1
|
Ye W, Luo C, Zhou J, Liang X, Wen J, Huang J, Zeng Y, Wu Y, Gao Y, Liu Z, Liu F. Association between maternal diabetes and neurodevelopmental outcomes in children: a systematic review and meta-analysis of 202 observational studies comprising 56·1 million pregnancies. Lancet Diabetes Endocrinol 2025:S2213-8587(25)00036-1. [PMID: 40209722 DOI: 10.1016/s2213-8587(25)00036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Maternal diabetes might alter fetal brain development. However, well-designed systematic analyses are needed to comprehensively assess and quantify the association between maternal diabetes and neurodevelopmental outcomes in children. We aimed to synthesise and evaluate the available evidence on the effects of maternal diabetes on neurodevelopmental outcomes in children. METHODS For this systematic review and meta-analysis we searched PubMed, Web of Science, Embase, and EBSCO databases from inception to Dec 1, 2024, for studies exploring neurodevelopmental outcomes of children born to mothers with diabetes. The primary outcome was neurodevelopmental disorders, as defined by the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and International Classification of Diseases 11th Revision. Data were extracted from published reports. Data were pooled with random-effects models and presented as risk ratios or standard mean differences with 95% CIs. This study was prospectively registered on PROSPERO (CRD42023395464). FINDINGS 202 studies, involving 56 082 462 mother-child pairs, were included in the meta-analysis. Of these, 110 (54%) examined gestational diabetes, while 80 (40%) investigated pre-gestational diabetes. Among the total studies reviewed, 169 (84%) exclusively focused on children and adolescents aged up to 18 years. In studies adjusting for at least one key confounder, maternal diabetes was associated with increased risks of all types of neurodevelopmental disorders as well as lower intelligence and psychomotor scores. In studies adjusting for multiple confounders (n=98, 49%), children exposed to maternal diabetes had an increased risk of any neurodevelopmental disorder (risk ratio 1·28; 95% CI 1·24-1·31), autism spectrum disorder (1·25; 1·20-1·31), attention-deficit hyperactivity disorder (1·30; 1·24-1·37), intellectual disability (1·32; 1·18-1·47), specific developmental disorders (1·27; 1·17-1·37), communication disorder (1·20; 1·11-1·28), motor disorder (1·17; 1·10-1·26), and learning disorder (1·16; 1·06-1·26), compared with unexposed children. Maternal pre-gestational diabetes was more strongly associated with the risk of most neurodevelopmental disorders in children than gestational diabetes (risk ratio 1·39; [95% CI 1·34-1·44] vs 1·18 [1·14-1·23]; subgroup difference p<0·0001). INTERPRETATION Maternal diabetes is associated with an increased risk of neurodevelopmental disorders and impaired neurodevelopmental performance in children. Further high-quality research is needed to establish causality and clarify the associations between specific types of diabetes and the full spectrum of neurodevelopmental disorders. FUNDING The National Natural Science Foundation of China, and the Science and Technology Innovation Program of Hunan Province. TRANSLATION For the Mandarin translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Zhou
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People'sHospital of Changde City), Changde, Hunan, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Central South University, Changsha, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinghua Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Gao
- Department of Orthopedics, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Palanivelu L, Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Lo YC. Investigating brain-gut microbiota dynamics and inflammatory processes in an autistic-like rat model using MRI biomarkers during childhood and adolescence. Neuroimage 2024; 302:120899. [PMID: 39461606 DOI: 10.1016/j.neuroimage.2024.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social interaction deficits and repetitive behaviors. Recent research has linked that gut dysbiosis may contribute to ASD-like behaviors. However, the exact developmental time point at which gut microbiota alterations affect brain function and behavior in patients with ASD remains unclear. We hypothesized that ASD-related brain microstructural changes and gut dysbiosis induce metabolic dysregulation and proinflammatory responses, which collectively contribute to the social behavioral deficits observed in early childhood. We used an autistic-like rat model that was generated via prenatal valproic acid exposure. We analyzed brain microstructural changes using diffusion tensor imaging (DTI) and examined microbiota, blood, and fecal samples for inflammation biomarkers. The ASD model rats exhibited significant brain microstructural changes in the anterior cingulate cortex, hippocampus, striatum, and thalamus; reduced microbiota diversity (Prevotellaceae and Peptostreptococcaceae); and altered metabolic signatures. The shift in microbiota diversity and density observed at postnatal day (PND) 35, which is a critical developmental period, underscored the importance of early ASD interventions. We identified a unique metabolic signature in the ASD model, with elevated formate and reduced acetate and butyrate levels, indicating a dysregulation in short-chain fatty acid (SCFA) metabolism. Furthermore, increased astrocytic and microglial activation and elevated proinflammatory cytokines-interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)-were observed, indicating immune dysregulation. This study provided insights into the complex interplay between the brain and the gut, and indicated DTI metrics as potential imaging-based biomarkers in ASD, thus emphasizing the need for early childhood interventions.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 7F., No. 250, Wuxing St., Xinyi Dist., Taipei city 110, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan.
