1
|
Zhang T, Jia L, Li X, Niu Z, Zhang S, Dong W, Peng L, Ma M, Wang H, Tang X, Chen Q. Integrative proteome and metabolome analyses reveal molecular basis of the tail resorption during the metamorphic climax of Nanorana pleskei. Front Cell Dev Biol 2024; 12:1431173. [PMID: 39224435 PMCID: PMC11366584 DOI: 10.3389/fcell.2024.1431173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
During the metamorphosis of anuran amphibians, the tail resorption process is a necessary and crucial change. One subject that has received relatively little or no attention is the expression patterns of proteins and metabolites in the different tail portions during metamorphosis, especially in highland amphibians. The mechanisms of tail resorption in three portions (the tip, middle and root) of the tail were investigated in N. pleskei G43 tadpole based on two omics (proteomic and metabolomic). Integrin αVβ3 was found to be high expressed in the distal portion of the tail, which could improve the sensitiveness to thyroid hormones in the distal portion of the tail. Muscle regression displayed a spatial pattern with stronger regression in distal and weaker one in proximal portion. Probably, this stronger regression was mainly performed by the proteases of proteasome from the active translation by ribosomes. The suicide model and murder model coexisted in the tail resorption. Meanwhile, fatty acids, amino acids, pyrimidine, and purine which derived from the breakdown of tissues can be used as building blocks or energy source for successful metamorphosis. Our data improved a better comprehension of the tail resorption mechanisms underlying the metamorphism of N. pleskei tadpole through identifying important participating proteins and metabolites.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Weijun Dong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Mercau ME, Patwa S, Bhat KPL, Ghosh S, Rothlin CV. Cell death in development, maintenance, and diseases of the nervous system. Semin Immunopathol 2022; 44:725-738. [PMID: 35508671 DOI: 10.1007/s00281-022-00938-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Cell death, be it of neurons or glial cells, marks the development of the nervous system. Albeit relatively less so than in tissues such as the gut, cell death is also a feature of nervous system homeostasis-especially in context of adult neurogenesis. Finally, cell death is commonplace in acute brain injuries, chronic neurodegenerative diseases, and in some central nervous system tumors such as glioblastoma. Recent studies are enumerating the various molecular modalities involved in the execution of cells. Intimately linked with cell death are mechanisms of disposal that remove the dead cell and bring about a tissue-level response. Heretofore, the association between these methods of dying and physiological or pathological responses has remained nebulous. It is envisioned that careful cartography of death and disposal may reveal novel understandings of disease states and chart new therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Maria E Mercau
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Siraj Patwa
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA. .,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Inukai R, Mori K, Kuwata K, Suzuki C, Maki M, Takahara T, Shibata H. The Novel ALG-2 Target Protein CDIP1 Promotes Cell Death by Interacting with ESCRT-I and VAPA/B. Int J Mol Sci 2021; 22:ijms22031175. [PMID: 33503978 PMCID: PMC7865452 DOI: 10.3390/ijms22031175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.
Collapse
Affiliation(s)
- Ryuta Inukai
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Kanako Mori
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Chihiro Suzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
- Correspondence:
| |
Collapse
|
4
|
Salim S, Nasir J, Chen PE. Overexpression of the dopamine receptor-interacting protein Alix/AIP1 modulates NMDA receptor-triggered cell death. FEBS Lett 2019; 593:1381-1391. [PMID: 31077357 DOI: 10.1002/1873-3468.13434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 01/13/2023]
Abstract
Alix/AIP1 is an adaptor protein involved in apoptosis, endocytic membrane trafficking and brain development. Alix has been found within the human postsynaptic density (PSD) and, since NMDA receptors (NMDARs) are central components of the PSD, we hypothesized that the close proximity of both proteins may allow Alix to influence the downstream pathways following NMDAR activation. NMDARs play important roles in excitotoxicity and we evaluated the effects of recombinant Alix in an NMDAR cell death assay. Overexpression of Alix with NMDARs increases the potency of NMDAR- induced cell death compared to cells expressing only NMDARs, and this requires expression of the Alix C-terminal region. Therefore, we demonstrate a previously unreported role for Alix as a potential modulator of NMDAR function.
