1
|
Saboori M, Riazi A, Taji M, Yadegarfar G. Traumatic brain injury and stem cell treatments: A review of recent 10 years clinical trials. Clin Neurol Neurosurg 2024; 239:108219. [PMID: 38471197 DOI: 10.1016/j.clineuro.2024.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Traumatic brain injury (TBI) is damage to the brain by an external physical force. It may result in cognitive and physical dysfunction. It is one of the main causes of disability and death all around the world. In 2016, the worldwide incidence of acute TBI was nearly 27 million cases. Therapeutic interventions currently in use provide poor outcomes. So recent research has focused on stem cells as a potential treatment. The major objective of this study was to conduct a systematic review of the recent clinical trials in the field of stem cell transplantation for patients with TBI. The Cochrane Library, Web of Science, SCOPUS, PubMed and also Google Scholar were searched for relevant terms such as "traumatic brain injury", " brain trauma", "brain injury", "head injury", "TBI", "stem cell", and "cell transplantation" and for publications from January 2013 to June 2023. Clinical trials and case series which utilized stem cells for TBI treatment were included. The data about case selection and sample size, mechanism of injury, time between primary injury and cell transplantation, type of stem cells transplanted, route of stem cell administration, number of cells transplanted, episodes of transplantation, follow-up time, outcome measures and results, and adverse events were extracted. Finally, 11 studies met the defined criteria and were included in the review. The total sample size of all studies was 402, consisting of 249 cases of stem cell transplantation and 153 control subjects. The most commonly used cells were BMMNCs, the preferred route of transplantation was intrathecal transplantation, and all studies reported improvement in clinical, radiologic, or biochemical markers after transplantation. No serious adverse events were reported. Stem cell therapy is safe and logistically feasible and leads to neurological improvement in patients with traumatic brain injury. However, further controlled, randomized, multicenter studies with large sample sizes are needed to determine the optimal cell and dose, timing of transplantation in acute or chronic phases of TBI, and the optimal route and number of transplants.
Collapse
Affiliation(s)
- Masih Saboori
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran
| | - Ali Riazi
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran
| | - Mohammadreza Taji
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran.
| | - Ghasem Yadegarfar
- Department of Epidemiology and Biostatistics, Health School, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran
| |
Collapse
|
2
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
3
|
Peng X, Song J, Li B, Zhu C, Wang X. Umbilical cord blood stem cell therapy in premature brain injury: Opportunities and challenges. J Neurosci Res 2019; 98:815-825. [PMID: 31797400 DOI: 10.1002/jnr.24548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022]
Abstract
Preterm birth and associated brain injury are the primary cause of cerebral palsy and developmental disabilities and are among the most serious global health issues that modern society faces. Current therapy for infants suffering from premature brain injury is still mainly supportive, and there are no effective treatments. Thus there is a pressing need for comparative and translational studies on how to reduce brain injury and to increase regeneration and brain repair in preterm infants. There is strong supporting evidence for the use of umbilical cord blood (UCB)-derived stem cell therapy for treating preterm brain injury and neurological sequelae. UCB-derived stem cell therapy is effective in many animal models and has been shown to be feasible in clinical trials. Most of these therapies are still experimental, however. In this review, we focus on recent advances on the efficacy of UCB-derived stem cell therapy in preterm infants with brain injury, and discuss the potential mechanisms behind their therapeutic effects as well as application strategies for future preclinical and clinical trials.
Collapse
Affiliation(s)
- Xirui Peng
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Transl Stroke Res 2017; 9:356-374. [PMID: 29075984 DOI: 10.1007/s12975-017-0580-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Stem cell therapy for ischemic stroke has widely been explored. Results from both preclinical and clinical studies have immensely supported the judicious use of stem cells as therapy. These provide an attractive means for preserving and replacing the damaged brain tissues following an ischemic attack. Since the past few years, researchers have used various types of stem cells to replenish insulted neuronal and glial cells in neurological disorders. In the present review, we discuss different types of stem cells employed for the treatment of ischemic stroke and mechanisms and challenges these cells face once introduced into the living system. Further, we also present different ways to maneuver and overcome challenges to translate the advances made at the preclinical level to clinics.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wang H, Mei X, Cao Y, Liu C, Zhao Z, Guo Z, Bi Y, Shen Z, Yuan Y, Guo Y, Song C, Bai L, Wang Y, Yu D. HMGB1/Advanced Glycation End Products (RAGE) does not aggravate inflammation but promote endogenous neural stem cells differentiation in spinal cord injury. Sci Rep 2017; 7:10332. [PMID: 28871209 PMCID: PMC5583351 DOI: 10.1038/s41598-017-10611-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) signaling is involved in a series of cell functions after spinal cord injury (SCI). Our study aimed to elucidate the effects of RAGE signaling on the neuronal recovery after SCI. In vivo, rats were subjected to SCI with or without anti-RAGE antibodies micro-injected into the lesion epicenter. We detected Nestin/RAGE, SOX-2/RAGE and Nestin/MAP-2 after SCI by Western blot or immunofluorescence (IF). We found that neural stem cells (NSCs) co-expressed with RAGE were significantly activated after SCI, while stem cell markers Nestin and SOX-2 were reduced by RAGE blockade. We found that RAGE inhibition reduced nestin-positive NSCs expressing MAP-2, a mature neuron marker. RAGE blockade does not improve neurobehavior Basso, Beattie and Bresnahan (BBB) scores; however, it damaged survival of ventral neurons via Nissl staining. Through in vitro study, we found that recombinant HMGB1 administration does not lead to increased cytokines of TNF-α and IL-1β, while anti-RAGE treatment reduced cytokines of TNF-α and IL-1β induced by LPS via ELISA. Meanwhile, HMGB1 increased MAP-2 expression, which was blocked after anti-RAGE treatment. Hence, HMGB1/RAGE does not exacerbate neuronal inflammation but plays a role in promoting NSCs differentiating into mature neurons in the pathological process of SCI.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Xifan Mei
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China.