| |
Collapse
|
3
|
Tagliatti E, Bizzotto M, Morini R, Filipello F, Rasile M, Matteoli M. Prenatal drivers of microglia vulnerability in the adult. Immunol Rev 2024; 327:100-110. [PMID: 39508795 DOI: 10.1111/imr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Environmental insults during early development heavily affect brain trajectories. Among these, maternal infections, high-fat diet regimens, and sleep disturbances pose a significant risk for neurodevelopmental derangements in the offspring. Notably, scattered evidence is starting to emerge that also paternal lifestyle habits may impact the offspring development. Given their key role in controlling neurogenesis, synaptogenesis and shaping neuronal circuits, microglia represent the most likely suspects of mediating the detrimental effects of prenatal insults. For some of these environmental triggers, like maternal infections, ample literature evidence demonstrates the central role of microglia, also delineating the specific transcriptomic and proteomic profiles induced by these insults. In other contexts, the analysis of microglia is still in its infancy. Fostering these studies is needed to define microglia as potential therapeutic target in the frame of disorders consequent to maternal immune activation.
Collapse
Affiliation(s)
| | | | | | | | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
4
|
Cernigliaro F, Santangelo A, Nardello R, Lo Cascio S, D’Agostino S, Correnti E, Marchese F, Pitino R, Valdese S, Rizzo C, Raieli V, Santangelo G. Prenatal Nutritional Factors and Neurodevelopmental Disorders: A Narrative Review. Life (Basel) 2024; 14:1084. [PMID: 39337868 PMCID: PMC11433086 DOI: 10.3390/life14091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
According to the DSM-5, neurodevelopmental disorders represent a group of heterogeneous conditions, with onset during the developmental period, characterized by an alteration of communication and social skills, learning, adaptive behavior, executive functions, and psychomotor skills. These deficits determine an impairment of personal, social, scholastic, or occupational functioning. Neurodevelopmental disorders are characterized by an increased incidence and a multifactorial etiology, including genetic and environmental components. Data largely explain the role of genetic and environmental factors, also through epigenetic modifications such as DNA methylation and miRNA. Despite genetic factors, nutritional factors also play a significant role in the pathophysiology of these disorders, both in the prenatal and postnatal period, underscoring that the control of modifiable factors could decrease the incidence of neurodevelopmental disorders. The preventive role of nutrition is widely studied as regards many chronic diseases, such as diabetes, hypertension, and cancer, but actually we also know the effects of nutrition on embryonic brain development and the influence of prenatal and preconceptional nutrition in predisposition to various pathologies. These factors are not limited only to a correct caloric intake and a good BMI, but rather to an adequate and balanced intake of macro and micronutrients, the type of diet, and other elements such as exposure to heavy metals. This review represents an analysis of the literature as regards the physiopathological mechanisms by which food influences our state of health, especially in the age of development (from birth to adolescence), through prenatal and preconceptional changes, underlying how controlling these nutritional factors should improve mothers' nutritional state to significantly reduce the risk of neurodevelopmental disorders in offspring. We searched key words such as "maternal nutrition and neurodevelopmental disorders" on Pubmed and Google Scholar, selecting the main reviews and excluding individual cases. Therefore, nutrigenetics and nutrigenomics teach us the importance of personalized nutrition for good health. So future perspectives may include well-established reference values in order to determine the correct nutritional intake of mothers through food and integration.
Collapse
Affiliation(s)
- Federica Cernigliaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (F.C.); (R.N.); (S.L.C.); (S.D.)
| | - Andrea Santangelo
- Pediatrics Department, AOUP Santa Chiara Hospital, 56126 Pisa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (F.C.); (R.N.); (S.L.C.); (S.D.)
| | - Salvatore Lo Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (F.C.); (R.N.); (S.L.C.); (S.D.)
| | - Sofia D’Agostino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (F.C.); (R.N.); (S.L.C.); (S.D.)
| | - Edvige Correnti
- Child Neuropsychiatry Department, ISMEP—ARNAS Civico–Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy; (E.C.); (R.P.); (S.V.); (G.S.)
| | | | - Renata Pitino
- Child Neuropsychiatry Department, ISMEP—ARNAS Civico–Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy; (E.C.); (R.P.); (S.V.); (G.S.)
| | - Silvia Valdese
- Child Neuropsychiatry Department, ISMEP—ARNAS Civico–Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy; (E.C.); (R.P.); (S.V.); (G.S.)
| | - Carmelo Rizzo
- A.I.Nu.C—International Academy of Clinical Nutrition, 00166 Rome, Italy;
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, ISMEP—ARNAS Civico–Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy; (E.C.); (R.P.); (S.V.); (G.S.)
| | - Giuseppe Santangelo
- Child Neuropsychiatry Department, ISMEP—ARNAS Civico–Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy; (E.C.); (R.P.); (S.V.); (G.S.)