Collapse
Affiliation(s)
- Sharifah Salim
- Centres for Biomedical Sciences and Gene & Cell Therapy, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Jamal Nasir
- Molecular Biosciences Research Group, Faculty of Health & Society, University of Northampton, Waterside Campus, Northampton, UK
| | - Philip E Chen
- Centres for Biomedical Sciences and Gene & Cell Therapy, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
5
|
Laporte MH, Chatellard C, Vauchez V, Hemming FJ, Deloulme JC, Vossier F, Blot B, Fraboulet S, Sadoul R. Alix is required during development for normal growth of the mouse brain. Sci Rep 2017; 7:44767. [PMID: 28322231 PMCID: PMC5359572 DOI: 10.1038/srep44767] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Alix (ALG-2 interacting protein X) drives deformation and fission of endosomal and cell surface membranes and thereby intervenes in diverse biological processes including cell proliferation and apoptosis. Using embryonic fibroblasts of Alix knock-out mice, we recently demonstrated that Alix is required for clathrin-independent endocytosis. Here we show that mice lacking Alix suffer from severe reduction in the volume of the brain which affects equally all regions examined. The cerebral cortex of adult animals shows normal layering but is reduced in both medio-lateral length and thickness. Alix controls brain size by regulating its expansion during two distinct developmental stages. Indeed, embryonic surface expansion of the Alix ko cortex is reduced because of the loss of neural progenitors during a transient phase of apoptosis occurring between E11.5 and E12.5. Subsequent development of the Alix ko cortex occurs normally until birth, when Alix is again required for the post-natal radial expansion of the cortex through its capacity to allow proper neurite outgrowth. The need of Alix for both survival of neural progenitor cells and neurite outgrowth is correlated with its role in clathrin-independent endocytosis in neural progenitors and at growth cones. Thus Alix-dependent, clathrin independent endocytosis is essential for controlling brain size.
Collapse
Affiliation(s)
- Marine H. Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Christine Chatellard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Victoria Vauchez
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Fiona J. Hemming
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Jean-Christophe Deloulme
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Frédérique Vossier
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Béatrice Blot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| |
Collapse
|
6
|
Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Using a novel “Integrated Biomarker Proteomic” index to assess the effects of freshwater pollutants in European eel peripheral blood mononuclear cells. J Proteomics 2016; 137:83-96. [DOI: 10.1016/j.jprot.2016.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023]
|
7
|
Sun S, Zhou X, Corvera J, Gallick GE, Lin SH, Kuang J. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov 2015; 1:15018. [PMID: 27462417 PMCID: PMC4860835 DOI: 10.1038/celldisc.2015.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Joe Corvera
- A&G Pharmaceuticals, Inc. , Baltimore, MD, USA
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
8
|
Venugopal AK, Ghantasala SSK, Selvan LDN, Mahadevan A, Renuse S, Kumar P, Pawar H, Sahasrabhuddhe NA, Suja MS, Ramachandra YL, Prasad TSK, Madhusudhana SN, HC H, Chaerkady R, Satishchandra P, Pandey A, Shankar SK. Quantitative proteomics for identifying biomarkers for Rabies. Clin Proteomics 2013; 10:3. [PMID: 23521751 PMCID: PMC3660221 DOI: 10.1186/1559-0275-10-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 03/14/2013] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Rabies is a fatal acute viral disease of the central nervous system, which is a serious public health problem in Asian and African countries. Based on the clinical presentation, rabies can be classified into encephalitic (furious) or paralytic (numb) rabies. Early diagnosis of this disease is particularly important as rabies is invariably fatal if adequate post exposure prophylaxis is not administered immediately following the bite. METHODS In this study, we carried out a quantitative proteomic analysis of the human brain tissue from cases of encephalitic and paralytic rabies along with normal human brain tissues using an 8-plex isobaric tags for relative and absolute quantification (iTRAQ) strategy. RESULTS AND CONCLUSION We identified 402 proteins, of which a number of proteins were differentially expressed between encephalitic and paralytic rabies, including several novel proteins. The differentially expressed molecules included karyopherin alpha 4 (KPNA4), which was overexpressed only in paralytic rabies, calcium calmodulin dependent kinase 2 alpha (CAMK2A), which was upregulated in paralytic rabies group and glutamate ammonia ligase (GLUL), which was overexpressed in paralytic as well as encephalitic rabies. We validated two of the upregulated molecules, GLUL and CAMK2A, by dot blot assays and further validated CAMK2A by immunohistochemistry. These molecules need to be further investigated in body fluids such as cerebrospinal fluid in a larger cohort of rabies cases to determine their potential use as antemortem diagnostic biomarkers in rabies. This is the first study to systematically profile clinical subtypes of human rabies using an iTRAQ quantitative proteomics approach.
