1
|
Goksu AY, Kocanci FG, Akinci E, Demir-Dora D, Erendor F, Sanlioglu S, Uysal H. Microglia cells treated with synthetic vasoactive intestinal peptide or transduced with LentiVIP protect neuronal cells against degeneration. Eur J Neurosci 2024; 59:1993-2015. [PMID: 38382910 DOI: 10.1111/ejn.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
A common pathological hallmark of neurodegenerative disorders is neuronal cell death, accompanied by neuroinflammation and oxidative stress. The vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neuroprotective and immunomodulatory actions. The gene therapy field shows long-term promise for treating a wide range of neurodegenerative diseases (ND). In this study, we aimed to investigate the in vitro efficacy of transduction of microglia using lentiviral gene therapy vectors encoding VIP (LentiVIP). Additionally, we tested the protective effects of the secretome derived from LentiVIP-infected "immortalized human" microglia HMC3 cells, and cells treated with Synthetic VIP (SynVIP), against toxin-induced neurodegeneration. First, LentiVIP, which stably expresses VIP, was generated and purified. VIP secretion in microglial conditioned media (MG CM) for LentiVIP-infected HMC3 microglia cells was confirmed. Microglia cells were activated with lipopolysaccharide, and groups were formed as follows: 1) Control, 2) SynVIP-treated, or 3) LentiVIP-transduced. These MG CM were applied on an in vitro neurodegenerative model formed by differentiated (d)-SH-SY5Y cells. Then, cell survival analysis and apoptotic nuclear staining, besides measurement of oxidative/inflammatory parameters in CM of cells were performed. Activated MG CM reduced survival rates of both control and toxin-applied (d)-SH-SY5Y cells, whereas LentiVIP-infected MG CM and SynVIP-treated ones exhibited better survival rates. These findings were supported by apoptotic nuclear evaluations of (d)-SH-SY5Y cells, alongside oxidative/inflammatory parameters in their CM. LentiVIP seems worthy of further studies for the treatment of ND because of the potential of gene therapy to treat diseases effectively with a single injection.
Collapse
Affiliation(s)
- Azize Yasemin Goksu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fatma Gonca Kocanci
- Department of Medical Laboratory Techniques, Vocational High School of Health Services, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Ersin Akinci
- Brigham and Women's Hospital, Division of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Shang Y, Zhang Z, Tian J, Li X. Anti-Inflammatory Effects of Natural Products on Cerebral Ischemia. Front Pharmacol 2022; 13:914630. [PMID: 35795571 PMCID: PMC9251309 DOI: 10.3389/fphar.2022.914630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine’s treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.
Collapse
|
3
|
Goksu Erol AY, Kocanci FG, Demir-Dora D, Uysal H. Additive cell protective and oxidative stress reducing effects of combined treatment with cromolyn sodium and masitinib on MPTP-induced toxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 2022; 354:109808. [PMID: 35007524 DOI: 10.1016/j.cbi.2022.109808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
The suppression of oxidative-stress induced neurotoxicity by antioxidants serves as a potential preventive strategy for neurodegenerative diseases. In this study, we aimed to investigate the cell protective and antioxidant effects of masitinib and cromolyn sodium against toxin-induced neurodegeneration. First, human neuroblastoma SH-SY5Y cells were differentiated into neuron-like (d)-SH-SY5Y cells. The differentiated cells were confirmed by immuno-staining with anti-PGP9.5 antibody, a neuronal marker. Cell culture groups were formed, and a neurotoxin, 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP) was applied on cells followed by masitinib and/or cromolyn sodium treatments. Survival rate of cells were detected by MTT assay. Anti-inflammatory Transforming Growth Factor-β1 (TGF-β1) and nitric oxide (NO) levels and total oxidant and antioxidant capacities (TOC and TAC) in cell conditioned media (CM) were measured. Morphological analysis and apoptotic nuclear assessment of cells were also noted. When (d)-SH-SY5Y cells were exposed to neurotoxin, cell viability rates of these cells were found to be decreased in a concentration-dependent manner. CM of toxin applied group displayed higher levels of TOC/TAC ratios and NO levels compared to control (p < 0.01). Both masitinib and cromolyn sodium protected cells from toxin-induced cell death as revealed by ameliorated rates of viability, reversed toxin-induced elevation of TOC/TAC ratios, and decreased NO levels in their CM (p < 0.01). Combined treatment significantly reduced TOC/TAC ratios and NO levels more effectively compared to mono-treatments. Both drugs also increased TGF-β1 levels significantly in cell CM. When these agents were tested for therapeutic effects against toxin-induced cell degeneration, better viability results were obtained by both masitinib and cromolyn sodium treatment, with significantly better amelioration provided by combined application of these drugs (p < 0.01). This study demonstrated new findings that combined treatment with cromolyn sodium, an FDA-approved drug of asthma, and masitinib, an orally administered drug with a low toxicity, exert neuroprotective and additive therapeutic effects. We propose that combination therapy of masitinib and cromolyn sodium may represent an innovative treatment in neurodegenerative diseases. Combination therapy may be more advantageous that it enables combined application of lower doses of both drugs, providing less side effects.
