal cerebral cortex during aging. Neurosci Lett 2019; 694:74-79. [DOI: 10.1016/j.neulet.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
|
13
|
Orgah JO, Ren J, Liu X, Orgah EA, Gao XM, Zhu Y. Danhong injection facilitates recovery of post-stroke motion deficit via Parkin-enhanced mitochondrial function. Restor Neurol Neurosci 2019; 37:375-395. [PMID: 31282440 DOI: 10.3233/rnn-180828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND A cerebral ischemic stroke involves mitochondrial dysfunction, motor deficits, and paralysis; and Danhong injection (DHI) might possess mitochondrial protection and functional recovery in a stroke subject through promoting expression of parkin, a ubiquitin ligase playing a key role in the regulation of proteins and mitochondria quality control. OBJECTIVE To investigate the therapeutic effects of DHI on the histological, cellular, and functional recovery of Wistar rats after middle cerebral artery occlusion/reperfusion (MCAO/R). METHODS One hundred and twenty healthy male Wistar rats (250-300 g), were randomly assigned to six groups (twenty rats/group). Rats were subjected to 1 h MCAO/R and subsequently administered the intravenous doses of DHI (0.75, 1.5, and 3 mL/kg) to the respective groups (twice a day for 14 days). Unlike the other groups, the sham group received surgery without vessel occlusion. All the animals were tested for gait behavior using the CatWalk system. The body weight/survival rates were recorded daily for 14 days. The parkin protein expression of the brain tissue was quantified by immunohistochemistry analysis. Additionally, cultured cortical neurons were incubation with DHI or minocycline (MC) and then deprived of oxygen and glucose for 2 h (to resemble ischemic/reperfusion), followed by 4 h reoxygenation. Cellular and mitochondrial phenotypes were assayed by high content analysis. RESULTS Neurological integrity and paw parameters of the animals were altered in the model group but significantly ameliorated by DHI administration. Also, the infarct volume and survival rate were significantly improved in DHI groups. DHI enhanced the expression of parkin protein in the brain and improved the relative mitochondrial reductase activity of the cultured neurons. CONCLUSIONS The overall result shows that daily intervention with DHI provides neuroprotection and survival to improve gait motion in Wistar rats.
Collapse
Affiliation(s)
- John Owoicho Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Jie Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Xinyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Emmanuel A Orgah
- Nigeria Natural Medicine Development Agency, Victoria Island, Lagos, Nigeria
| | - Xiu Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, TEDA, Tianjin, China
| |
Collapse
|
14
|
Ferrari F, Gorini A, Hoyer S, Villa RF. Glutamate metabolism in cerebral mitochondria after ischemia and post-ischemic recovery during aging: relationships with brain energy metabolism. J Neurochem 2018; 146:416-428. [PMID: 29779216 DOI: 10.1111/jnc.14464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post-ischemic recovery after 1, 24, 48, 72, and 96 h in 1-year-old adult and 2-year-old aged rats. The maximum rates (Vmax ) of glutamate dehydrogenase (GlDH), glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase were assayed in somatic mitochondria (FM) and in intra-synaptic 'Light' mitochondria and intra-synaptic 'Heavy' mitochondria ones purified from cerebral cortex, distinguishing post- and pre-synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate-oxaloacetate transaminase was increased in FM and GlDH in intra-synaptic 'Heavy' mitochondria, stimulating glutamate catabolism. During post-ischemic recovery, FM did not show modifications at both ages while, in intra-synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs' cycle and Electron Transport Chain (Villa et al., [2013] Neurochem. Int. 63, 765-781), demonstrate that: (i) Vmax of energy-linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post-ischemic recovery, also (iii) with respect to aging.