Collapse
Affiliation(s)
- Abhilash K Venugopal
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga, 577451, India
| | - S Sameer Kumar Ghantasala
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga, 577451, India
| | - Lakshmi Dhevi N Selvan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India
| | - Nandini A Sahasrabhuddhe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal University, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Mooriyath S Suja
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | | | - Thottethodi S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
- Manipal University, Madhav Nagar, Manipal, Karnataka, 576104, India
- Bioinformatics Centre, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Shampur N Madhusudhana
- Department of Neurovirology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Harsha HC
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | | | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, 733 N. Broadway, BRB 527, Baltimore, MD, 21205, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| |
Collapse
|
9
|
Roland K, Kestemont P, Hénuset L, Pierrard MA, Raes M, Dieu M, Silvestre F. Proteomic responses of peripheral blood mononuclear cells in the European eel (Anguilla anguilla) after perfluorooctane sulfonate exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:43-52. [PMID: 23261670 DOI: 10.1016/j.aquatox.2012.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
Since the 1980s, the stocks of European eel have been declining in most of their geographical distribution area. Many factors can be attributed to this decline such as pollution by xenobiotics like perfluorooctane sulfonate (PFOS). This study aimed at evaluating the in vitro toxicity of eel peripheral blood mononuclear cells (PBMC) exposed to PFOS. Exposure time and two concentrations were chosen to avoid cell mortality (48 h exposure at 10 μg PFOS/L and 1mg PFOS/L). After in vitro contaminations, the post-nuclear fraction was isolated and a proteomic analysis using 2D-DIGE was performed to compare PBMC from the control group with cells exposed to the pollutant. On the 158 spots that were significantly affected by PFOS exposure, a total of 48 different proteins were identified using nano-LCESI-MS/MS and the Peptide and Protein Prophet of Scaffold software. These proteins can be categorized into diverse functional classes, related to cytoskeleton, protein folding, cell signaling, proteolytic pathway and carbohydrate and energy metabolism, which provide clues on the cellular pathways mainly affected by PFOS. Some of the identified proteins are rarely found in other ecotoxicological proteomic studies and could constitute potential biomarkers of exposure to PFOS in fish.
Collapse
Affiliation(s)
- Kathleen Roland
- Research Unit in Environmental and Evolutionary Biology (URBE), Narilis (Namur Research Institute for Lifesciences), University of Namur (FUNDP), Namur, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Pirooznia SK, Sarthi J, Johnson AA, Toth MS, Chiu K, Koduri S, Elefant F. Tip60 HAT activity mediates APP induced lethality and apoptotic cell death in the CNS of a Drosophila Alzheimer's disease model. PLoS One 2012; 7:e41776. [PMID: 22848598 PMCID: PMC3406101 DOI: 10.1371/journal.pone.0041776] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/29/2012] [Indexed: 12/26/2022] Open
Abstract
Histone acetylation of chromatin promotes dynamic transcriptional responses in neurons that influence neuroplasticity critical for cognitive ability. It has been demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the transcriptional regulation of genes enriched for neuronal function as well as the control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative disorder Alzheimer's disease (AD) via transcriptional regulatory complex formation with the AD linked amyloid precursor protein (APP) intracellular domain (AICD). As such, inappropriate complex formation may contribute to AD-linked neurodegeneration by misregulation of target genes involved in neurogenesis; however, a direct and causative epigenetic based role for Tip60 HAT activity in this process during neuronal development in vivo remains unclear. Here, we demonstrate that nervous system specific loss of Tip60 HAT activity enhances APP mediated lethality and neuronal apoptotic cell death in the central nervous system (CNS) of a transgenic AD fly model while remarkably, overexpression of Tip60 diminishes these defects. Notably, all of these effects are dependent upon the C-terminus of APP that is required for transcriptional regulatory complex formation with Tip60. Importantly, we show that the expression of certain AD linked Tip60 gene targets critical for regulating apoptotic pathways are modified in the presence of APP. Our results are the first to demonstrate a functional interaction between Tip60 and APP in mediating nervous system development and apoptotic neuronal cell death in the CNS of an AD fly model in vivo, and support a novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