| |
Collapse
|
5
|
Camacho-Morales A, Cárdenas-Tueme M. Prenatal Programming of Monocyte Chemotactic Protein-1 Signaling in Autism Susceptibility. Mol Neurobiol 2024; 61:6119-6134. [PMID: 38277116 DOI: 10.1007/s12035-024-03940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that involves functional and structural defects in selective central nervous system (CNS) regions, harming the individual capability to process and respond to external stimuli, including impaired verbal and non-verbal communications. Etiological causes of ASD have not been fully clarified; however, prenatal activation of the innate immune system by external stimuli might infiltrate peripheral immune cells into the fetal CNS and activate cytokine secretion by microglia and astrocytes. For instance, genomic and postmortem histological analysis has identified proinflammatory gene signatures, microglia-related expressed genes, and neuroinflammatory markers in the brain during ASD diagnosis. Active neuroinflammation might also occur during the developmental stage, promoting the establishment of a defective brain connectome and increasing susceptibility to ASD after birth. While still under investigation, we tested the hypothesis whether the monocyte chemoattractant protein-1 (MCP-1) signaling is prenatally programmed to favor peripheral immune cell infiltration and activate microglia into the fetal CNS, setting susceptibility to autism-like behavior. In this review, we will comprehensively provide the current understanding of the prenatal activation of MCP-1 signaling by external stimuli during the developmental stage as a new selective node to promote neuroinflammation, brain structural alterations, and behavioral defects associated to ASD diagnosis.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico.
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Monterrey, NL, Mexico.
| | - Marcela Cárdenas-Tueme
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud and The Institute for Obesity Research, 64710, Monterrey, Mexico
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, Mexico
| |
Collapse
|
6
|
Nakaki A, Gomez Y, Darecka K, Borras R, Vellvé K, Paules C, Boutet ML, Basso A, Casu G, Traversi P, Youssef L, Casas I, Genero M, Benitez L, Larroya M, Casas R, Miranda J, Castro-Barquero S, Rodríguez-Sureda V, Arranz A, Pozo ÓJ, Gomez-Gomez A, Vieta E, Estruch R, Izquierdo Renau M, Eixarch E, Crispi F, Crovetto F, Gratacós E. Effects of Mediterranean Diet or Mindfulness-Based Stress Reduction during Pregnancy on Fetal Brain Development Detected by Neurosonography: A Secondary Analysis of a Randomized Clinical Trial (IMPACT BCN). Fetal Diagn Ther 2024; 52:46-58. [PMID: 39079502 DOI: 10.1159/000540580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION We investigated whether structured maternal lifestyle interventions based on Mediterranean diet or stress reduction influence fetal-infant neurodevelopment detected by detailed fetal neurosonography and Ages and Stages Questionnaires 3rd edition (ASQ) at 12 months old. METHODS This was a secondary analysis of a randomized clinical trial (2017-2020), including 1,221 singleton pregnancies at high risk for small-for-gestational age. Participants were randomized into three groups at 19-23 weeks' gestation: Mediterranean diet intervention, stress reduction program, or usual care. A detailed neurosonography was performed on 881 participants at mean (SD) 33.4 (1.1) weeks' gestation. Neurosonographic measurements were done offline. ASQ was performed on 276 infants at 1 year of corrected age. RESULTS Biparietal diameter was similar among study groups. Mediterranean diet group fetuses had deeper insula (26.80 [1.68] versus 26.63 [1.75], mm, p = 0.02) and longer corpus callosum (42.98 [2.44] versus 42.62 [2.27], mm, p = 0.04), with a lower rate of suboptimal score infants in ASQ problem-solving domain (6.2 vs. 16.3%, p = 0.03). Stress reduction group fetuses had deeper insula (26.90 [1.75] versus 26.63 [1.75], mm, p = 0.04) and lower rates of suboptimal score infants in ASQ fine motor domain (4.3 vs. 12.8%, p = 0.04), compared to usual care group fetuses. CONCLUSION Maternal structured intervention during pregnancy of the trial has the potential to modify offspring's neurodevelopment.