| | - Yang Cao
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhanpeng Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yunlong Bi
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhaoliang Shen
- Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou City, PR China
| | - Yajiang Yuan
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Yue Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Cangwei Song
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Liangjie Bai
- Department of Orthopedics, China Medical University, Shenyang City, PR China
| | - Yansong Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Deshui Yu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| |
Collapse
|
6
|
Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, Deans RJ, Hess DC, Carroll JE, Borlongan CV. Behavioral and Histological Characterization of Intrahippocampal Grafts of Human Bone Marrow-Derived Multipotent Progenitor Cells in Neonatal Rats with Hypoxic-Ischemic Injury. Cell Transplant 2017; 15:231-8. [PMID: 16719058 DOI: 10.3727/000000006783982034] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Children born with hypoxic-ischemic (HI) brain injury account for a significant number of live births wherein no clinical treatment is available. Limited clinical trials of stem cell therapy have been initiated in a number of neurological disorders, but the preclinical evidence of a cell-based therapy for neonatal HI injury remains in its infancy. One major postulated mechanism underlying therapeutic benefits of stem cell therapy involves stimulation of endogenous neurogenesis via transplantation of exogenous stem cells. To this end, transplantation has targeted neurogenic sites, such as the hippocampus, for brain protection and repair. The hippocampus has been shown to secrete growth factors, especially during the postnatal period, suggesting that this brain region presents as highly conducive microenvironment for cell survival. Based on its neurogenic and neurotrophic factor-secreting features, the hippocampus stands as an appealing target for stem cell therapy. Here, we investigated the efficacy of intrahippocampal transplantation of multipotent progenitor cells (MPCs), which are pluripotent progenitor cells with the ability to differentiate into a neuronal lineage. Seven-day-old Sprague-Dawley rats were initially subjected to unilateral HI injury, which involved permanent ligation of the right common carotid artery and subsequent exposure to hypoxic environment. At day 7 after HI injury, animals received stereotaxic hippocampal injections of vehicle or cryopreserved MPCs (thawed just prior to transplantation) derived either from Sprague-Dawley rats (syngeneic) or Fisher rats (allogeneic). All animals were treated with daily immunosuppression throughout the survival period. Behavioral tests were conducted on posttransplantation days 7 and 14 using the elevated body swing test and the rotarod to reveal general and coordinated motor functions. MPC transplanted animals exhibited reduced motor asymmetry and longer time spent on the rotarod than those that received the vehicle infusion. Both syngeneic and allogeneic MPC transplanted injured animals did not significantly differ in their behavioral improvements at both test periods. Immunohistochemical evaluations of graft survival after behavioral testing at day 14 posttransplantation revealed that syngeneic and allogeneic transplanted MPCs survived in the hippocampal region. These results demonstrate for the first time that transplantation of MPCs ameliorated motor deficits associated with HI injury. In view of comparable behavioral recovery produced by syngeneic and allogeneic MPC grafts, allogeneic transplantation poses as a feasible and efficacious cell replacement strategy with direct clinical application. An equally major finding is the observation lending support to the hippocampus as an excellent target brain region for stem cell therapy in treating HI injury.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp Ther Med 2017; 13:3613-3618. [PMID: 28588689 DOI: 10.3892/etm.2017.4423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Neural stem cell (NSC) therapy is a promising treatment for traumatic brain injury (TBI). In addition, mesenchymal stem cells (MSCs) have been investigated for the treatment of TBI due to their functions in neural regeneration and their neurotrophic effect. In the present study, the safety, feasibility and biological effects of autologous MSC-derived NSC-like cell transplantation were investigated in 10 patients with severe TBI. All patients received intravenous or intrathecal injections of human NSC-like cells and were evaluated with physical and neurological examinations, routine laboratory tests and neuroradiological findings. The results indicated that the majority of patients experienced improved neurological function in different degrees during the follow-up period. No mortality or serious adverse events were observed in any patient subsequent to transplantation. Higher serum levels of nerve growth factor and brain-derived neurotrophic factor were detected following the transplantation, as compared with the levels prior to treatment. Overall, the present results suggest that transplantation of autologous NSC-like cells is feasible and appears to be safe for the treatment of non-acute severe TBI.
Collapse
|
8
|
Myers SA, Bankston AN, Burke DA, Ohri SS, Whittemore SR. Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp Neurol 2016; 283:560-72. [PMID: 27085393 DOI: 10.1016/j.expneurol.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 02/08/2023]
Abstract
This article reviews all historical literature in which rodent-derived myelinating cells have been engrafted into the contused adult rodent spinal cord. From 2500 initial PubMed citations identified, human cells grafts, bone mesenchymal stem cells, olfactory ensheathing cells, non-myelinating cell grafts, and rodent grafts into hemisection or transection models were excluded, resulting in the 67 studies encompassed in this review. Forty five of those involved central nervous system (CNS)-derived cells, including neural stem progenitor cells (NSPCs), neural restricted precursor cells (NRPs) or oligodendrocyte precursor cells (OPCs), and 22 studies involved Schwann cells (SC). Of the NSPC/NPC/OPC grafts, there was no consistency with respect to the types of cells grafted and/or the additional growth factors or cells co-grafted. Enhanced functional recovery was reported in 31/45 studies, but only 20 of those had appropriate controls making conclusive interpretation of the remaining studies impossible. Of those 20, 19 were properly powered and utilized appropriate statistical analyses. Ten of those 19 studies reported the presence of graft-derived myelin, 3 reported evidence of endogenous remyelination or myelin sparing, and 2 reported both. For the SC grafts, 16/21 reported functional improvement, with 11 having appropriate cellular controls and 9/11 using proper statistical analyses. Of those 9, increased myelin was reported in 6 studies. The lack of consistency and replication among these preclinical studies are discussed with respect to the progression of myelinating cell transplantation therapies into the clinic.
Collapse
Affiliation(s)
- Scott A Myers
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Andrew N Bankston
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Darlene A Burke
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Sujata Saraswat Ohri
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Scott R Whittemore
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
9
|
A. Elawady M, M. Elmaghrabi M, Ebrahim N, A. Elawady M, Sabry D, Shamaa A, Ragaei A. Therapeutic Potential of Bone Marrow Derived Mesenchymal Stem Cells in Modulating Astroglyosis of Surgical Induced Experimental Spinal Cord Injury. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abb.2016.76024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Oraee-Yazdani S, Hafizi M, Atashi A, Ashrafi F, Seddighi AS, Hashemi SM, Seddighi A, Soleimani M, Zali A. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord 2015; 54:102-9. [DOI: 10.1038/sc.2015.142] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 05/22/2015] [Accepted: 06/15/2015] [Indexed: 11/09/2022]
|
11
|
Zhang RP, Xu C, Liu Y, Li JD, Xie J. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury. Neural Regen Res 2015; 10:404-11. [PMID: 25878588 PMCID: PMC4396102 DOI: 10.4103/1673-5374.153688] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 12/23/2022] Open
Abstract
An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.
Collapse
Affiliation(s)
- Rui-ping Zhang
- Department of Radiology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Cheng Xu
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Yin Liu
- Department of Radiology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jian-ding Li
- Department of Radiology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jun Xie
- Department of Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
12
|
Tajiri N, Duncan K, Borlongan MC, Pabon M, Acosta S, de la Pena I, Hernadez-Ontiveros D, Lozano D, Aguirre D, Reyes S, Sanberg PR, Eve DJ, Borlongan CV, Kaneko Y. Adult stem cell transplantation: is gender a factor in stemness? Int J Mol Sci 2014; 15:15225-43. [PMID: 25170809 PMCID: PMC4200754 DOI: 10.3390/ijms150915225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023] Open
Abstract