Collapse
Affiliation(s)
- Federica Ferrari
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Gorini
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Siegfried Hoyer
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.,Department of Pathology, University Clinic, University of Heidelberg, Heidelberg, Germany
| | - Roberto Federico Villa
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Villa RF, Ferrari F, Moretti A. Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacol Ther 2018; 184:131-144. [DOI: 10.1016/j.pharmthera.2017.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Coenzyme Q10 Regulates Antioxidative Stress and Autophagy in Acute Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9863181. [PMID: 29348792 PMCID: PMC5733971 DOI: 10.1155/2017/9863181] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Background Oxidative stress and autophagy both play key roles in continuous cardiomyocyte death and cardiac dysfunction after reperfusion therapy for acute myocardial ischemia-reperfusion injury. Coenzyme Q10 (CQ10), which is a fat-soluble quinone antioxidant, is involved in the pathophysiological processes of neurodegenerative diseases, cancer, diabetes, heart failure, and other diseases. Our objective was to determine if, and by what mechanism, CQ10 can ameliorate acute myocardial ischemia-reperfusion injury and improve heart function. Methods and Results Fat-soluble CQ10 in soybean oil solvent was preconditioned in rats with acute myocardial ischemia-reperfusion injury by intraperitoneal injection. Oxidant and antioxidant levels were compared between the preconditioned and control groups. Autophagy was measured by Western blotting analysis of autophagy proteins. Proapoptotic proteins and immunofluorescence were used to assess cell apoptosis. Infarct size was determined by triphenyl tetrazolium chloride (TTC) staining and Evans blue staining and visualized myocardial pathology by tissue staining. Finally, we assessed cardiac function by electrocardiography (ECG) and hemodynamics. Conclusions This study reveals that CQ10 preconditioning regulates antioxidant levels and the oxidant balance, enhances autophagy, reduces myocardial apoptosis and death, and improves cardiac function in rats with acute ischemia-reperfusion injury. These results imply that CQ10 protects against acute myocardial ischemia-reperfusion injury via the antioxidative stress and autophagy pathways.
Collapse
|
17
|
Pollard A, Shephard F, Freed J, Liddell S, Chakrabarti L. Mitochondrial proteomic profiling reveals increased carbonic anhydrase II in aging and neurodegeneration. Aging (Albany NY) 2017; 8:2425-2436. [PMID: 27743511 PMCID: PMC5115898 DOI: 10.18632/aging.101064] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/25/2016] [Indexed: 01/26/2023]
Abstract
Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondrial fractions from young adult and middle aged mouse brain and skeletal muscle. We find an increase of tissue specific carbonic anhydrases in mitochondria from middle-aged brain and skeletal muscle. Mitochondrial carbonic anhydrase II was measured in the Purkinje cell degeneration (pcd5J) mouse model. In pcd5J we find mitochondrial carbonic anhydrase II is also elevated in brain from young adults undergoing a process of neurodegeneration. We show C.elegans exposed to carbonic anhydrase II have a dose related shorter lifespan suggesting that high CAII levels are in themselves life limiting. We show for the first time that the mitochondrial content of brain and skeletal tissue are exposed to significantly higher levels of active carbonic anhydrases as early as in middle-age. Carbonic anhydrases associated with mitochondria could be targeted to specifically modulate age related impairments and disease.