Collapse
Affiliation(s)
- Ayako Nakaki
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain,
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain,
| | - Yvan Gomez
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
| | - Katarzyna Darecka
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
| | - Roger Borras
- Cardiovascular Institute, Hospital Clínic, IDIBAPS, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Kilian Vellvé
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Paules
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Instituto de Investigación Sanitaria Aragón (IISAragon), Red de Salud Materno Infantil y del Desarrollo (SAMID), RETICS, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de la Investigación y Fondo Europeo de Desarrollo Regional (FEDER), Zaragoza, Spain
| | - Maria Laura Boutet
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
| | - Annachiara Basso
- Department of Obstetrics and Pediatrics ASST Lecco, A. Manzoni Hospital, Lecco, Italy
| | - Giulia Casu
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paola Traversi
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
| | - Lina Youssef
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/Universitat de Barcelona (UB) Campus, Barcelona, Spain
| | - Irene Casas
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
| | - Mariona Genero
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Leticia Benitez
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
| | - Marta Larroya
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
| | - Rosa Casas
- Department of Internal Medicine Hospital Clinic, IDIBAPS, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Comunidad de Madrid, Madrid, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jezid Miranda
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Sara Castro-Barquero
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Comunidad de Madrid, Madrid, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Víctor Rodríguez-Sureda
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Angela Arranz
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
| | - Óscar J Pozo
- Applied Metabolomics Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Eduard Vieta
- Hospital Clinic, Department of Psychiatry and Psychology, Neuroscience Institute, IDIBAPS, Universitat de Barcelona (UB), CIBERSAM, Barcelona, Spain
| | - Ramon Estruch
- Department of Internal Medicine Hospital Clinic, IDIBAPS, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Comunidad de Madrid, Madrid, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Montserrat Izquierdo Renau
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Neonatology Department, Hospital Sant Joan de Déu, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fàtima Crispi
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Francesca Crovetto
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduard Gratacós
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona (UB), Barcelona, Spain
- Fundació de Recerca Clínic Barcelona - IDIBAPS, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| |
Collapse
|
7
|
Luo Y, Wang Z. The Impact of Microglia on Neurodevelopment and Brain Function in Autism. Biomedicines 2024; 12:210. [PMID: 38255315 PMCID: PMC10813633 DOI: 10.3390/biomedicines12010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microglia, as one of the main types of glial cells in the central nervous system (CNS), are widely distributed throughout the brain and spinal cord. The normal number and function of microglia are very important for maintaining homeostasis in the CNS. In recent years, scientists have paid widespread attention to the role of microglia in the CNS. Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder, and patients with ASD have severe deficits in behavior, social skills, and communication. Most previous studies on ASD have focused on neuronal pathological changes, such as increased cell proliferation, accelerated neuronal differentiation, impaired synaptic development, and reduced neuronal spontaneous and synchronous activity. Currently, more and more research has found that microglia, as immune cells, can promote neurogenesis and synaptic pruning to maintain CNS homeostasis. They can usually reduce unnecessary synaptic connections early in life. Some researchers have proposed that many pathological phenotypes of ASD may be caused by microglial abnormalities. Based on this, we summarize recent research on microglia in ASD, focusing on the function of microglia and neurodevelopmental abnormalities. We aim to clarify the essential factors influenced by microglia in ASD and explore the possibility of microglia-related pathways as potential research targets for ASD.
Collapse
Affiliation(s)
- Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
8
|
Matrisciano F. Functional foods and neuroinflammation: Focus on autism spectrum disorder and schizophrenia. FUNCTIONAL FOODS AND CHRONIC DISEASE 2024:213-230. [DOI: 10.1016/b978-0-323-91747-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Herrera K, Maldonado-Ruiz R, Camacho-Morales A, de la Garza AL, Castro H. Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring. Food Nutr Res 2023; 67:9828. [PMID: 37920679 PMCID: PMC10619398 DOI: 10.29219/fnr.v67.9828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023] Open
Abstract
Background Nutritional status and maternal feeding during the perinatal and postnatal periods can program the offspring to develop long-term health alterations. Epidemiologic studies have demonstrated an association between maternal obesity and intellectual disability/cognitive deficits like autism spectrum disorders (ASDs) in offspring. Experimental findings have consistently been indicating that maternal supplementation with methyl donors, attenuated the social alterations and repetitive behavior in offspring. Objective This study aims to analyze the effect of maternal cafeteria diet and methyl donor-supplemented diets on social, anxiety-like, and repetitive behavior in male offspring, besides evaluating weight gain and food intake in both dams and male offspring. Design C57BL/6 female mice were randomized into four dietary formulas: control Chow (CT), cafeteria (CAF), control + methyl donor (CT+M), and cafeteria + methyl donor (CAF+M) during the pre-gestational, gestational, and lactation period. Behavioral phenotyping in the offspring was performed by 2-month-old using Three-Chamber Test, Open Field Test, and Marble Burying Test. Results We found that offspring prenatally exposed to CAF diet displayed less social interaction index when compared with subjects exposed to Chow diet (CT group). Notably, offspring exposed to CAF+M diet recovered social interaction when compared to the CAF group. Discussion These findings suggest that maternal CAF diet is efficient in promoting reduced social interaction in murine models. In our study, we hypothesized that a maternal methyl donor supplementation could improve the behavioral alterations expected in maternal CAF diet offspring. Conclusions The CAF diet also contributed to a social deficit and anxiety-like behavior in the offspring. On the other hand, a maternal methyl donor-supplemented CAF diet normalized the social interaction in the offspring although it led to an increase in anxiety-like behaviors. These findings suggest that a methyl donor supplementation could protect against aberrant social behavior probably targeting key genes related to neurotransmitter pathways.