Cell therapy now constitutes an important area of regenerative medicine. The aging of the population has mandated the discovery and development of new and innovative therapeutic modalities to combat devastating disorders such as stroke. Menstrual blood and Sertoli cells represent two sources of viable transplantable cells that are gender-specific, both of which appear to have potential as donor cells for transplantation in stroke. During the subacute phase of stroke, the use of autologous cells offers effective and practical clinical application and is suggestive of the many benefits of using the aforementioned gender-specific cells. For example, in addition to being exceptionally immunosuppressive, testis-derived Sertoli cells secrete many growth and trophic factors and have been shown to aid in the functional recovery of animals transplanted with fetal dopaminergic cells. Correspondingly, menstrual blood cells are easily obtainable and exhibit angiogenic characteristics, proliferative capability, and pluripotency. Of further interest is the ability of menstrual blood cells, following transplantation in stroke models, to migrate to the infarct site, secrete neurotrophic factors, regulate the inflammatory response, and be steered towards neural differentiation. From cell isolation to transplantation, we emphasize in this review paper the practicality and relevance of the experimental and clinical use of gender-specific stem cells, such as Sertoli cells and menstrual blood cells, in the treatment of stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Kelsey Duncan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mia C Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mibel Pabon
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Sandra Acosta
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Ike de la Pena
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diana Hernadez-Ontiveros
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diego Lozano
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Daniela Aguirre
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Stephanny Reyes
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. psanberg@.usf.edu
| | - David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Kaneko Y, Dailey T, Weinbren NL, Rizzi J, Tamboli C, Allickson JG, Kuzmin-Nichols N, Sanberg PR, Eve DJ, Tajiri N, Borlongan CV. The battle of the sexes for stroke therapy: female- versus male-derived stem cells. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:405-412. [PMID: 23469849 DOI: 10.2174/1871527311312030013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Cell therapy is a major discipline of regenerative medicine that has been continually growing over the last two decades. The aging of the population necessitates discovery of therapeutic innovations to combat debilitating disorders, such as stroke. Menstrual blood and Sertoli cells are two gender-specific sources of viable transplantable cells for stroke therapy. The use of autologous cells for the subacute phase of stroke offers practical clinical application. Menstrual blood cells are readily available, display proliferative capacity, pluripotency and angiogenic features, and, following transplantation in stroke models, have the ability to migrate to the infarct site, regulate the inflammatory response, secrete neurotrophic factors, and have the possibility to differentiate into neural lineage. Similarly, the testis-derived Sertoli cells secrete many growth and trophic factors, are highly immunosuppressive, and exert neuroprotective effects in animal models of neurological disorders. We highlight the practicality of experimental and clinical application of menstrual blood cells and Sertoli cells to treat stroke, from cell isolation and cryopreservation to administration.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Travis Dailey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Nathan L Weinbren
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Jessica Rizzi
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cyrus Tamboli
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | | | | | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - David J Eve
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| |
Collapse
|
14
|
Wang LJ, Zhang RP, Li JD. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir (Wien) 2014; 156:1409-18. [PMID: 24744011 DOI: 10.1007/s00701-014-2089-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aimed to investigate the therapeutic effects of transplanting neutrophin-3 (NT-3)-expressing bone marrow-derived mesenchymal stem cells (BMSCs) in a rat model of spinal cord injury (SCI). METHODS Forty-eight adult female Sprague-Dawley rats were randomly assigned to three groups: the control, BMSC, and NT-3-BMSC groups. BMSCs were infected with NT-3-DsRed or DsRed lentivirus and injected into the cerebrospinal fluid (CSF) via lumbar puncture (LP) 7 days after SCI in the NT-3-BMSC and BMSC groups, respectively. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale on days 1, 3, 7, 14, 21, 28, and 35 after transplantation. Haematoxylin-eosin (HE) staining, immunofluorescence labelling, and western blotting were performed at the final time point. RESULTS Expressions of NT-3, brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) proteins increased significantly in the NT-3-BMSC group, and hind-limb locomotor functions improved significantly in the NT-3-BMSC group compared with the other two groups. The cystic cavity area was smallest in the NT-3-BMSC group. In the NT-3-BMSC group, neurofilament 200 (NF200) and glial fibrillary acidic protein (GFAP) expression levels around the lesions were significantly increased and decreased, respectively. CONCLUSIONS Our findings demonstrate that transplantation of NT-3 gene-modified BMSCs via LP can strengthen the therapeutic benefits of BMSC transplantation. We observed that these modified cells increased locomotor function recovery, promoted nerve regeneration, and improved the injured spinal cord microenvironment, suggesting that it could be a promising treatment for SCI.
Collapse
Affiliation(s)
- Ling-Jie Wang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, People's Republic of China,
| | | | | |
Collapse
|
15
|
Abstract
This article introduces the basic concepts of modeling neonatal brain injury and provides background information regarding each of the commonly used types of stem cells. It summarizes the findings of preclinical research testing the therapeutic potential of stem cells in animal models of neonatal brain injury, reports briefly on the status of clinical trials, and discusses the important ongoing issues that need to be addressed before stem cell therapy is used to repair the injured brain.
Collapse
|
16
|
Canazza A, Minati L, Boffano C, Parati E, Binks S. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol 2014; 5:19. [PMID: 24600434 PMCID: PMC3928567 DOI: 10.3389/fneur.2014.00019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment, and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies.
Collapse
Affiliation(s)
- Alessandra Canazza
- Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Ludovico Minati
- Scientific Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy ; Brighton and Sussex Medical School , Brighton , UK
| | - Carlo Boffano
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Eugenio Parati
- Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Sophie Binks
- Brighton and Sussex Medical School , Brighton , UK ; Brighton and Sussex University Hospitals NHS Trust , Brighton , UK
| |
Collapse
|
17
|
Abraham R, Verfaillie CM. Neural differentiation and support of neuroregeneration of non-neural adult stem cells. PROGRESS IN BRAIN RESEARCH 2013. [PMID: 23186708 DOI: 10.1016/b978-0-444-59544-7.00002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although it is well established that neural stem cells (NSCs) or neural stem/progenitor cells differentiated from pluripotent stem cells can generate neurons, astrocytes, and oligodendrocytes, a number of other cell populations are also being considered for therapy of central nervous system disorders. Here, we describe the potential of (stem) cells from other postnatal tissues, including bone marrow, (umbilical cord) blood, fat tissue, or dental pulp, which themselves do not (robustly) generate neural progeny. However, these non-neuroectoderm derived cell populations appear to capable of inducing endogenous neurogenesis and angiogenesis. As these "trophic" effects are also, at least partly, responsible for some of the beneficial effects seen when NSC are grafted in the brain, these non-neuroectodermal cells may exert beneficial effects when used to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Rojin Abraham
- Stem Cell Institute, KU Leuven, Onderwijs & Navorsing V, Leuven, Belgium
| | | |
Collapse
|
18
|
Shin DA, Kim JM, Kim HI, Yi S, Ha Y, Yoon DH, Kim KN. Comparison of functional and histological outcomes after intralesional, intracisternal, and intravenous transplantation of human bone marrow-derived mesenchymal stromal cells in a rat model of spinal cord injury. Acta Neurochir (Wien) 2013; 155:1943-50. [PMID: 23821338 DOI: 10.1007/s00701-013-1799-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/07/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Few studies have compared methods of stem cell transplantation. The aim of the present study was to determine the optimal method of delivery of therapeutic stem cells in spinal cord injury (SCI). We compared functional and histologic outcomes after administration of human bone marrow stromal cells (BMSCs) by intralesional (ILT), intracisternal (ICT), and intravenous transplantation (IVT). METHOD A rat model of spinal cord injury was produced by dropping a 10-g weight, 2 mm in diameter, onto the exposed spinal cords of animals from a height of 25 mm. In each treatment group, 24 animals were randomly assigned for functional assessment and 24 for histologic examination. BMSCs (3 × 10(5), ILT; 1 × 10(6), ICT; 2 × 10(6), IVT) were transplanted 1 week after SCI in numbers determined in previous studies. Basso-Beattie-Bresnahan scoring was performed in all animals weekly for 6 weeks. Spinal cord specimens were obtained from eight animals in each group 2, 4, and 6 weeks after SCI. Viable BMSCs were counted in six sagittal sections from each spinal cord. RESULTS All three treatment groups showed improved functional recovery compared to controls beginning 2 weeks after stem cell injection (P < 0.01). The ICT group showed the best functional recovery, followed by the ILT and IVT groups, respectively (P < 0.01). Histological analysis showed the largest number of viable BMSCs in the ILT group, followed by the ICT and IVT groups, respectively (P < 0.01). CONCLUSIONS ICT may be the safest and most effective method for delivering stem cells and improving functional outcome in SCI when no limits are placed on the number of cells transplanted. As research on enhancing engraftment rates advances, further improvement of functional outcome can be expected.