The endosomal sorting complexes required for transport (ESCRTs) regulate protein trafficking from endosomes to lysosomes. Recent studies have shown that ESCRTs are involved in various cellular processes, including membrane scission, microRNA function, viral budding, and the autophagy pathway in many tissues, including the nervous system. Indeed, dysfunctional ESCRTs are associated with neurodegeneration. However, it remains largely elusive how ESCRTs act in post-mitotic neurons, a highly specialized cell type that requires dynamic changes in neuronal structures and signaling for proper function. This review focuses on our current understandings of the functions of ESCRTs in neuronal morphology, synaptic plasticity, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-A Lee
- Department of Biotechnology, College of Life Science and Nano Technology, Hannam University, Dajeon 305-811, Korea
| | | |
Collapse
|
12
|
Alix is involved in caspase 9 activation during calcium-induced apoptosis. Biochem Biophys Res Commun 2010; 397:64-9. [PMID: 20471954 DOI: 10.1016/j.bbrc.2010.05.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 05/11/2010] [Indexed: 11/22/2022]
Abstract
The cytoplasmic protein Alix/AIP1 (ALG-2 interacting protein X) is involved in cell death through mechanisms which remain unclear but require its binding partner ALG-2 (apoptosis-linked gene-2). The latter was defined as a regulator of calcium-induced apoptosis following endoplasmic reticulum (ER) stress. We show here that Alix is also a critical component of caspase 9 activation and apoptosis triggered by calcium. Indeed, expression of Alix dominant-negative mutants or downregulation of Alix afford significant protection against cytosolic calcium elevation following thapsigargin (Tg) treatment. The function of Alix in this paradigm requires its interaction with ALG-2. In addition, we demonstrate that caspase 9 activation is necessary for apoptosis induced by Tg and that this activation is impaired by knocking down Alix. Altogether, our findings identify, for the first time, Alix as a crucial mediator of Ca(2+) induced caspase 9 activation.
Collapse
|
13
|
Kraft JC, Osterhaus GL, Ortiz AN, Garris PA, Johnson MA. In vivo dopamine release and uptake impairments in rats treated with 3-nitropropionic acid. Neuroscience 2009; 161:940-9. [PMID: 19362126 DOI: 10.1016/j.neuroscience.2009.03.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/14/2009] [Accepted: 03/30/2009] [Indexed: 11/17/2022]
Abstract
Recent evidence has suggested that mitochondrial dysfunction may lead to impaired neurotransmitter exocytosis in transgenic Huntington's disease (HD) model mice. To gain insight into the impact of mitochondrial impairment on striatal dopamine release in vivo, we used fast-scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes to measure dopamine release and uptake kinetics in anesthetized Lewis rats continuously treated for 5 days with 3-nitropropionic acid (3NP). Our results indicate that, even though striatal dopamine content was unchanged, remotely stimulated dopamine release evoked per electrical stimulus pulse ([DA](p)) is decreased in 3NP-treated rats (33% of that observed in sham control rats) and that this decrease is uniform throughout all stereotaxic depths tested. Nevertheless, unlike data collected previously from transgenic HD model rodents, the maximum rate of dopamine uptake (V(max)) in 3NP-treated rats is diminished (30% of controls) while K(m) is unchanged. Treatment with 3NP also resulted in a corresponding decrease in locomotor activity, presumably due in part to the impaired dopamine release. These results indicate that dopamine release is degraded in this HD model, as is observed in transgenic HD model rodents; however, the results also imply that there are fundamental differences in dopamine uptake between 3NP-treated animals and transgenic animals.
Collapse
Affiliation(s)
- J C Kraft
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045-7582, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X] is a ubiquitinous adaptor protein first described for its capacity to bind to the calcium-binding protein, ALG-2. Alix regulates neuronal death in ways involving interactions with ALG-2 and with proteins of the ESCRT (endosomal sorting complex required for transport). Even though all Alix interactors characterized to date are involved in endosomal trafficking, the genuine function of the protein in this process remains unclear. We have demonstrated recently that Alix and ALG-2 form in the presence of calcium, a complex with apical caspases and with the endocytosed death receptor TNFR1 (tumour necrosis factor alpha receptor 1), thus suggesting a molecular coupling between endosomes and the cell death machinery.