Collapse
Affiliation(s)
- Azize Yasemin Goksu Erol
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Gene and Cell Therapy, Antalya, Turkey.
| | - Fatma Gonca Kocanci
- Alanya Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya, Antalya, Turkey
| | - Devrim Demir-Dora
- Akdeniz University, Faculty of Medicine, Department of Gene and Cell Therapy, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | - Hilmi Uysal
- Akdeniz University, Faculty of Medicine, Department of Neurology, Antalya, Turkey
| |
Collapse
|
4
|
Pan Y, Tian D, Wang H, Zhao Y, Zhang C, Wang S, Xie D, Zhang D, Zhu Y, Zhang Y. Inhibition of Perforin-Mediated Neurotoxicity Attenuates Neurological Deficits After Ischemic Stroke. Front Cell Neurosci 2021; 15:664312. [PMID: 34262436 PMCID: PMC8274971 DOI: 10.3389/fncel.2021.664312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Perforin-mediated cytotoxicity plays a crucial role in microbial defense, tumor surveillance, and primary autoimmune disorders. However, the contribution of the cytolytic protein perforin to ischemia-induced secondary tissue damage in the brain has not been fully investigated. Here, we examined the kinetics and subpopulations of perforin-positive cells and then evaluated the direct effects of perforin-mediated cytotoxicity on outcomes after ischemic stroke. Using flow cytometry, we showed that perforin+CD45+ immune cells could be detected at 12 h and that the percentage of these cells increased largely until on day 3 and then significantly declined on day 7. Surprisingly, the percentage of Perforin+CD45+ cells also unexpectedly increased from day 7 to day 14 after ischemic stroke in Perforin1-EGFP transgenic mice. Our results suggested that Perforin+CD45+ cells play vital roles in the ischemic brain at early and late stages and further suggested that Perforin+CD45+ cells are a heterogeneous population. Surprisingly, in addition to CD8+ T cells, NK cells, and NKT cells, central nervous system (CNS)-resident immune microglia, which are first triggered and activated within minutes after ischemic stroke in mice, also secreted perforin during ischemic brain injury. In our study, the percentage of perforin+ microglia increased from 12 h after ischemic stroke, increased largely until on day 3 after ischemic stroke, and then moderately declined from days 3 to 7. Intriguingly, the percentage of perforin+ microglia also dramatically increased from days 7 to 14 after ischemic stroke. Furthermore, compared with wild-type littermates, Perforin 1-/- mice exhibited significant increases in the cerebral infarct volume, neurological deficits, and neurogenesis and inhibition of neurotoxic astrogliosis. Interestingly, the number of CD45+CD3+ T cells was significantly decreased in Perforin 1-/- mice compared with their wild-type littermates, especially the number of γδ T cells. In addition, Perforin 1-/- mice had lower levels of IL-17 than their wild-type littermates. Our results identified a critical function of perforin-mediated neurotoxicity in the ischemic brain, suggesting that targeting perforin-mediated neurotoxicity in brain-resident microglia and invading perforin+CD45+ immune cells may be a potential strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuhualei Pan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Dan Tian
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huan Wang
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yushang Zhao
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Song Wang
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Xie
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Kotliarova A, Sidorova YA. Glial Cell Line-Derived Neurotrophic Factor Family Ligands, Players at the Interface of Neuroinflammation and Neuroprotection: Focus Onto the Glia. Front Cell Neurosci 2021; 15:679034. [PMID: 34220453 PMCID: PMC8250866 DOI: 10.3389/fncel.2021.679034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