Collapse
Affiliation(s)
- Dong Ah Shin
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Pellegrini L, Bennis Y, Guillet B, Velly L, Bruder N, Pisano P. [Cell therapy for stroke: from myth to reality]. Rev Neurol (Paris) 2012; 169:291-306. [PMID: 23246427 DOI: 10.1016/j.neurol.2012.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/13/2012] [Accepted: 08/09/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is one of the leading causes of death and disability worldwide. Intravenous recombinant tissue plasminogen activator is the only available therapy for acute ischemic stroke, but its use is limited by a narrow therapeutic window and cannot stimulate endogenous repair and regeneration of damaged brain tissue. Stem cell-based approaches hold much promise as potential novel treatments to restore neurological function after stroke. STATE OF THE ART In this review, we summarize data from preclinical and clinical studies to investigate the potential application of stem cell therapies for treatment of stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. Various stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells also exhibit neurorevitalizing properties that may ameliorate neurological deficits through stimulation of neurogenesis, angiogenesis and inhibition of inflammation. PERSPECTIVES/CONCLUSION Performed in stroke, cell therapy would decrease brain damage and reduce functional deficits. After the damage has been done, it would still improve neurological functions by activating endogenous repair. Nevertheless, many questions raised by experimental studies particularly related to long-term safety and technical details of cell preparation and administration must be resolved before wider clinical use.
Collapse
Affiliation(s)
- L Pellegrini
- Service d'anesthésie-réanimation 1, CHU de la Timone, Assistance publique-Hôpitaux de Marseille, 264, rue Saint-Pierre, 13385 Marseille cedex 5, France.
| | | | | | | | | | | |
Collapse
|
20
|
Zhang S, Luo X, Wan F, Lei T. The roles of hypoxia-inducible factors in regulating neural stem cells migration to glioma stem cells and determinating their fates. Neurochem Res 2012; 37:2659-66. [PMID: 22991140 DOI: 10.1007/s11064-012-0879-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/07/2012] [Accepted: 08/29/2012] [Indexed: 02/07/2023]
Abstract
The mortality of patients with malignant gliomas remains high despite the advancement in multi-modal therapy including surgery, radio- and chemotherapy. Glioma stem cells (GSCs), sharing some characteristics with normal neural stem cells (NSCs), contribute to the cellular origin for primary gliomas and the recurrence of malignant gliomas after current conventional therapy. Accordingly, targeting GSCs proves to be a promising avenue of therapeutic intervention. The specific tropism of NSCs to GSCs provides a novel platform for targeted delivery of therapeutic agents. Tropism and mobilization of NSCs are enhanced by hypoxia through upregulating chemotactic cytokines and activating several signaling pathways. Moreover, hypoxia-inducible factors (HIFs) produced under hypoxic microenvironment of the stem cell niche play critical roles in the growth and stemness phenotypes regulation of both NSCs and GSCs. However, the definite cellular and molecular mechanisms of HIFs involvement in the process remain obscure. In this review, we focus on the pivotal roles of HIFs in migration of NSCs to GSCs and potential roles of HIFs in dictating the fates of migrated NSCs and targeted GSCs.
Collapse
Affiliation(s)
- Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan 430030, People's Republic of China
| | | | | | | |
Collapse
|
21
|
RODRIGUES MARIACAROLINAO, DMITRIEV DMITRIY, RODRIGUES ANTONIO, GLOVER LORENE, SANBERG PAULR, ALLICKSON JULIEG, KUZMIN-NICHOLS NICOLE, TAJIRI NAOKI, SHINOZUKA KAZUTAKA, GARBUZOVA-DAVIS SVITLANA, KANEKO YUJI, BORLONGAN CESARV. Menstrual blood transplantation for ischemic stroke: Therapeutic mechanisms and practical issues. Interv Med Appl Sci 2012; 4:59-68. [PMID: 25267932 PMCID: PMC4177033 DOI: 10.1556/imas.4.2012.2.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cerebrovascular diseases are a major cause of death and long-term disability in developed countries. Tissue plasmin activator (tPA) is the only approved therapy for ischemic stroke, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. The rescue of the penumbra area of the ischemic infarct is decisive for functional recovery after stroke. Inflammation is a key feature in the penumbra area and it plays a dual role, improving injury in early phases but impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the possible role of stem cells derived from menstrual blood as restorative treatment for stroke. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
Affiliation(s)
- MARIA CAROLINA O. RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - DMITRIY DMITRIEV
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - ANTONIO RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - LOREN E. GLOVER
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - PAUL R. SANBERG
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | | | | | - NAOKI TAJIRI
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - KAZUTAKA SHINOZUKA
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - SVITLANA GARBUZOVA-DAVIS
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - YUJI KANEKO
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - CESAR V. BORLONGAN
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| |
Collapse
|
22
|
Magnetic field-based delivery of human CD133⁺ cells promotes functional recovery after rat spinal cord injury. Spine (Phila Pa 1976) 2012; 37:E768-77. [PMID: 22246536 DOI: 10.1097/brs.0b013e318246d59c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental animal study of spinal cord injury (SCI), using a cell delivery system. OBJECTIVE To investigate the therapeutic effects of transplantation of peripheral blood-derived CD133 cells, with a magnetic delivery system in a rat SCI model. SUMMARY OF BACKGROUND DATA There are no reports on intrathecal transplantation of peripheral blood-derived CD133 cells, with a magnetic cell delivery system to treat SCI. METHODS Magnetically isolated peripheral blood-derived CD133 cells were used as the cell source. Contusion SCI was induced by an Infinite Horizon impactor in athymic nude rats. CD133 cells or phosphate-buffered saline was administered via a lumbar puncture immediately after SCI, and a magnetic field was applied to rats for 30 minutes. Animals were analyzed at specific times after transplantation by several methods to examine cell tracking, functional recovery, and histological angiogenesis and neurogenesis. RESULTS A combination of cell transplantation and application of a magnetic field at the site of injury caused significant functional recovery. Transplantation of the cells alone in the absence of the magnetic field showed no effect beyond that observed in control rats. CONCLUSION The combination of intrathecal transplantation of CD133 cells and application of a magnetic field at the site of injury is a possible therapeutic strategy to treat rat SCI and may therefore find application in clinical settings.
Collapse
|
23
|
Ribeiro S, Mairhofer J, Madeira C, Diogo MM, Lobato da Silva C, Monteiro G, Grabherr R, Cabral JM. Plasmid DNA Size Does Affect Nonviral Gene Delivery Efficiency in Stem Cells. Cell Reprogram 2012; 14:130-7. [DOI: 10.1089/cell.2011.0093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sofia Ribeiro
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Juergen Mairhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Catarina Madeira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Gabriel Monteiro
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Joaquim M. Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| |
Collapse
|
24
|
Cossetti C, Alfaro-Cervello C, Donegà M, Tyzack G, Pluchino S. New perspectives of tissue remodelling with neural stem and progenitor cell-based therapies. Cell Tissue Res 2012; 349:321-9. [PMID: 22322425 DOI: 10.1007/s00441-012-1341-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/25/2012] [Indexed: 01/06/2023]
Abstract
Compelling evidence exists that neural stem cell-based therapies protect the central nervous system (CNS) from chronic inflammatory degeneration, such as that occurring in experimental autoimmune encephalomyelitis and stroke. It was first assumed that stem cells directly replace lost cells but it is now becoming clearer that they might be able to protect the nervous system through mechanisms other than cell replacement. In immune-mediated experimental demyelination and stroke, transplanted neural stem/precursor cells (NPCs) are able to mediate efficient bystander myelin repair and axonal rescue. This is dependent on multiple capacities that transplanted NPCs exhibit within specific microenvironments after transplantation. However, a comprehensive understanding of the mechanisms by which NPCs exert their therapeutic impact is lacking. Here we will review some of the most recent evidence--and discuss some of the likely mechanisms--that support the remarkable capacity of NPCs to cross-talk with endogenous cells and to remodel the injured nervous system when applied as novel therapeutic regimes. We foresee that the exploitation of the innate mechanisms regulating these modalities of cell-to-cell communication has realistic chances of revolutionizing most of the actual understanding of stem cell biology and its application to regenerative medicine and CNS repair.