Collapse
Affiliation(s)
- Amelia Pollard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Freya Shephard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - James Freed
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Susan Liddell
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Lisa Chakrabarti
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
18
|
Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: An epigenetic connection. Mol Cell Neurosci 2017; 82:176-194. [DOI: 10.1016/j.mcn.2017.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
|
19
|
Villa RF, Ferrari F, Bagini L, Gorini A, Brunello N, Tascedda F. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine. Neuropharmacology 2017; 121:30-38. [DOI: 10.1016/j.neuropharm.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023]
|
20
|
Filipović D, Costina V, Perić I, Stanisavljević A, Findeisen P. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria. Brain Res 2017; 1659:41-54. [DOI: 10.1016/j.brainres.2017.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
21
|
Villa RF, Ferrari F, Moretti A. Effects of Neuroprotectants Before and After Stroke: Statins and Anti-hypertensives. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Profiling of Signaling Proteins in Penumbra After Focal Photothrombotic Infarct in the Rat Brain Cortex. Mol Neurobiol 2016; 54:6839-6856. [PMID: 27771897 DOI: 10.1007/s12035-016-0191-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
In ischemic stroke, cell damage propagates from infarct core to surrounding tissue. To reveal proteins involved in neurodegeneration and neuroprotection, we explored the protein profile in penumbra surrounding the photothrombotic infarct core induced in rat cerebral cortex by local laser irradiation after Bengal Rose administration. Using antibody microarrays, we studied changes in expression of 224 signaling proteins 1, 4, or 24 h after photothrombotic infarct compared with untreated contralateral cortex. Changes in protein expression were greatest at 4 h after photothrombotic impact. These included over-expression of proteins initiating, regulating, or executing various apoptosis stages (caspases, SMAC/DIABLO, Bcl-10, phosphatidylserine receptor (PSR), prostate apoptosis response 4 (Par4), E2F1, p75, p38, JNK, p53, growth arrest and DNA damage inducible protein 153 (GADD153), glutamate decarboxylases (GAD65/67), NMDAR2a, c-myc) and antiapoptotic proteins (Bcl-x, p63, MDM2, p21WAF-1, ERK1/2, ERK5, MAP kinase-activated protein kinase-2 (MAKAPK2), PKCα, PKCβ, PKCμ, RAF1, protein phosphatases 1α and MAP kinase phosphatase-1 (MKP-1), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), estrogen and EGF receptors, calmodulin, CaMKIIα, CaMKIV, amyloid precursor protein (APP), nicastrin). Phospholipase Cγ1, S-100, and S-100β were down-regulated. Bidirectional changes in levels of adhesion and cytoskeleton proteins were related to destruction and/or remodeling of penumbra. Following proteins regulating actin cytoskeleton were over-expressed: cofilin, actopaxin, p120CTN, α-catenin, p35, myosin Va, and pFAK were up-regulated, whereas ezrin, tropomyosin, spectrin (α + β), βIV-tubulin and polyglutamated β-tubulin, and cytokeratins 7 and 19 were down-regulated. Down-regulation of syntaxin, AP2β/γ, and adaptin β1/2 indicated impairment of vesicular transport and synaptic processes. Down-regulation of cyclin-dependent kinase 6 (Cdk6), cell division cycle 7-related protein kinase (Cdc7 kinase), telomeric repeat-binding factor 1 (Trf1), and topoisomerase-1 showed proliferation suppression. Cytoprotection proteins AOP-1 and chaperons Hsp70 and Hsp90 were down-regulated. These data provide the integral view on penumbra response to photothrombotic infarct. Some of these proteins may be potential targets for antistroke therapy.
Collapse
|
23
|
Demyanenko SV, Panchenko SN, Uzdensky AB. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. BIOCHEMISTRY (MOSCOW) 2016; 80:790-9. [PMID: 26531025 DOI: 10.1134/s0006297915060152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone - the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5-2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.