Well-known effects of neurotrophic factors are related to supporting the survival and functioning of various neuronal populations in the body. However, these proteins seem to also play less well-documented roles in glial cells, thus, influencing neuroinflammation. This article summarizes available data on the effects of glial cell line derived neurotrophic factor (GDNF) family ligands (GFLs), proteins providing trophic support to dopaminergic, sensory, motor and many other neuronal populations, in non-neuronal cells contributing to the development and maintenance of neuropathic pain. The paper also contains our own limited data describing the effects of small molecules targeting GFL receptors on the expression of the satellite glial marker IBA1 in dorsal root ganglia of rats with surgery- and diabetes-induced neuropathy. In our experiments activation of GFLs receptors with either GFLs or small molecule agonists downregulated the expression of IBA1 in this tissue of experimental animals. While it can be a secondary effect due to a supportive role of GFLs in neuronal cells, growing body of evidence indicates that GFL receptors are expressed in glial and peripheral immune system cells. Thus, targeting GFL receptors with either proteins or small molecules may directly suppress the activation of glial and immune system cells and, therefore, reduce neuroinflammation. As neuroinflammation is considered to be an important contributor to the process of neurodegeneration these data further support research efforts to modulate the activity of GFL receptors in order to develop disease-modifying treatments for neurodegenerative disorders and neuropathic pain that target both neuronal and glial cells.
Collapse
Affiliation(s)
- Anastasiia Kotliarova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Zhong Z, Chen A, Fa Z, Ding Z, Xie J, Sun Y, Zhang R, Wang Q. Adipose-Derived Stem Cells Modulate BV2 Microglial M1/M2 Polarization by Producing GDNF. Stem Cells Dev 2020; 29:714-727. [PMID: 32111146 DOI: 10.1089/scd.2019.0235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Zhenzhong Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ao Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqiang Fa
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiquan Ding
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayu Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yujia Sun
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Run Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qinghua Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhong Z, Chen A, Fa Z, Ding Z, Xiao L, Wu G, Wang Q, Zhang R. Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-κB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats. Neurobiol Dis 2020; 143:104945. [PMID: 32428552 DOI: 10.1016/j.nbd.2020.104945] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
Deafferentation pain (DP), a typical neuropathic pain, occurs due to peripheral or central sensory nerve injury, which causes abnormal discharge of the upstream neurons or C fibers. Current treatment methods for DP have multiple side effects. Bone marrow mesenchymal stem cells (BMSC) have been used to treat neuropathic pain because of their ability to regulate neuroinflammation. Glial cell-derived neurotrophic factor (GDNF) is a neurotrophic mediator that exerts neuroprotective effects in neurological diseases. In this study, we investigated whether DP could be alleviated by BMSCs and the underlying mechanism. In vitro study, microglia was stimulated by lipopolysaccharide and then co-cultured with BMSC, GDNF or siRNA GDNF-BMSC. In vivo study, BMSC or siRNA GDNF-BMSC was transplanted intramedullarily on the 21st day after DP surgery. The expression of inflammatory-related factors were detected by RT-PCR and ELISA, RT-PCR,flow cytometry and immunofluorescence staining were performed to detect the expression of microglial surface markers, and Western blot was used to detect the expression levels of p-NF-kb, pPI3K, and pAKT. The pain-related behavioral changes were detected 7 days after transplantation. ELISA and RT-PCR results showed that the production of inflammatory cytokines in lipopolysaccharide-stimulated microglia and DP model plasma was downregulated, while anti-inflammatory mediators were upregulated significantly following pretreatment with BMSCs or GDNF. Flow cytometry, immunofluorescence staining, and RT-PCR results showed that BMSCs inhibited the microglial M1 phenotype and promoted the M2 phenotype by secreting GDNF. Furthermore, modulation functions of BMSCs involve inhibiting NF-κB while promoting PI3K /AKT signaling pathway activation. We found that our in vivo DP model was completely deafferent and BMSC administration clearly alleviated symptoms of DP. This function was also, at least partly, achieved by GDNF. The present studies demonstrate that BMSC can inhibit neuroinflammation by transforming microglial destructive M1 phenotype into regenerative M2 phenotype, and thus alleviate DP,likely by suppressing the NF-κB signaling pathway while promoting the PI3K/AKT signaling pathway activation through producing GDNF. The present findings are in support of the potential therapeutic application of BMSCs and the pharmaceutical application of GDNF for DP.