Collapse
Affiliation(s)
- Chiara Cossetti
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and Cambridge Stem Cell Initiative, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | | | | | | | | |
Collapse
|
25
|
Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, Baud O, Gressens P. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 2012; 70:698-712. [PMID: 22162055 DOI: 10.1002/ana.22518] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral palsy is a major health problem caused by brain damage during pregnancy, delivery, or the immediate postnatal period. Perinatal stroke, intraventricular hemorrhage, and asphyxia are the most common causes of neonatal brain damage. Periventricular white matter damage (periventricular leukomalacia) is the predominant form in premature infants and the most common antecedent of cerebral palsy. Stem cell treatment has proven effective in restoring injured organs and tissues in animal models. The potential of stem cells for self-renewal and differentiation translates into substantial neuroprotection and neuroregeneration in the animal brain, with minimal risks of rejection and side effects. Stem cell treatments described to date have used neural stem cells, embryonic stem cells, mesenchymal stem cells, umbilical cord stem cells, and induced pluripotent stem cells. Most of these treatments are still experimental. In this review, we focus on the efficacy of stem cell therapy in animal models of cerebral palsy, and discuss potential implications for current and future clinical trials.
Collapse
|
26
|
Crocker SJ, Bajpai R, Moore CS, Frausto RF, Brown GD, Pagarigan RR, Whitton JL, Terskikh AV. Intravenous administration of human embryonic stem cell-derived neural precursor cells attenuates cuprizone-induced central nervous system (CNS) demyelination. Neuropathol Appl Neurobiol 2012; 37:643-53. [PMID: 21276029 DOI: 10.1111/j.1365-2990.2011.01165.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Previous studies have demonstrated the therapeutic potential for human embryonic stem cell-derived neural precursor cells (hES-NPCs) in autoimmune and genetic animal models of demyelinating diseases. Herein, we tested whether intravenous (i.v.) administration of hES-NPCs would impact central nervous system (CNS) demyelination in a cuprizone model of demyelination. METHODS C57Bl/6 mice were fed cuprizone (0.2%) for 2 weeks and then separated into two groups that either received an i.v. injection of hES-NPCs or i.v. administration of media without these cells. After an additional 2 weeks of dietary cuprizone treatment, CNS tissues were analysed for detection of transplanted cells and differences in myelination in the region of the corpus callosum (CC). RESULTS Cuprizone-induced demyelination in the CC was significantly reduced in mice treated with hES-NPCs compared with cuprizone-treated controls that did not receive stem cells. hES-NPCs were identified within the brain tissues of treated mice and revealed migration of transplanted cells into the CNS. A limited number of human cells were found to express the mature oligodendrocyte marker, O1, or the astrocyte marker, glial fibrillary acidic protein. Reduced apoptosis and attenuated microglial and astrocytic responses were also observed in the CC of hES-NPC-treated mice. CONCLUSIONS These findings indicated that systemically administered hES-NPCs migrated from circulation into a demyelinated lesion within the CNS and effectively reduced demyelination. Observed reductions in astrocyte and microglial responses, and the benefit of hES-NPC treatment in this model of myelin injury was not obviously accountable to tissue replacement by exogenously administered cells.
Collapse
Affiliation(s)
- S J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rodrigues MCO, Glover LE, Weinbren N, Rizzi JA, Ishikawa H, Shinozuka K, Tajiri N, Kaneko Y, Sanberg PR, Allickson JG, Kuzmin-Nichols N, Garbuzova-Davis S, Voltarelli JC, Cruz E, Borlongan CV. Toward personalized cell therapies: autologous menstrual blood cells for stroke. J Biomed Biotechnol 2011; 2011:194720. [PMID: 22162629 PMCID: PMC3227246 DOI: 10.1155/2011/194720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/12/2011] [Indexed: 01/14/2023] Open
Abstract
Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient.
Collapse
Affiliation(s)
- Maria Carolina O. Rodrigues
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Loren E. Glover
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Nathan Weinbren
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Jessica A. Rizzi
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Hiroto Ishikawa
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Kazutaka Shinozuka
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | | | | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Julio Cesar Voltarelli
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Eduardo Cruz
- Cryopraxis, Cell Praxis, BioRio, Póde Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| |
Collapse
|
28
|
Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 2011; 36:177-90. [PMID: 21645544 DOI: 10.1016/j.neubiorev.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
|
29
|
Therapeutic effects with magnetic targeting of bone marrow stromal cells in a rat spinal cord injury model. Spine (Phila Pa 1976) 2011; 36:933-8. [PMID: 21217457 DOI: 10.1097/brs.0b013e3181eb9fb0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental rat animal study using a new cell delivery system. OBJECTIVE To investigate the therapeutic effects with magnetic targeting of bone marrow stromal cells (BMSCs) in a rat spinal cord injury (SCI) model. SUMMARY OF BACKGROUND DATA Several methods to deliver therapeutic agents have been used for the treatment of SCI in animal studies. However, the most appropriate administration method for clinical application has not been established. Previously, we reported the development of a new cell delivery system using magnetic targeting. This system has potential as a clinical application for a minimally invasive and efficient transplant method in SCI. METHODS Contusion SCI was induced by placing a 25 g rod onto the spinal cord for 90 seconds in adult SD rats. A neodymium magnet was placed in the paravertebral muscles at the T7 level in the magnet group, whereas a nonmagnet metal was placed at the same spinal cord level in the nonmagnet group. Magnetically labeled BMSCs were injected into the subarachnoid space in both the magnet and nonmagnet group. RESULTS Aggregations of the BMSCs were detected on the surface of the injured spinal cord in the magnet group, whereas few BMSCs were observed in the nonmagnet group. Hindlimb motor function of the magnet group demonstrated significant improvement compared with that of the nonmagnet group. CONCLUSION This cell delivery system may be a useful method for future clinical application in the treatment of SCI.
Collapse
|
30
|
Song M, Kim YJ, Kim YH, Roh J, Kim SU, Yoon BW. Effects of duplicate administration of human neural stem cell after focal cerebral ischemia in the rat. Int J Neurosci 2011; 121:457-61. [PMID: 21574891 DOI: 10.3109/00207454.2011.576792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We investigated the functional and histological recovery of middle cerebral artery occluded (MCAo) rats after of duplicate intravenous (i.v.) injection of human neural stem cells (hNSCs). Rats received i.v. injections of hNSCs (HB1.F3, 4 × 10(6) cells) on day 1 (1C), day 7 (7C), or both days 1 and 7 (1/7C) following MCAo. Functional recovery of rats was evaluated 1 day before MCAo and 1, 7, 14, 21, and 28 days following MCAo, using the modified neurological severity score (mNSS), and cylinder test. Nissl staining and anti-human nuclear matrix antigen /NeuN or GFAP were used to measure infarct size and investigate the migration and differentiation of injected cells. Treatment with hNSCs did not significantly affect infarct size of ischemic animals. Behavior evaluation using mNSS showed that functional deficits in the 1C group were reduced faster than in the 7C and 1/7C groups, and functional recovery in 1/7C rats was significantly more pronounced than that in the 7C group (day 21). Injected cells were identified at the boundary of lesions, where they had differentiated into neurons and astrocytes. Our study suggests that duplicate i.v. administration of hNSCs after stroke offers no advantages over single administration, 1 day following an ischemic event.