Collapse
Affiliation(s)
- Katya Herrera
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
| | - Roger Maldonado-Ruiz
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
| | - Ana Laura de la Garza
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Heriberto Castro
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| |
Collapse
|
10
|
Quagliato LA, de Matos UMA, Nardi AE. Lifetime psychopathology in the offspring of parents with anxiety disorders: A systematic review. J Affect Disord 2022; 319:618-626. [PMID: 36174782 DOI: 10.1016/j.jad.2022.09.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The offspring of parents with Anxiety Disorders (AD) are at high risk for different types of psychopathology, including AD. However, little is known about how parental anxiety during pregnancy and/or the postnatal period might result in alterations in behavior or neurodevelopmental changes in offspring. To examine the effect of parental AD on offspring behavior and neurodevelopment, we conducted a systematic review. METHODS Following PRISMA guidelines, we searched the Web of Science, PubMed, and PsycINFO databases. RESULTS Forty-seven articles met the inclusion criteria for the systematic review. Prenatal maternal anxiety is related to negative temperament, increased attention to fearful vocalizations, decreased alertness, and impaired psychomotor and cognitive development in early and middle childhood. AD during the postnatal period is associated with greater negative temperament, internalizing symptoms, and anxiety symptoms in early childhood, middle childhood, and adolescence. CONCLUSION Our review is the first to demonstrate that prenatal and postnatal AD symptoms impact offspring. Future research should explore the mediating and moderating factors leading to the development of psychopathology in the offspring of parents with AD.
Collapse
Affiliation(s)
- Laiana A Quagliato
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rua Voluntários da Pátria 190 s. 722, 22270-010, Brazil.
| | - Ursula M A de Matos
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rua Voluntários da Pátria 190 s. 722, 22270-010, Brazil
| | - Antonio E Nardi
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rua Voluntários da Pátria 190 s. 722, 22270-010, Brazil
| |
Collapse
|
11
|
de Oliveira Andrade F, Verma V, Hilakivi-Clarke L. Maternal obesity and resistance to breast cancer treatments among offspring: Link to gut dysbiosis. Cancer Rep (Hoboken) 2022; 5:e1752. [PMID: 36411524 PMCID: PMC9780430 DOI: 10.1002/cnr2.1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND About 50 000 new cases of cancer in the United States are attributed to obesity. The adverse effects of obesity on breast cancer may be most profound when affecting the early development; that is, in the womb of a pregnant obese mother. Maternal obesity has several long-lasting adverse health effects on the offspring, including increasing offspring's breast cancer risk and mortality. Gut microbiota is a player in obesity as well as may impact breast carcinogenesis. Gut microbiota is established early in life and the microbial composition of an infant's gut becomes permanently dysregulated because of maternal obesity. Metabolites from the microbiota, especially short chain fatty acids (SCFAs), play a critical role in mediating the effect of gut bacteria on multiple biological functions, such as immune system, including tumor immune responses. RECENT FINDINGS Maternal obesity can pre-program daughter's breast cancer to be more aggressive, less responsive to treatments and consequently more likely to cause breast cancer related death. Maternal obesity may also induce poor response to immune checkpoint inhibitor (ICB) therapy through increased abundance of inflammation associated microbiome and decreased abundance of bacteria that are linked to production of SCFAs. Dietary interventions that increase the abundance of bacteria producing SCFAs potentially reverses offspring's resistance to breast cancer therapy. CONCLUSION Since immunotherapies have emerged as highly effective treatments for many cancers, albeit there is an urgent need to enlarge the patient population who will be responsive to these treatments. One of the factors which may cause ICB refractoriness could be maternal obesity, based on its effects on the microbiota markers of ICB therapy response among the offspring. Since about 40% of children are born to obese mothers in the Western societies, it is important to determine if maternal obesity impairs offspring's response to cancer immunotherapies.
Collapse
Affiliation(s)
| | - Vivek Verma
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | |
Collapse
|
12
|
Cirulli F, De Simone R, Musillo C, Ajmone-Cat MA, Berry A. Inflammatory Signatures of Maternal Obesity as Risk Factors for Neurodevelopmental Disorders: Role of Maternal Microbiota and Nutritional Intervention Strategies. Nutrients 2022; 14:nu14153150. [PMID: 35956326 PMCID: PMC9370669 DOI: 10.3390/nu14153150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as “inflamed womb” may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| |
Collapse
|
13
|
Prefrontal Cortex Response to Prenatal Insult and Postnatal Opioid Exposure. Genes (Basel) 2022; 13:genes13081371. [PMID: 36011282 PMCID: PMC9407090 DOI: 10.3390/genes13081371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
The influence of proinflammatory challenges, such as maternal immune activation (MIA) or postnatal exposure to drugs of abuse, on brain molecular pathways has been reported. On the other hand, the simultaneous effects of MIA and drugs of abuse have been less studied and sometimes offered inconsistent results. The effects of morphine exposure on a pig model of viral-elicited MIA were characterized in the prefrontal cortex of males and females using RNA-sequencing and gene network analysis. Interacting and main effects of morphine, MIA, and sex were detected in approximately 2000 genes (false discovery rate-adjusted p-value < 0.05). Among the enriched molecular categories (false discovery rate-adjusted p-value < 0.05 and −1.5 > normalized enrichment score > 1.5) were the cell adhesion molecule pathways associated with inflammation and neuronal development and the long-term depression pathway associated with synaptic strength. Gene networks that integrate gene connectivity and expression profiles displayed the impact of morphine-by-MIA interaction effects on the pathways. The cell adhesion molecules and long-term depression networks presented an antagonistic effect between morphine and MIA. The differential expression between the double-challenged group and the baseline saline-treated Controls was less extreme than the individual challenges. The previous findings advance the knowledge about the effects of prenatal MIA and postnatal morphine exposure on the prefrontal cortex pathways.