Collapse
Affiliation(s)
- Zhenzhong Zhong
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Ao Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhiqiang Fa
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhiquan Ding
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Linglong Xiao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Guiwei Wu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Qinghua Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.
| | - Run Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.
| |
Collapse
|
8
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
9
|
Park JH, Ahn JH, Kim DW, Lee TK, Park CW, Park YE, Lee JC, Lee HA, Yang GE, Won MH, Lee CH. Altered Nurr1 protein expression in the hippocampal CA1 region following transient global cerebral ischemia. Mol Med Rep 2019; 21:107-114. [PMID: 31746417 PMCID: PMC6896304 DOI: 10.3892/mmr.2019.10828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/10/2019] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptor related 1 protein (Nurr1), a member of the nuclear receptor 4 family of orphan nuclear receptors, has been reported to display anti‑inflammatory properties. The present study investigated the alteration of Nurr1 immunoreactivity in the gerbil hippocampus proper following 5 min of transient global cerebral ischemia. In sham operated gerbils, Nurr1 immunoreactivity was observed in pyramidal neurons in all cornu ammonis 1‑3 (CA1‑3) subfields of the hippocampus proper. In ischemia‑operated gerbils, Nurr1 immunoreactivity was altered in the CA1 subfield. Nurr1 immunoreactivity in CA1 pyramidal neurons gradually decreased until 2 days post‑ischemia, and, at 4 days post‑ischemia, Nurr1 immunoreactivity was concentrated in CA1 pyramidal neurons. Additionally, Nurr1 immunoreactivity was newly expressed in microglia in the CA1 subfield at 4 days post‑ischemia. Conversely, in the CA2/3 subfield, time‑dependent alteration of Nurr1 immunoreactivity was not identified at any time following ischemia. These results indicated that the alteration of Nurr1 expression in the CA1 subfield in the hippocampus may be associated with the death of CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyang-Ah Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam‑do 31116, Republic of Korea
| |
Collapse
|
10
|
Lin CH, Liao LY, Yang TY, Chang YJ, Tung CW, Hsu SL, Hsueh CM. Microglia-Derived Adiposomes are Potential Targets for the Treatment of Ischemic Stroke. Cell Mol Neurobiol 2019; 39:591-604. [PMID: 30852719 PMCID: PMC11462839 DOI: 10.1007/s10571-019-00665-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
It is known that cerebral ischemia can cause brain inflammation and adiposome can serve as a depot of inflammatory mediators. In the study, the pro-inflammatory and pro-death role of adiposome in ischemic microglia and ischemic brain was newly investigated. The contribution of PPARγ to adiposome formation was also evaluated for the first time in ischemic microglia. Focal cerebral ischemia/reperfusion (I/R) animal model and the in vitro glucose-oxygen-serum deprivation (GOSD) cell model were both applied in the study. GOSD- or I/R-induced adiposome formation, inflammatory activity, cell death of microglia, and brain infarction were, respectively, determined, in the absence or presence of NS-398 (adiposome inhibitor) or GW9662 (PPARγ antagonist). GOSD-increased adiposome formation played a critical role in stimulating the inflammatory activity (production of TNF-α and IL-1β) and cell death of microglia. Similar results were also found in ischemic brain tissues. GOSD-induced PPARγ partially contributed to the increase of adiposomes and adiposome-mediated inflammatory responses of microglia. Blockade of adiposome formation with NS-398 or GW9662 significantly reduced not only the inflammatory activity and death rate of GOSD-treated microglia but also the brain infarct volume and motor function deficit of ischemic rats. The pathological role of microglia-derived adiposome in cerebral ischemia has been confirmed and attributed to its pro-inflammatory and/or pro-death effect upon ischemic brain cells and tissues. Adiposome and its upstream regulator PPARγ were therefore as potential targets for the treatment of ischemic stroke. Therapeutic values of NS-398 and GW9662 have been suggested.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Li-Ya Liao
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Tsung-Ying Yang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jyun Chang
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Chia-Wen Tung
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Shih-Lan Hsu
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC.