Collapse
Affiliation(s)
- Miyeoun Song
- Department of Neurology, College of Medicine and Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
31
|
King-Robson J. Encouraging regeneration in the central nervous system: Is there a role for olfactory ensheathing cells? Neurosci Res 2011; 69:263-75. [DOI: 10.1016/j.neures.2010.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|
32
|
Xu CJ, Xu L, Huang LD, Li Y, Yu PP, Hang Q, Xu XM, Lu PH. Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats. Neuropathol Appl Neurobiol 2011; 37:135-55. [DOI: 10.1111/j.1365-2990.2010.01117.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Battistella V, de Freitas GR, da Fonseca LMB, Mercante D, Gutfilen B, Goldenberg RCS, Vieira Dias J, Kasai-Brunswick TH, Wajnberg E, Rosado-de-Castro PH, Alves-Leon SV, Mendez-Otero R, Andre C. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med 2011; 6:45-52. [DOI: 10.2217/rme.10.97] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Xu R, Wu C, Tao Y, Yi J, Yang Y, Yang R, Zhang X, Zhang Y, Liu R. Description of distributed features of the nestin-containing cells in brains of adult mice: a potential source of neural precursor cells. J Neurosci Res 2010; 88:945-56. [PMID: 19908282 DOI: 10.1002/jnr.22263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The distribution of neural precursor cells (NPCs) in adult mice brain has so far not been described. Therefore, we investigated the distribution of NPCs by analyzing the nestin-containing cells (NCCs) in distinct brain regions of adult nestin second-intron enhancer-controlled LacZ reporter transgenic mice through LacZ staining. Results showed that NCCs existed in various regions of adult mouse brain. In cerebellum, the greatest number of NCCs existed in cortex of the simple lobule, followed by cortex of the cerebellar lobule. In olfactory bulb, NCCs were most numerous in the granular cell layer, followed by the mitral cell layer and the internal plexiform, glomerular, and external plexiform layers. In brain nuclei (nu), NCCs were most numerous in the marginal nu, followed by the brainstem and diencephalon nu. NCCs in sensory nu of brainstem were more numerous than in motor nu, and NCCs in the dorsal of sensory nu were more numerous than in the ventral part. In brain ventricle systems, NCCs were largely distributed in the center of and external to the lateral ventricle, the inferior part of the third ventricle, the dorsal and inferior parts of the fourth ventricle, and the gray matter around the cerebral aqueduct. NCCs in the left vs. right brain were not significantly different. These data collectively indicate that NCCs were extensively distributed in the cerebellum and olfactory bulb, the partial nu of the marginal system, the partial brain nu adjacent to brain ventricle systems, the subependymal zone, and the cerebral cortex around the marginal lobe and were a potential source of NPCs.
Collapse
Affiliation(s)
- Renshi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2010; 28:1611-82. [PMID: 20146557 DOI: 10.1089/neu.2009.1177] [Citation(s) in RCA: 414] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell transplantation therapies have become a major focus in pre-clinical research as a promising strategy for the treatment of spinal cord injury (SCI). In this article, we systematically review the available pre-clinical literature on the most commonly used cell types in order to assess the body of evidence that may support their translation to human SCI patients. These cell types include Schwann cells, olfactory ensheathing glial cells, embryonic and adult neural stem/progenitor cells, fate-restricted neural/glial precursor cells, and bone-marrow stromal cells. Studies were included for review only if they described the transplantation of the cell substrate into an in-vivo model of traumatic SCI, induced either bluntly or sharply. Using these inclusion criteria, 162 studies were identified and reviewed in detail, emphasizing their behavioral effects (although not limiting the scope of the discussion to behavioral effects alone). Significant differences between cells of the same "type" exist based on the species and age of donor, as well as culture conditions and mode of delivery. Many of these studies used cell transplantations in combination with other strategies. The systematic review makes it very apparent that cells derived from rodent sources have been the most extensively studied, while only 19 studies reported the transplantation of human cells, nine of which utilized bone-marrow stromal cells. Similarly, the vast majority of studies have been conducted in rodent models of injury, and few studies have investigated cell transplantation in larger mammals or primates. With respect to the timing of intervention, nearly all of the studies reviewed were conducted with transplantations occurring subacutely and acutely, while chronic treatments were rare and often failed to yield functional benefits.
Collapse
Affiliation(s)
- Wolfram Tetzlaff
- University of British Columbia, ICORD, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Carpentier PA, Palmer TD. Immune influence on adult neural stem cell regulation and function. Neuron 2009; 64:79-92. [PMID: 19840551 PMCID: PMC2789107 DOI: 10.1016/j.neuron.2009.08.038] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2009] [Indexed: 12/21/2022]
Abstract
Neural stem cells (NSCs) lie at the heart of central nervous system development and repair, and deficiency or dysregulation of NSCs or their progeny can have significant consequences at any stage of life. Immune signaling is emerging as one of the influential variables that define resident NSC behavior. Perturbations in local immune signaling accompany virtually every injury or disease state, and signaling cascades that mediate immune activation, resolution, or chronic persistence influence resident stem and progenitor cells. Some aspects of immune signaling are beneficial, promoting intrinsic plasticity and cell replacement, while others appear to inhibit the very type of regenerative response that might restore or replace neural networks lost in injury or disease. Here we review known and speculative roles that immune signaling plays in the postnatal and adult brain, focusing on how environments encountered in disease or injury may influence the activity and fate of endogenous or transplanted NSCs.
Collapse
Affiliation(s)
- Pamela A. Carpentier
- Department of Neurosurgery, Stanford University, 1201 Welch Road MSLS P320, Stanford, CA 94305, 650-736-1482
| | - Theo D. Palmer
- Department of Neurosurgery, Stanford University, 1201 Welch Road MSLS P320, Stanford, CA 94305, 650-736-1482
| |
Collapse
|
37
|
Doncel-Pérez E, Caballero-Chacón S, Nieto-Sampedro M. Neurosphere cell differentiation to aldynoglia promoted by olfactory ensheathing cell conditioned medium. Glia 2009; 57:1393-409. [DOI: 10.1002/glia.20858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Abstract
Systemic neurotransplantation (SNT) was introduced in the laboratory in 2000 and currently it is being widely examined in animal models of neurological disorders. The aim of this systematic review was to evaluate the current state of knowledge in the field of experimental SNT and the premise for the introduction of clinical trials. PubMed was searched and 60 articles utilizing an SNT approach were found and subjected to analysis. The time window for cell transplantation was addressed in only two studies, with contradictory results. Immunosuppression was applied in 25% of studies. No study addressed the justification for immunosuppression. Bone marrow was the most frequent source of grafted cells, followed by cord blood and then by cells of embryonic origin. Studies investigating dose-dependency revealed no satisfactory results with transplantation of less than 10(6) cells/animal; the efficient dose most frequently ranged from 10(6)-10(7) cells/animal (mice and rats). The behavioral effects of cell transplantation were assessed in 75% of all studies; significant improvement was achieved in 95% of them. Morphological effect was evaluated in half of the studies; significant positive effect was achieved in 73% of them. Experimental attempts to elucidate the mechanisms mediating cell-dependent effect were not undertaken in half of the studies. In the other half, the most frequent mechanisms were growth factors, neurogenesis and immunomodulation. SNT still seems to be at the very initial stage of development. Many critical factors have not been sufficiently addressed in laboratory studies and they must be clarified before the introduction of clinical trials.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Department of NeuroRepair, Medical Research Center, Polish Academy of Science, Warsaw, Poland.