Collapse
|
14
|
Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal LA, Cardenas-Tueme M, Viveros-Contreras R, Ortiz-López R, Camacho-Morales A. Transgenerational Susceptibility to Food Addiction-Like Behavior in Rats Associates to a Decrease of the Anti-Inflammatory IL-10 in Plasma. Neurochem Res 2022; 47:3093-3103. [PMID: 35767136 DOI: 10.1007/s11064-022-03660-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.
Collapse
Affiliation(s)
- Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Luis A Trujillo-Villarreal
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Marcela Cardenas-Tueme
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | | | - Rocío Ortiz-López
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, S/N, C.P. 64460, Monterrey, NL, Mexico.
| |
Collapse
|
15
|
Vellingiri B, Aishwarya SY, Benita Jancy S, Sriram Abhishek G, Winster Suresh Babu H, Vijayakumar P, Narayanasamy A, Mariappan S, Sangeetha R, Valsala Gopalakrishnan A, Parthasarathi R, Iyer M. An anxious relationship between Autism Spectrum Disorder and Gut Microbiota: A tangled chemistry? J Clin Neurosci 2022; 99:169-189. [PMID: 35286970 DOI: 10.1016/j.jocn.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - S Y Aishwarya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - S Benita Jancy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - G Sriram Abhishek
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Padmavathi Vijayakumar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sujitha Mariappan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - R Sangeetha
- Department of Zoology and Wild Life Biology, Government Arts College, Udhagamandalam 643002, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Centre for Innovation and Translational Research, Environmental Monitoring and Intervention Hub (DSIR-CRTDH), CSIR-Indian Institute of Toxicology Research, Lucknow 226001 Uttar Pradesh, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| |
Collapse
|
16
|
Hu C, Li H, Li J, Luo X, Hao Y. Microglia: Synaptic modulator in autism spectrum disorder. Front Psychiatry 2022; 13:958661. [PMID: 36465285 PMCID: PMC9714329 DOI: 10.3389/fpsyt.2022.958661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by variable impairment of social communication and repetitive behaviors, highly restricted interests, and/or sensory behaviors beginning early in life. Many individuals with ASD have dysfunction of microglia, which may be closely related to neuroinflammation, making microglia play an important role in the pathogenesis of ASD. Mounting evidence indicates that microglia, the resident immune cells of the brain, are required for proper brain function, especially in the maintenance of neuronal circuitry and control of behavior. Dysfunction of microglia will ultimately affect the neural function in a variety of ways, including the formation of synapses and alteration of excitatory-inhibitory balance. In this review, we provide an overview of how microglia actively interact with neurons in physiological conditions and modulate the fate and functions of synapses. We put a spotlight on the multi-dimensional neurodevelopmental roles of microglia, especially in the essential influence of synapses, and discuss how microglia are currently thought to influence ASD progression.
Collapse
Affiliation(s)
- Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhui Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021; 13:3530. [PMID: 34684531 PMCID: PMC8538181 DOI: 10.3390/nu13103530] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/31/2023] Open
Abstract
In this scoping review, we examined the association between maternal nutrition during pregnancy and neurodevelopment in offspring. We searched the Pubmed and ScienceDirect databases for articles published from 2000 to 2020 on inadequate intake of vitamins (B12, folate, vitamin D, vitamin A, vitamin E, vitamin K), micronutrients (cooper, iron, creatine, choline, zinc, iodine), macronutrients (fatty acids, proteins), high fat diets, ketogenic diets, hypercaloric diets, and maternal undernutrition. Some older relevant articles were included. The search produced a total of 3590 articles, and 84 studies were included in the qualitative synthesis. Data were extracted and analyzed using charts and the frequency of terms used. We concluded that inadequate nutrient intake during pregnancy was associated with brain defects (diminished cerebral volume, spina bifida, alteration of hypothalamic and hippocampal pathways), an increased risk of abnormal behavior, neuropsychiatric disorders (ASD, ADHD, schizophrenia, anxiety, depression), altered cognition, visual impairment, and motor deficits. Future studies should establish and quantify the benefits of maternal nutrition during pregnancy on neurodevelopment and recommend adequate supplementation.