Collapse
Affiliation(s)
- S V Demyanenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | | | | |
Collapse
|
24
|
Ferrari F, Villa RF. The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence. Mol Neurobiol 2016; 54:4847-4865. [DOI: 10.1007/s12035-016-0032-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
|
25
|
Villa RF, Ferrari F, Gorini A, Brunello N, Tascedda F. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria. Neuroscience 2016; 330:326-34. [DOI: 10.1016/j.neuroscience.2016.05.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
|
26
|
Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A. Protein Profile and Morphological Alterations in Penumbra after Focal Photothrombotic Infarction in the Rat Cerebral Cortex. Mol Neurobiol 2016; 54:4172-4188. [PMID: 27324898 DOI: 10.1007/s12035-016-9964-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
After ischemic stroke, cell damage propagates from infarct core to surrounding tissues (penumbra). To reveal proteins involved in neurodegeneration and neuroprotection in penumbra, we studied protein expression changes in 2-mm ring around the core of photothrombotic infarct induced in the rat brain cortex by local laser irradiation after administration of Bengal Rose. The ultrastructural study showed edema and degeneration of neurons, glia, and capillaries. Morphological changes gradually decreased across the penumbra. Using the antibody microarrays, we studied changes in expression of >200 neuronal proteins in penumbra 4 or 24 h after focal photothrombotic infarct. Diverse cellular subsystems were involved in the penumbra tissue response: signal transduction pathways such as protein kinase Bα/GSK-3, protein kinase C and its β1 and β2 isoforms, Wnt/β-catenin (axin1, GSK-3, FRAT1), Notch/NUMB, DYRK1A, TDP43; mitochondria quality control (Pink1, parkin, HtrA2); ubiquitin-mediated proteolysis (ubiquilin-1, UCHL1); axon outgrowth and guidance (NAV-3, CRMP2, PKCβ2); vesicular trafficking (syntaxin-8, TMP21, Munc-18-3, synip, ALS2, VILIP1, syntaxin, synaptophysin, synaptotagmin); biosynthesis of neuromediators (tryptophan hydroxylase, monoamine oxidase B, glutamate decarboxylase, tyrosine hydroxylase, DOPA decarboxylase, dopamine transporter); intercellular interactions (N-cadherin, PMP22); cytoskeleton (neurofilament 68, neurofilament-M, doublecortin); and other proteins (LRP1, prion protein, β-amyloid). These proteins are involved in neurodegeneration or neuroprotection. Such changes were most expressed 4 h after photothrombotic impact. Immunohistochemical and Western blot studies of expression of monoamine oxidase B, UCHL1, DYRK1A, and Munc-18-3 confirmed the proteomic data. These data provide the integral view on the penumbra response to photothrombotic infarct. Some of these proteins can be potential targets for ischemic stroke therapy.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia.
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia
| | - Grigory Fedorenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia.,Institute of Arid Zones, Southern Scientific Center of Russian Academy of Sciences, 41 Chekhov prosp., Rostov-on-Don, 344006, Russia
| | - Tayana Lapteva
- Regional Consulting and Diagnostic Center, 127 Pushkinskaya st., Rostov-on-Don, 344010, Russia
| | - Alexej Fedorenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia
| |
Collapse
|
27
|
Moretti A, Ferrari F, Villa RF. Pharmacological therapy of acute ischaemic stroke: Achievements and problems. Pharmacol Ther 2015; 153:79-89. [DOI: 10.1016/j.pharmthera.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 01/04/2023]
|
28
|
Liang S, Aiqun M, Figtree G, Ping Z. GAPDH-silence preserves H9C2 cells from acute hypoxia and reoxygenation injury. Int J Biol Macromol 2015; 81:375-86. [PMID: 26279122 DOI: 10.1016/j.ijbiomac.2015.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Acute hypoxia and reoxygenation injury, as a common environmental stress condition, is a basic condition of most pathophysiological processes. It has been approve that autophagy and oxidant stress could contribute to acute hypoxia and reoxygenation injury. This study is aimed to examine the effect of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silence on cell injury with acute hypoxia and reoxygenation injury by autophagy and antioxidant stress pathway. METHODS GAPDH expression was silenced by siRNA in H9C2 cardiomyoblasts with acute hypoxia and reoxygenation injury. Autophagy was detected by western blot for autophagy proteins and monodansylcadaverine (MDC) staining for acidic substances. Pro-apoptosis protein and flow cytometry were used to assess cell apoptosis and death and intracellular adenosine triphosphate (ATP) relative concentration was measured. Oxidant stress was assessed by measuring 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA), thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and super oxide dismutase (SOD). RESULTS In this study, GAPDH-silence enhanced autophagy in H9C2 cells with acute hypoxia and reoxygenation injury, decreased oxidant stress and increased antioxidant pathways; and reduced cell apoptosis and death. However, GAPDH-silence had no significant effect on cell energy. CONCLUSION GAPDH pre-silence by siRNA reduces H9C2 cell death occurring via autophagy and anti-oxidative stress pathway in acute hypoxia and reoxygenation injury. This study enriches the understanding of GAPDH pathophysiology role, and provides potential new therapeutic targets for cardiac disease states characterized by oxidative stress.