| |
Collapse
|
11
|
Borst K, Schwabenland M, Prinz M. Microglia metabolism in health and disease. Neurochem Int 2018; 130:104331. [PMID: 30423423 DOI: 10.1016/j.neuint.2018.11.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
In the last decade tremendous progress has been made in understanding how the immune system reacts to insults. During this progress it became obvious that those immune responses are tightly regulated and cross-linked with distinct metabolic changes in immune cells. Extensive research has been conducted mainly on subtypes of T cells, which use different metabolic pathways during differentiation processes and activation states. In addition, it has also been established later, that the innate immune cell lineage of myeloid cells includes a variety of different subsets of bone marrow-derived as well as tissue-specific macrophages, which elicit much more functions than simply killing bacteria. To execute this high variety of functions, also macrophages use different metabolic pathways and are tightly regulated by key metabolic regulators, such as the mechanistic target of rapamycin (mTOR). Upon activation, metabolic changes within the cell occur to meet the requirements of the phenotypic switch. In addition, metabolic changes correlate with the ability of innate immune cells to show hallmarks of adaptive immune responses. Little is known about specific metabolic changes of myeloid cells and specifically microglia in vivo. Microglia are key players in neurodegenerative and neuroinflammatory diseases and have become a major target of medical research. Here, we review the existing data on microglia metabolism and the connection of microglia phenotypes with neuroinflammatory and neurodegenerative diseases. Lastly, we will discuss how our knowledge about the cellular metabolism might be used to develop new treatment options for neurological diseases.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
12
|
Lee JC, Shin BN, Cho JH, Lee TK, Kim IH, Noh Y, Kim SS, Lee HA, Kim YM, Kim H, Cho JH, Park JH, Ahn JH, Kang IJ, Hwang IK, Won MH, Shin MC. Brain ischemic preconditioning protects against moderate, not severe, transient global cerebral ischemic injury. Metab Brain Dis 2018; 33:1193-1201. [PMID: 29644488 DOI: 10.1007/s11011-018-0231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Ischemic preconditioning (IPC) in the brain increases ischemic tolerance to subsequent ischemic insults. In this study, we examined whether IPC protects neurons and attenuates microgliosis or not in the hippocampus following severe transient global cerebral ischemia (TCI) in gerbils. Gerbils were assigned to 8 groups; 5- and 15-min sham operated groups, 5-min and 15-min TCI operated groups, IPC plus 5- and 15-min sham operated groups, and IPC plus 5- and 15-min TCI operated groups. IPC was induced by subjecting animals to 2-min transient ischemia 1 day before 5-min TCI for a typical transient ischemia and 15-min TCI for severe transient ischemia. Neuronal damage was examined by cresyl violet staining and Fluoro-Jade B histofluorescence staining. In addition, microglial activation was examined using immunohistochemistry for Iba-1 (a marker for microglia). Delayed neuronal death and microgliosis was found in the CA1 alone in the 5-min TCI operated group at 5 days post-ischemia, and, in the 15-min TCI operated group, neuronal death and microgliosis was shown in all CA areas (CA1-3) and the dentate gyrus. IPC displayed neuroprotection and attenuated microglial activation in the 5-min TCI operated group. However, in the 15-min TCI operated group, IPC did not show neuroprotection and not attenuate microglial activation. Our present findings indicate that IPC hardly protect against severe transient cerebral ischemic injury.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bich-Na Shin