Collapse
Affiliation(s)
| | | | | | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NEUROS), Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (M.C.C.-A.); (D.P.G.-G.); (A.V.-v.-M.)
| |
Collapse
|
18
|
Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021; 17:564-579. [PMID: 34341569 DOI: 10.1038/s41582-021-00530-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Maternal health during pregnancy plays a major role in shaping health and disease risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory perturbations in utero can affect fetal neurodevelopment, and evidence from human epidemiological studies supports an association between maternal inflammation during pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic factors are increasingly recognized to operate at the gene-environment interface during NDD pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus on the emerging human evidence for an association between maternal immune activation and childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder and Tourette syndrome. We refer to established pathophysiological concepts in animal models, including immune signalling across the placenta, epigenetic 'priming' of offspring microglia and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent need to mitigate the risk and severity of these conditions through both preventive strategies in pregnancy and novel postnatal therapies targeting disease mechanisms.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
19
|
Peng G, Peng X, Tong T, Zhang X, Xu M, Peng X. Correlation analysis of expression of CC and CXC chemokines in children with autism spectrum disorder. Medicine (Baltimore) 2021; 100:e26391. [PMID: 34128902 PMCID: PMC8213293 DOI: 10.1097/md.0000000000026391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
To investigate the relationship between the expression of CC and CXC chemokines and autism spectrum disorder (ASD).A total of 62 children with ASD (ASD group) and 60 gender- and age-matched normal children (control group) admitted to our hospital from January 2019 to January 2020 were included in the study. Monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β), regulated upon activation, normal T-cell expressed and secreted (RANTES), interleukin-8 (IL-8), monokine induced by interferon (IFN)-γ (MIG), and purified human interferon-γ-induced protein-10 (IP-10) were detected in the ASD group. The correlation between the above indexes and the severity of the ASD group was analyzed.Significantly increased MCP-1 levels (P < .01) along with the markedly decreased MIP-1α and MIP-1β levels (P < .01) were detected in the venous blood of the ASD group compared with the control group. In addition, they exhibited no significant difference (yet a downward trend) in the level of RANTES (P > .05). Children in the ASD group showed significantly decreased IP-10 levels (P < .01); however, they had no noticeable change (yet a decreasing trend) in the levels of IL-8 and MIG (P > .05). MCP-1 level was positively related to the Module 1 scores of Autism Diagnostic Observation Schedule-second edition (ADOS-2), whereas the levels of Childhood Autism Rating Scale MIP-1α, MIP-1β, IL-8, IP-10, and MIG were negatively correlated with the ADOS-2 Module 1 scores (P < .01). However, no significant correlation was found between RANTES and the ADOS-2 Module 1 scores (P > .05).The levels of CC chemokines (MCP-1, MIP-1α, MIP-1β, and RANTES) and CXC chemokines (IL-8, IP-10, and MIG) are positively correlated with the pathogenesis of ASD. Inflammation is an important contributing factor to ASD.
Collapse
Affiliation(s)
- Guangyang Peng
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Xiaofei Peng
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Tingting Tong
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Xiuyun Zhang
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Min Xu
- Department of Child Rehabilitation, Huanggang Pingan and Rehabilitation Hospital
| | - Xiaofang Peng
- Huanggang Central Hospital, Huanggang, Hubei 438000, China
| |
Collapse
|
20
|
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis. Brain Neurosci Adv 2021; 5:23982128211003484. [PMID: 33889757 PMCID: PMC8040564 DOI: 10.1177/23982128211003484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with the development of a variety of neuropsychiatric disorders; however, the mechanisms behind this association are not fully understood. Comparison between maternal immune activation and maternal obesity reveals similarities in associated impairments and maternal cytokine profile. Here, we present a summary of recent evidence describing how inflammatory processes contribute towards the development of neuropsychiatric disorders in the offspring of obese mothers. This includes discussion on how maternal cytokine levels, fatty acids and placental inflammation may interact with foetal neurodevelopment through changes to microglial behaviour and epigenetic modification. We also propose an exosome-mediated mechanism for the disruption of brain development under maternal obesity and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Jonathan Davis
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik Mire
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Katz J, Reichenberg A, Kolevzon A. Prenatal and perinatal metabolic risk factors for autism: a review and integration of findings from population-based studies. Curr Opin Psychiatry 2021; 34:94-104. [PMID: 33278157 PMCID: PMC9341035 DOI: 10.1097/yco.0000000000000673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Given the ongoing rise in prevalence of autism spectrum disorder (ASD) and the challenges in developing and administering interventions to significantly alleviate ASD symptoms, there is an urgent need to identify modifiable risk factors for ASD. The goal of this review is to systematically evaluate the current evidence for an association between conditions related to maternal metabolic syndrome and risk for ASD in offspring focusing on methodically rigorous studies. RECENT FINDINGS In recent years, multiple studies explored the association between various conditions related to maternal metabolic syndrome (obesity, hypertension, or diabetes prior to, or with onset during pregnancy) and ASD risk in the offspring. SUMMARY Examining large, sufficiently powered, population-based epidemiological studies that explored the association between maternal metabolic syndrome and ASD, we found consistent evidence for an association between maternal preeclampsia and risk for ASD. Other conditions that are part of maternal metabolic syndrome, including maternal obesity, gestational weight gain, diabetes and gestational diabetes, should be studied further with careful attention paid to potential synergistic effects between different metabolic conditions. These findings highlight the need for rigorous, large, population-based epidemiological studies of potentially modifiable ASD risk factors that could inform public health interventions.