Collapse
Affiliation(s)
- Shao Liang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Ma Aiqun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Gemma Figtree
- North Shore Heart Research Group, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Zhang Ping
- Department of Geriatrics & Neurology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Ferrari F, Gorini A, Villa RF. Functional proteomics of synaptic plasma membrane ATP-ases of rat hippocampus: Effect of l-acetylcarnitine and relationships with Dementia and Depression pathophysiology. Eur J Pharmacol 2015; 756:67-74. [DOI: 10.1016/j.ejphar.2015.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 11/17/2022]
|
30
|
Rehni AK, Nautiyal N, Perez-Pinzon MA, Dave KR. Hyperglycemia / hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics. Metab Brain Dis 2015; 30:437-47. [PMID: 24737446 PMCID: PMC4199931 DOI: 10.1007/s11011-014-9538-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/26/2014] [Indexed: 12/22/2022]
Abstract
Enhancement of ischemic brain damage is one of the most serious complications of diabetes. Studies from various in vivo and in vitro models of cerebral ischemia have led to an understanding of the role of mitochondria and complex interrelated mitochondrial biochemical pathways leading to the aggravation of ischemic neuronal damage. Advancements in the elucidation of the mechanisms of ischemic brain damage in diabetic subjects have revealed a number of key mitochondrial targets that have been hypothesized to participate in enhancement of brain damage. The present review initially discusses the neurobiology of ischemic neuronal injury, with special emphasis on the central role of mitochondria in mediating its pathogenesis and therapeutic targets. Later it further details the potential role of various biochemical mediators and second messengers causing widespread ischemic brain damage among diabetics via mitochondrial pathways. The present review discusses preclinical data which validates the significance of mitochondrial mechanisms in mediating the aggravation of ischemic cerebral injury in diabetes. Exploitation of these targets may provide effective therapeutic agents for the management of diabetes-related aggravation of ischemic neuronal damage.
Collapse
Affiliation(s)
- Ashish K. Rehni
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Patiala-140401, Punjab, India
| | - Neha Nautiyal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Patiala-140401, Punjab, India
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience program, University of Miami School of Medicine, Miami, Florida 33101, USA
| | - Kunjan R. Dave
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience program, University of Miami School of Medicine, Miami, Florida 33101, USA
| |
Collapse
|
31
|
Wille M, Schümann A, Kreutzer M, Glocker MO, Wree A, Mutzbauer G, Schmitt O. The proteome profiles of the olfactory bulb of juvenile, adult and aged rats - an ontogenetic study. Proteome Sci 2015; 13:8. [PMID: 25709559 PMCID: PMC4337183 DOI: 10.1186/s12953-014-0058-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022] Open
Abstract
Background In this study, we searched for proteins that change their expression in the olfactory bulb (oB) of rats during ontogenesis. Up to now, protein expression differences in the developing animal are not fully understood. Our investigation focused on the question whether specific proteins exist which are only expressed during different development stages. This might lead to a better characterization of the microenvironment and to a better determination of factors and candidates that influence the differentiation of neuronal progenitor cells. Results After analyzing the samples by two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), it could be shown that the number of expressed proteins differs depending on the developmental stages. Especially members of the functional classes, like proteins of biosynthesis, regulatory proteins and structural proteins, show the highest differential expression in the stages of development analyzed. Conclusion In this study, quantitative changes in the expression of proteins in the oB at different developmental stages (postnatal days (P) 7, 90 and 637) could be observed. Furthermore, the expression of many proteins was found at specific developmental stages. It was possible to identify these proteins which are involved in processes like support of cell migration and differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0058-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Wille
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Antje Schümann
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Michael Kreutzer
- Proteome Center Rostock, Schillingallee 69, 18055 Rostock, Germany
| | | | - Andreas Wree
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Grit Mutzbauer
- Department of Pathology, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Oliver Schmitt