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In Hye Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - YooHun Noh
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Sung-Su Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeyoung Kim
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, Republic of Korea
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
13
|
Microglial density determines the appearance of pathological neovascular tufts in oxygen-induced retinopathy. Cell Tissue Res 2018; 374:25-38. [PMID: 29767277 DOI: 10.1007/s00441-018-2847-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/29/2018] [Indexed: 02/06/2023]
Abstract
The oxygen-induced retinopathy (OIR) animal model established in C57 mice and SD rats has been widely used in retinal neovascular disease studies, while Balb/c mice have not been used because Balb/c OIR mice lack neovascular tufts. One study found a substantial difference in the density of retinal microglia between C57 and Balb/c mice; however, no direct evidence could clarify whether the density of retinal microglia in Balb/c mice led to this difference. In our study, intraperitoneal injection of minocycline was used to inhibit the activation of microglia and intravitreal injection of clodronate liposomes was used to decrease the density of microglia in Balb/c OIR model mice. We found that with the decline in microglia induced by the two drugs, the avascular area in treated Balb/c OIR mice was higher than that in untreated Balb/c OIR mice; moreover, a small area of neovascular tufts appeared at P17. After checking the expression of Iba1, a microglial marker and GFAP, an astrocyte and Müller cell marker, we found that minocycline and clodronate could inhibit the activation of microglia or decrease the density of microglia, while they had no significant effect on astrocytes and Müller cells. Therefore, these data suggest that the density of microglia in the retina may determine the result of vasculopathy in OIR mice to some extent. In future studies, predicting the development of retinal neovascular diseases by detecting the density of microglia in living animals or human beings with newly developed instruments and methods may be useful.
Collapse
|
14
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
15
|
Song GJ, Suk K. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:139. [PMID: 28555105 PMCID: PMC5430023 DOI: 10.3389/fnagi.2017.00139] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
Microglia are the resident innate immune cells of the central nervous system that mediate brain homeostasis maintenance. Microglia-mediated neuroinflammation is a hallmark shared by various neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Numerous studies have shown microglial activation phenotypes to be heterogeneous; however, these microglial phenotypes can largely be categorized as being either M1 or M2 type. Although the specific classification of M1 and M2 functionally polarized microglia remains a topic for debate, the use of functional modulators of microglial phenotypes as potential therapeutic approaches for the treatment of neurodegenerative diseases has garnered considerable attention. This review discusses M1 and M2 microglial phenotypes and their relevance in neurodegenerative disease models, as described in recent literature. The modulation of microglial polarization toward the M2 phenotype may lead to development of future therapeutic and preventive strategies for neuroinflammatory and neurodegenerative diseases. Thus, we focus on recent studies of microglial polarization modulators, with a particular emphasis on the small-molecule compounds and their intracellular target proteins.