Collapse
|
15
|
Mattei S, Klein G, Satre M, Aubry L. Trafficking and developmental signaling: Alix at the crossroads. Eur J Cell Biol 2007; 85:925-36. [PMID: 16766083 DOI: 10.1016/j.ejcb.2006.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alix is a phylogenetically conserved protein that participates in mammals in programmed cell death in association with ALG-2, a penta-EF-hand calciprotein. It contains an N-terminal Bro1 domain, a coiled-coil region and a C-terminal proline-rich domain containing several SH3- and WW-binding sites that contribute to its scaffolding properties. Recent data showed that by virtue of its Bro1 domain, Alix is functionally associated to the ESCRT complexes involved in the biogenesis of the multivesicular body and sorting of transmembrane proteins within this specific endosomal compartment. In Dictyostelium, an alx null strain shows a markedly perturbed starvation-induced morphogenetic program while ALG-2 disruptants remain unaffected. This review summarizes Dictyostelium data on Alix and ALG-2 homologues and evaluates whether known functions of Alix in other organisms can account for the developmental arrest of the alx null mutant and how Dictyostelium studies can substantiate the current understanding of the function(s) of this versatile and conserved signaling molecule.
Collapse
Affiliation(s)
- Sara Mattei
- Laboratoire de Biochimie et Biophysique des Systemes Integres, DRDC/BBSI, UMR 5092 CNRS-CEA-UJF, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
16
|
Abstract
Alix is a cytosolic protein in mammalian cells that was originally identified on the basis of its association with pro-apoptotic signaling. More recent evidence has established that Alix has a hand in regulating other cellular mechanisms, including endocytic membrane trafficking and cell adhesion. Although Alix appears to participate directly in these various activities, the role it plays in each process has largely been inferred from the functions of proteins with which it interacts. For example, recruitment of Alix to endosomes is mediated by its N-terminal Bro1 domain, the structure of which was recently solved for its yeast orthologue, Bro1. The diversity of Alix functions is due to its proline-rich C-terminus, which provides multiple protein-binding sites. With this blueprint in hand, we can now ask whether Alix acts simply as an adaptor that links different proteins into networks or, instead, contributes a specific function to distinct molecular machineries.
Collapse
Affiliation(s)
- Greg Odorizzi
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
17
|
Bäurle J, Kranda K, Frischmuth S. On the variety of cell death pathways in the Lurcher mutant mouse. Acta Neuropathol 2006; 112:691-702. [PMID: 16969677 DOI: 10.1007/s00401-006-0137-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/22/2006] [Accepted: 08/22/2006] [Indexed: 12/19/2022]
Abstract
Apoptosis as well as autophagy have been implicated in the death of cerebellar Purkinje cells (PCs) in the Lurcher (Lc/+) mutant mouse and at least two different apoptotic pathways participate in the transsynaptic death of granule cells (GC) and inferior olivary (IO) neurones. The relative contribution of these pathways can only be assessed from their momentary involvement at any stage of the complete course of neurodegeneration. Here we used quantitative labelling for activated caspase-3 (Casp-3) and Fluoro-Jade B (FJ-B) to investigate the spatio-temporal pattern of neuronal death from P6 to P67 in Lc/+ mutants. Activated Casp-3 was present only in narrow time intervals (P14 to P22 in PCs; P14 to P28 in GCs) and in small subpopulations of PCs, GCs, and IO neurones. FJ-B positive PCs were detected during a broader period (P14 to P28), and outnumbered Casp-3 labelled PCs by a factor exceeding eight. Nevertheless, FJ-B labelling was restricted to PCs and never found in either GC or IO neurones. In conclusion, we present the first complete time course and extent of Casp-3 activation in Lc/+ mutants and show that the majority of dying neurones in Lc/+ mutants undergo Casp-3 independent cell death. The cellular overload produced by the initial gene defect in Lc/+ mutants apparently activates a variety of apoptotic and non-apoptotic pathways within the same neuronal population. Moreover, we present the first evidence for the ability of FJ-B to selectively label a discrete population of dying PCs, implying a higher selectivity of FJ-B than previously supposed.