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| |
Collapse
|
32
|
Xie Y, Li J, Fan G, Qi S, Li B. Reperfusion promotes mitochondrial biogenesis following focal cerebral ischemia in rats. PLoS One 2014; 9:e92443. [PMID: 24667167 PMCID: PMC3965405 DOI: 10.1371/journal.pone.0092443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/21/2014] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose Reperfusion after transient cerebral ischemia causes severe damage to mitochondria; however, little is known regarding the continuous change in mitochondrial biogenesis during reperfusion. Mitochondrial biogenesis causes an increase in the individual mitochondrial mass of neurons and maintains their aerobic set-point in the face of declining function. The aim of this study was to examine mitochondrial biogenesis in the cortex during reperfusion following focal cerebral ischemia. Methods Male Wistar rats were subjected to transient focal cerebral ischemia. The relative amount of cortical mitochondrial DNA was analyzed using quantitative real-time PCR at 0 h, 24 h, 72 h, and 7 d after reperfusion. Three critical transcriptional regulators of mitochondrial biogenesis were measured by semi-quantitative reverse-transcription PCR. The protein expression of cytochrome C oxidase subunits I and IV was detected by Western blotting. Results Evidence of increased mitochondrial biogenesis was observed after reperfusion. The cortical mitochondrial DNA content increased after 24 h, peaked after 72 h, and maintained a high level for 7 d. The cortical expression of three critical genes for the transcriptional regulation of mitochondrial biogenesis, namely, peroxisome proliferator-activated receptor coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A, also increased at 24 h and 72 h. The expression of peroxisome proliferator-activated receptor coactivator-1α returned to the baseline level at 7 d, but two other factors maintained higher levels compared with the controls. Moreover, the expression of cytochrome C oxidase subunits I and IV was increased in the cortex. Conclusions These results indicate that reperfusion increased mitochondrial biogenesis following focal cerebral ischemia, and this tendency was exacerbated as the reperfusion time was extended. Reperfusion-induced mitochondrial biogenesis was mediated through up-regulation of critical transcriptional regulators of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yuying Xie
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jun Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guibo Fan
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- * E-mail: (SQ); (BL)
| | - Bing Li
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- * E-mail: (SQ); (BL)
| |
Collapse
|
33
|
Martins-de-Souza D, Carvalho PC, Schmitt A, Junqueira M, Nogueira FCS, Turck CW, Domont GB. Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the Chromosome 15-centric Human Proteome Project. J Proteome Res 2013; 13:147-57. [PMID: 24274931 DOI: 10.1021/pr4009157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Defining the proteomes encoded by each chromosome and characterizing proteins related to human illnesses are among the goals of the Chromosome-centric Human Proteome Project (C-HPP) and the Biology and Disease-driven HPP. Following these objectives, we investigated the proteomes of the human anterior temporal lobe (ATL) and corpus callosum (CC) collected post-mortem from eight subjects. Using a label-free GeLC-MS/MS approach, we identified 2454 proteins in the ATL and 1887 in the CC through roughly 7500 and 5500 peptides, respectively. Considering that the ATL is a gray-matter region while the CC is a white-matter region, they presented proteomes specific to their functions. Besides, 38 proteins were found to be differentially expressed between the two regions. Furthermore, the proteome data sets were classified according to their chromosomal origin, and five proteins were evidenced at the MS level for the first time. We identified 70 proteins of the chromosome 15 - one of them for the first time by MS - which were submitted to an in silico pathway analysis. These revealed branch point proteins associated with Prader-Willi and Angelman syndromes and dyskeratosis congenita, which are chromosome-15-associated diseases. Data presented here can be a useful for brain disorder studies as well as for contributing to the C-HPP initiative. Our data are publicly available as resource data to C-HPP participant groups at http://yoda.iq.ufrj.br/Daniel/chpp2013. Additionally, the mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD000547 for the corpus callosum and PXD000548 for the anterior temporal lobe.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Research Group of Proteomics, Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich (LMU) , Nußbaumstraße 7, Munich D-80336, Germany
| | | | | | | | | | | | | |
Collapse
|