Collapse
Affiliation(s)
- Julia Katz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, NY, NY
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, NY
| | - Alexander Kolevzon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, NY, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY
| |
Collapse
|
22
|
Cruz-Carrillo G, Camacho-Morales A. Metabolic Flexibility Assists Reprograming of Central and Peripheral Innate Immunity During Neurodevelopment. Mol Neurobiol 2021; 58:703-718. [PMID: 33006752 DOI: 10.1007/s12035-020-02154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
Abstract
Central innate immunity assists time-dependent neurodevelopment by recruiting and interacting with peripheral immune cells. Microglia are the major player of central innate immunity integrating peripheral signals arising from the circumventricular regions lacking the blood-brain barrier (BBB), via neural afferent pathways such as the vagal nerve and also by choroid plexus into the brain ventricles. Defective and/or unrestrained activation of central and peripheral immunity during embryonic development might set an aberrant connectome establishment and brain function, leading to major psychiatric disorders in postnatal stages. Molecular candidates leading to central and peripheral innate immune overactivation identified metabolic substrates and lipid species as major contributors of immunological priming, supporting the role of a metabolic flexibility node during trained immunity. Mechanistically, trained immunity is established by an epigenetic program including DNA methylation and histone acetylation, as the major molecular epigenetic signatures to set immune phenotypes. By definition, immunological training sets reprogramming of innate immune cells, enhancing or repressing immune responses towards a second challenge which potentially might contribute to neurodevelopment disorders. Notably, the innate immune training might be set during pregnancy by maternal immune activation stimuli. In this review, we integrate the most valuable scientific evidence supporting the role of metabolic cues assisting metabolic flexibility, leading to innate immune training during development and its effects on aberrant neurological phenotypes in the offspring. We also add reports supporting the role of methylation and histone acetylation signatures as a major epigenetic mechanism regulating immune training.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
23
|
Wilson HA, Creighton C, Scharfman H, Choleris E, MacLusky NJ. Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder. Neuroscientist 2020; 27:650-667. [PMID: 32912048 DOI: 10.1177/1073858420952046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
Collapse
Affiliation(s)
- Hayley A Wilson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Carolyn Creighton
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Helen Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Trujillo Villarreal LA, Cárdenas-Tueme M, Maldonado-Ruiz R, Reséndez-Pérez D, Camacho-Morales A. Potential role of primed microglia during obesity on the mesocorticolimbic circuit in autism spectrum disorder. J Neurochem 2020; 156:415-434. [PMID: 32902852 DOI: 10.1111/jnc.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease which involves functional and structural defects in selective central nervous system (CNS) regions that harm function and individual ability to process and respond to external stimuli. Individuals with ASD spend less time engaging in social interaction compared to non-affected subjects. Studies employing structural and functional magnetic resonance imaging reported morphological and functional abnormalities in the connectivity of the mesocorticolimbic reward pathway between the nucleus accumbens and the ventral tegmental area (VTA) in response to social stimuli, as well as diminished medial prefrontal cortex in response to visual cues, whereas stronger reward system responses for the non-social realm (e.g., video games) than social rewards (e.g., approval), associated with caudate nucleus responsiveness in ASD children. Defects in the mesocorticolimbic reward pathway have been modulated in transgenic murine models using D2 dopamine receptor heterozygous (D2+/-) or dopamine transporter knockout mice, which exhibit sociability deficits and repetitive behaviors observed in ASD phenotypes. Notably, the mesocorticolimbic reward pathway is modulated by systemic and central inflammation, such as primed microglia, which occurs during obesity or maternal overnutrition. Therefore, we propose that a positive energy balance during obesity/maternal overnutrition coordinates a systemic and central inflammatory crosstalk that modulates the dopaminergic neurotransmission in selective brain areas of the mesocorticolimbic reward pathway. Here, we will describe how obesity/maternal overnutrition may prime microglia, causing abnormalities in dopamine neurotransmission of the mesocorticolimbic reward pathway, postulating a possible immune role in the development of ASD.
Collapse
Affiliation(s)
- Luis A- Trujillo Villarreal
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| |
Collapse
|
25
|
Interplay between Metabolism, Nutrition and Epigenetics in Shaping Brain DNA Methylation, Neural Function and Behavior. Genes (Basel) 2020; 11:genes11070742. [PMID: 32635190 PMCID: PMC7397264 DOI: 10.3390/genes11070742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Gene expression in the brain is dramatically regulated by a variety of stimuli. While the role of neural activity has been extensively studied, less is known about the effects of metabolism and nutrition on transcriptional control mechanisms in the brain. Extracellular signals are integrated at the chromatin level through dynamic modifications of epigenetic marks, which in turn fine-tune gene transcription. In the last twenty years, it has become clear that epigenetics plays a crucial role in modulating central nervous system functions and finally behavior. Here, we will focus on the effect of metabolic signals in shaping brain DNA methylation, both during development and adulthood. We will provide an overview of maternal nutrition effects on brain methylation and behavior in offspring. In addition, the impact of different diet challenges on cytosine methylation dynamics in the adult brain will be discussed. Finally, the possible role played by the metabolic status in modulating DNA hydroxymethylation, which is particularly abundant in neural tissue, will be considered.
Collapse
|