| | | |
Collapse
|
39
|
Burns TC, Verfaillie CM, Low WC. Stem cells for ischemic brain injury: a critical review. J Comp Neurol 2009; 515:125-44. [PMID: 19399885 DOI: 10.1002/cne.22038] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
No effective therapy is currently available to promote recovery following ischemic stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. We undertook a detailed review of data from recent basic science and preclinical studies to investigate the potential application of endogenous and exogenous stem cell therapies for treatment of cerebral ischemia. To date, spontaneous endogenous neurogenesis has been observed in response to ischemic injury, and can be enhanced via infusion of appropriate cytokines. Exogenous stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells from multiple sources cells also exhibit neuroprotective properties that may ameliorate stroke deficits. In many cases, functional benefits observed are likely independent of neural differentiation, although the exact mechanisms remain poorly understood. Future studies of neuroregeneration will require the demonstration of function in endogenously born neurons following focal ischemia. Further, methods are currently lacking to demonstrate definitively the therapeutic effect of newly introduced neural cells. Increased plasticity following stroke may facilitate the functional integration of new neurons, but the loss of appropriate guidance cues and supporting architecture in the infarct cavity will likely impede the restoration of lost circuitry. Thus careful investigation of the mechanisms underlying trophic benefits will be essential. Evidence to date suggests that continued development of stem cell therapies may ultimately lead to viable treatment options for ischemic brain injury.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
40
|
Deda H, Inci MC, Kürekçi AE, Kayihan K, Ozgün E, Ustünsoy GE, Kocabay S. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2009; 10:565-74. [PMID: 18615345 DOI: 10.1080/14653240802241797] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Transplanted bone marrow (BM) cells have been found to improve neurologic disease in central nervous system (CNS) injury models by generating neural cells or myelin-producing cells. The results in treated patients and animal models suggest that BM cells could potentially be used as a therapy for spinal cord injury (SCI) patients. METHODS Nine patients with chronic complete SCI with American Spinal Injury Association (ASIA) Impairment Scale (ASIA) grade A were included in this study. They were treated with autologous BM-derived hematopoietic progenitor stem cell transplantation without any serious complications. All patients completed the protocols successfully. RESULTS Three weeks after the operation all patients' movements and sensations were improved. All patients had ASIA grade B or C after the operation. DISCUSSION We used autologous hematopoietic progenitor stem cells in order to avoid the problems associated with immunologic rejection and graft-versus-host (GvH) reactions, which are frequently caused by allografts. The advantage of this type of cell therapy is that it is not associated with carcinogenesis, which sometimes occurs with embryogenic stem cell therapy. To evaluate the patients we used neurologic impairment scales (ASIA scores), pre- and post-operative Somato Sensorial Evoked Potential (SSEP) assessments and pre- and post-operative Magnetic Resonance Imaging (MRI). All the data showed that BM-derived autologous stem cell therapy is effective and safe for the treatment of chronic SCI.
Collapse
Affiliation(s)
- H Deda
- Department of Neurosurgery and Neurology, Akay Hospital, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cell therapy plays an important role in multidisciplinary management of the two major forms of central nervous system (CNS) injury, traumatic brain injury and spinal cord injury, which are caused by external physical trauma. Cell therapy for CNS disorders involves the use of cells of neural or non-neural origin to replace, repair, or enhance the function of the damaged nervous system and is usually achieved by transplantation of the cells, which are isolated and may be modified, e.g., by genetic engineering, when it may be referred to as gene therapy. Because the adult brain cells have a limited capacity to migrate to and regenerate at sites of injury, the use of embryonic stem cells that can be differentiated into various cell types as well as the use of neural stem cells has been explored. Preclinical studies and clinical trials are reviewed. Advantages as well as limitations are discussed. Cell therapy is promising for the treatment of CNS injury because it targets multiple mechanisms in a sustained manner. It can provide repair and regeneration of damaged tissues as well as prolonged release of neuroprotective and other therapeutic substances.
Collapse
|
42
|
Administration of human peripheral blood-derived CD133+ cells accelerates functional recovery in a rat spinal cord injury model. Spine (Phila Pa 1976) 2009; 34:249-54. [PMID: 19148043 DOI: 10.1097/brs.0b013e3181913cde] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Magnetically isolated, peripheral blood-derived CD133+ cells were used as the therapeutic agent of spinal cord injury (SCI). A rat model was used to investigate the hypothesis that the cell therapy using this clinically accessible cell fraction could be an attractive option for injured spinal cord. OBJECTIVE Given the capacity for the peripheral blood-derived CD133+ cells in vivo to produce neurogenesis via vasculogenesis as the feasible candidate for SCI in the clinical setting, the focus of the experiment was to investigate whether the cells could contribute to histologic and functional recovery of SCI after transplantation. SUMMARY OF BACKGROUND DATA No evidence for peripheral blood-derived CD133+ cells application to SCI and no experimental studies showed functional recovery from SCI using this cell fraction have been published. METHODS Contusion SCI was induced by placing a 25-g rod onto the spinal cord for 90 seconds in athymic nude rats. CD133+ cells or phosphate-buffered saline was administered intravenously immediately after SCI. The animals were analyzed at specific times after transplantation by several methods to examine histologic vasculogenesis and neurogenesis and to confirm functional recovery from SCI. RESULTS After cell transplantation, intrinsic angiogenesis and axonal regeneration were enhanced, and cavity formation was reduced in injured spinal cord, histologically, with significant functional recovery. Gene expression of vascular endothelial growth factor increased in the cell-administrated group. CONCLUSION The administration of CD133+ cells has a therapeutic potential to a rat spinal cord injury model and could be an optional treatment for spinal cord injury in the clinical settings.
Collapse
|
43
|
Schäfer KH, Micci MA, Pasricha PJ. Neural stem cell transplantation in the enteric nervous system: roadmaps and roadblocks. Neurogastroenterol Motil 2009; 21:103-12. [PMID: 19215588 DOI: 10.1111/j.1365-2982.2008.01257.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is vulnerable to a variety of genetic, metabolic or environmental threats, resulting in clinical disorders characterized by loss or malfunction of neuronal elements. These disorders have been difficult to treat and there is much enthusiasm for novel therapies such as neural stem cell (NSC) transplantation to restore ENS function in diseased segments of the gut. Recent research has indicated the potential for a variety of innovative approaches to this effect using NSC obtained from the central nervous system (CNS) as well as gut derived enteric neuronal progenitors. The main goal of this review is to summarize the current status of NSC research as it applies to the ENS, delineate a roadmap for effective therapeutic strategies using NSC transplantation and point out the numerous challenges that lie ahead.
Collapse
Affiliation(s)
- K-H Schäfer
- Department of Biotechnology, University of Applied Sciences, Kaiserslautern, Germany
| | | | | |
Collapse
|
44
|
Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC. Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 2009; 108:1343-59. [PMID: 19154336 DOI: 10.1111/j.1471-4159.2009.05886.x] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brain inflammation is a complex cellular and molecular response to stress, injury or infection of the CNS in attempt to defend against insults, clear dead and damaged neurons and return the CNS to a normal state. Inflammation in the CNS is driven by the activation of resident microglia, astrocytes and infiltrating peripheral macrophages, which release a plethora of anti- and pro-inflammatory cytokines, chemokines, neurotransmitters and reactive oxygen species. This inflammatory state inadvertently causes further bystander damage to neurons and produces both detrimental and favorable conditions for neurogenesis. Inflammatory factors have varying effects on neural progenitor cell proliferation, migration, differentiation, survival and incorporation of newly born neurons into the CNS circuitry. The unique profile of inflammatory factors, which depends on the severity of inflammation, can have varying consequences on neurogenesis. Inflammatory factors released during mild acute inflammation usually stimulate neurogenesis; where as the factors released by uncontrolled inflammation create an environment that is detrimental to neurogenesis. This review will provide a summary of current progress in this emerging field and examine the potential mechanisms through which inflammation affects neurogenesis during neurological complications.