Collapse
Affiliation(s)
- Jörg Bäurle
- Campus Benjamin Franklin, Department of Physiology, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | | | | |
Collapse
|
18
|
Skynner HA, Amos DP, Murray F, Salim K, Knowles MR, Munoz-Sanjuan I, Camargo LM, Bonnert TP, Guest PC. Proteomic analysis identifies alterations in cellular morphology and cell death pathways in mouse brain after chronic corticosterone treatment. Brain Res 2006; 1102:12-26. [PMID: 16797492 DOI: 10.1016/j.brainres.2006.04.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 03/29/2006] [Accepted: 04/16/2006] [Indexed: 01/21/2023]
Abstract
Some patients with Major Depression and other neurological afflictions display hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. HPA hyperactivity may be due to impaired feedback inhibition and manifested as increased levels of circulating cortisol. Subcutaneous implants of corticosterone pellets were used to mimic this situation in mice to gain insight into any effects on brain function by comparative proteomic analysis using two-dimensional Differential In-Gel Electrophoresis. A total of 150 different protein spots were altered by corticosterone treatment in the hypothalamus, hippocampus and cerebral cortex. Of these, 117 spots were identified by matrix-assisted laser desorption/ionization-time of flight mass fingerprinting equating to 51 different proteins. Association of these corticosterone-modulated proteins with biological functions using the Ingenuity Pathways Analysis tool showed that cell morphology was significantly altered in the hippocampus and cerebral cortex, whereas the hypothalamus showed significant changes in cell death. Ingenuity Pathways Analysis of the canonical signaling pathways showed that glycolysis and gluconeogenesis were altered in the hypothalamus and the hippocampus and all three brain regions showed changes in phenylalanine, glutamate and nitrogen metabolism. Further elucidation of these pathways could lead to identification of biomarkers for the development of pharmacological therapies targeted at neuropsychiatric disorders.
Collapse
Affiliation(s)
- Heather A Skynner
- Department of Molecular and Cellular Neuroscience, Merck Sharp and Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Alix/AIP1 (ALG-2-interacting protein X/apoptosis-linked-gene-2-interacting protein 1) is an adaptor protein that was first described for its capacity to bind to the calcium-binding protein ALG-2 (apoptosis-linked gene 2), the expression of which seemed necessary for cell death. Over-expression of truncated forms of Alix blocks caspase-dependent and -independent mechanisms of cell death. Numerous observations in yeast and in mammalian cells suggest that Alix controls the making of and trafficking through endosomes called MVBs (multivesicular bodies), which are crucial intermediates within the endolysosomal system. In particular, deletion of Bro1, one of the yeast homologues of Alix, leads to an impairment in the function of MVBs, leading to mis-sorting of proteins normally destined to the vacuole. Mammalian Alix may have a similar function and has been shown to bind to lyso(bis)phosphatidic acid, ESCRT (endosomal sorting complex required for transport) proteins, endophilins and CIN85 (Cbl-interacting protein of 85 kDa), which are all main regulators of the endosomal system. EIAV (equine infectious anaemia virus) and HIV late domains use Alix to recruit the ESCRT machinery in order to bud from the cell surface, underscoring the crucial role of the protein in orchestrating membrane deformation. In this review I develop the hypothesis that the normal function of Alix in the endolysosomal system may be deviated by ALG-2 towards a destructive role during active cell death.
Collapse
Affiliation(s)
- Rémy Sadoul
- Neurodégénérescence et Plasticité, E0108, INSERM/Université Joseph Fourier, Grenoble, France.
| |
Collapse
|
20
|
Mahul-Mellier AL, Hemming FJ, Blot B, Fraboulet S, Sadoul R. Alix, making a link between apoptosis-linked gene-2, the endosomal sorting complexes required for transport, and neuronal death in vivo. J Neurosci 2006; 26:542-9. [PMID: 16407552 PMCID: PMC6674414 DOI: 10.1523/jneurosci.3069-05.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alix/apoptosis-linked gene-2 (ALG-2)-interacting protein X is an adaptor protein involved in the regulation of the endolysosomal system through binding to endophilins and to endosomal sorting complexes required for transport (ESCRT) proteins, TSG101 and CHMP4b. It was first characterized as an interactor of ALG-2, a calcium-binding protein necessary for cell death, and several observations suggest a role for Alix in controlling cell death. We used electroporation in the chick embryo to test whether overexpressed wild-type or mutated Alix proteins influence cell death in vivo. We show that Alix overexpression is sufficient to induce cell death of neuroepithelial cells. This effect is strictly dependent on its capacity to bind to ALG-2. On the other hand, expression of Alix mutants lacking the ALG-2 or the CHMP4b binding sites prevents early programmed cell death in cervical motoneurons at day 4.5 of chick embryo development. This protection afforded by Alix mutants was abolished after deletion of the TSG101, but not of the endophilin, binding sites. Our results suggest that the interaction of the ALG-2/Alix complex with ESCRT proteins is necessary for naturally occurring death of motoneurons. Therefore, Alix represents a molecular link between the endolysosomal system and the cell death machinery.
Collapse
Affiliation(s)
- Anne-Laure Mahul-Mellier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Neurodégénérescence et Plasticité, Equipe Mixte INSERM 0108, Universite Joseph Fourier, Grenoble I, F-38043 Grenoble, France
| | | | | | | | | |
Collapse
|