Collapse
Affiliation(s)
- Nicholas P Whitney
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|
45
|
Ban DX, Kong XH, Feng SQ, Ning GZ, Chen JT, Guo SF. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury. Brain Res 2008; 1256:149-61. [PMID: 19103176 DOI: 10.1016/j.brainres.2008.11.098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/03/2023]
Abstract
Basic research in spinal cord injury (SCI) has made great strides in recent years, and some new insights and strategies have been applied in promoting effective axonal regrowth and sprouting. However, a relatively safe and efficient transplantation technique remains undetermined. This study, therefore, was aimed to address a question of how to graft Schwann cells to achieve the best possible therapeutic effects. To clarify the issue, the rats were subjected to spinal cord injury at T10. Autologous activated Schwann cells (AASCs) were obtained by prior ligation of saphenous nerve and subsequently isolated and purified in vitro and then grafted into spinal cord-injured rats via three different routes (group I: intravenous, group II: intrathecal and group III: intraspinal cord). Neurologic function was serially evaluated by Basso, Beattie, Bresnahan locomotor rating scale and footprint analysis. We also evaluated the migration of the transplanted cells at 2 weeks after transplantation. Using biotinylated dextran amine (BDA) anterograde tracing, we demonstrated that more regenerative axons of corticospinal tract (CST) surrounding the injured cavity in group III than those in the other two groups, and we also confirmed it further by quantitative analysis. The microenvironment surrounding the injured spinal cord has been improved to the greatest extent in group III, as determined by immunohistological staining. Relatively complete myelin sheaths and more neurofilaments in axons were found in groups II and III than those in group I under electron microscopy. The results showed that intraspinal cord injection of AASCs promoted recovery of hindlimb locomotor function of injured rats more efficiently than the other grafting routes. In addition, intact myelin sheaths and sufficient neurofilaments in axons were not adequate for full functional recovery after SCI, suggesting that reestablishment of normal synaptic connection is indispensable. The findings in this study strongly suggest that transplantation of AASCs directly into the spinal cord may be one of the promising candidates for potential scaffold for injured spinal cord, and such strategy of transplantation of AASCs could be hopeful to treat patients with SCI.
Collapse
Affiliation(s)
- De-Xiang Ban
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 2008; 30:5-16. [PMID: 18387258 DOI: 10.1179/174313208x284070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanical trauma to the spinal cord is often accompanied by irreversible tissue damage, limited endogenous repair and permanent loss of motor, sensory and autonomic function. The implantation of exogenous cells or the stimulation of endogenous cells, to repopulate and replace or to provide a conducive environment for repair, offers a promising therapeutic direction for overcoming the multitude of obstacles facing successful recovery from spinal cord injury. Although relatively new to the scene of cell based therapies for reparative medicine, stem cells and their progenitors have been labeled as the 'cell of the future' for revolutionizing the treatment of CNS injury and neurodegenerative disorders. The following review examines the different types of stem cells and their progenitors, their utility in experimental models of spinal cord injury and explores the outstanding issues that still need to be addressed before they move towards clinical implementation.
Collapse
Affiliation(s)
- J Louro
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
47
|
Xu R, Wu C, Tao Y, Yi J, Yang Y, Zhang X, Liu R. Nestin‐positive cells in the spinal cord: a potential source of neural stem cells. Int J Dev Neurosci 2008; 26:813-20. [DOI: 10.1016/j.ijdevneu.2008.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/09/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023] Open
Affiliation(s)
- Renshi Xu
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Chengsi Wu
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Yuhui Tao
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Juan Yi
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Yunzhu Yang
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Xiong Zhang
- Department of NeurologyGuangdong Provincial People's Hospital, Nanfang Medical University106 Zhongshan Er RoadGuangzhouGuangdong Province510080China
| | - Rugao Liu
- Department of Anatomy and Cell BiologyUniversity of North Dakota School of MedicineGrand ForksND58202USA
| |
Collapse
|
48
|
Waerzeggers Y, Klein M, Miletic H, Himmelreich U, Li H, Monfared P, Herrlinger U, Hoehn M, Coenen HH, Weller M, Winkeler A, Jacobs AH. Multimodal Imaging of Neural Progenitor Cell Fate in Rodents. Mol Imaging 2008. [DOI: 10.2310/7290.2008.0010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yannic Waerzeggers
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Markus Klein
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Hrvoje Miletic
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Uwe Himmelreich
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Hongfeng Li
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Parisa Monfared
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Ulrich Herrlinger
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Mathias Hoehn
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Heinrich Hubert Coenen
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Michael Weller
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Alexandra Winkeler
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Andreas Hans Jacobs
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| |
Collapse
|
49
|
Taupin P. Potential of neural stem cells for the treatment of brain tumors. Clin Med Oncol 2008; 2:451-4. [PMID: 21892316 PMCID: PMC3161643 DOI: 10.4137/cmo.s747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neural stem cells (NSCs) are self-renewing multipotent cells that generate the main phenotypes of the nervous system, neurons, astrocytes and oligodendrocytes. As such they hold the promise to treat a broad range of neurological diseases and injuries. Neural progenitor and stem cells have been isolated and characterized in vitro, from adult, fetal and post-mortem tissues, providing sources of material for cellular therapy. However, NSCs are still elusive cells and remain to be unequivocally identified and characterized, limiting their potential use for therapy. Neural progenitor and stem cells, isolated and cultured in vitro, can be genetically modified and when transplanted migrate to tumor sites in the brain. These intrinsic properties of neural progenitor and stem cells provide tremendous potential to bolster the translation of NSC research to therapy. It is proposed to combine gene therapy and cellular therapy to treat brain cancers. Hence, neural progenitor and stem cells provide new opportunities for the treatment of brain cancers.
Collapse
Affiliation(s)
- P Taupin
- Fighting Blindness Vision Research Institute
| |
Collapse
|
50
|
Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. ACTA ACUST UNITED AC 2007; 131:616-29. [PMID: 18156155 DOI: 10.1093/brain/awm306] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neural stem cell (NSC) transplantation has been investigated as a means to reconstitute the damaged brain after stroke. In this study, however, we investigated the effect on acute cerebral and peripheral inflammation after intracerebral haemorrhage (ICH). NSCs (H1 clone) from fetal human brain were injected intravenously (NSCs-iv, 5 million cells) or intracerebrally (NSCs-ic, 1 million cells) at 2 or 24 h after collagenase-induced ICH in a rat model. Only NSCs-iv-2 h resulted in fewer initial neurologic deteriorations and reduced brain oedema formation, inflammatory infiltrations (OX-42, myeloperoxidase) and apoptosis (activated caspase-3, TUNEL) compared to the vehicle-injected control animals. Rat neurosphere-iv-2 h, but not human fibroblast-iv-2 h, also reduced the brain oedema and the initial neurologic deficits. Human NSCs-iv-2 h also attenuated both cerebral and splenic activations of tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-kappaB). However, we observed only a few stem cells in brain sections of the NSCs-iv-2 h group; in the main, they were detected in marginal zone of spleens. To investigate whether NSCs interact with spleen to reduce cerebral inflammation, we performed a splenectomy prior to ICH induction, which eliminated the effect of NSCs-iv-2 h transplantation on brain water content and inflammatory infiltrations. NSCs also inhibited in vitro macrophage activations after lipopolysaccharide stimulation in a cell-to-cell contact dependent manner. In summary, early intravenous NSC injection displayed anti-inflammatory functionality that promoted neuroprotection, mainly by interrupting splenic inflammatory responses after ICH.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Stroke & Stem Cell Laboratory, Clinical Research Institute, Stem Cell Research Center, Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|