Collapse
Affiliation(s)
- Gyun Jee Song
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National UniversityDaegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
16
|
Lv B, Li F, Fang J, Xu L, Sun C, Han J, Hua T, Zhang Z, Feng Z, Wang Q, Jiang X. Activated Microglia Induce Bone Marrow Mesenchymal Stem Cells to Produce Glial Cell-Derived Neurotrophic Factor and Protect Neurons Against Oxygen-Glucose Deprivation Injury. Front Cell Neurosci 2016; 10:283. [PMID: 28018176 PMCID: PMC5160383 DOI: 10.3389/fncel.2016.00283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated interactions among microglia (MG), bone marrow mesenchymal stem cells (BMSCs) and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD) model. Rat BMSCs were incubated with conditioned medium (CM) from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF) on rat neuron viability, apoptosis, lactate dehydrogenase (LDH) leakage and mitochondrial membrane potential (MMP) were analyzed in this model. OGD-activated MG promoted GDNF production by BMSCs (P < 0.01). Tumor necrosis factor-α (TNFα), but not interleukin-6 (IL6) or interleukin 1β (IL1β), promoted GDNF production by BMSCs (P < 0.001). GDNF or CM pre-treated BMSCs elevated neuronal viability and suppressed apoptosis (P < 0.05 or P < 0.01); these effects were inhibited by the RET antibody. GDNF activated MEK/ERK and phosphoinositide-3-kinase (PI3K)/AKT signaling but not JNK/c-JUN. Furthermore, GDNF upregulated B cell lymphoma 2 (BCL2) and heat shock 60 kDa protein 1 (HSP60) levels, suppressed LDH leakage, and promoted MMP. Thus, activated MG produce TNFα to stimulate GDNF production by BMSCs, which prevents and repairs OGD-induced neuronal injury, possibly via regulating MEK/ERK and PI3K/AKT signaling. These findings will facilitate the prevention and treatment of neuronal injury by cerebral ischemia.
Collapse
Affiliation(s)
- Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Jie Fang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Limin Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Qinghua Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration Guangzhou, China
| |
Collapse
|
17
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
18
|
Lin CH, Wang CH, Hsu SL, Liao LY, Lin TA, Hsueh CM. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS One 2016; 11:e0146692. [PMID: 26745377 PMCID: PMC4706329 DOI: 10.1371/journal.pone.0146692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023] Open
Abstract
The protective value of neuron-derived conditioned medium (NCM) in cerebral ischemia and the underlying mechanism(s) responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD) for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO) animal model, we discovered that ischemia/reperfusion (I/R)-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF) and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS) alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity) and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Chen-Hsuan Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Adapted Physical Education, National Taiwan Sport University, Taoyuan, Taiwan
| | - Shih-Lan Hsu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Ya Liao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ting-An Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Barakat R, Redzic Z. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med Princ Pract 2016; 25 Suppl 1:3-14. [PMID: 26303836 PMCID: PMC5588523 DOI: 10.1159/000435858] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Paracrine signaling in the neurovascular unit (NVU) is aimed to adjust the supply of oxygen and nutrients to metabolic demands of the brain in a feed-forward manner. Cerebral ischemia (CI) severely disrupts this homeostatic mechanism and also causes activation of microglia and resident macrophages in the brain. Contradictory data exist on the time pattern of microglial activation and polarization during CI, on molecular mechanisms that trigger them and on effects of microglia-derived cytokines on brain cells. It appears that conditions that occur during transient ischemia or in the penumbra of focal ischemia in vivo or equivalent conditions in vitro trigger polarization of resting microglia/macrophages into the M2 phenotype, which mainly exerts anti-inflammatory and protective effects in the brain, while prolonged ischemia with abundant necrosis promotes microglial polarization into the M1 phenotype. During the later stages of recovery, microglia that polarized initially into the M2 phenotype can shift into the M1 phenotype. Thus, it appears that cells with both phenotypes are present in the affected area, but their relative amount changes in time and probably depends on the proximity to the ischemic core. It was assumed that cells with the M1 phenotype exert detrimental effects on neurons and contribute to the blood-brain barrier opening. Several M1 phenotype-specific cytokines exert protective effects on astrocytes, which could be important for reactive gliosis occurring after ischemia. Thus, whether or not suppression of microglial activity after CI is beneficial for neurological outcome still remains unclear and current evidence suggests that no simple answer could be given to this question.
Collapse
Affiliation(s)
| | - Zoran Redzic
- *Dr. Zoran Redzic, Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
20
|
Usui Y, Westenskow PD, Murinello S, Dorrell MI, Scheppke L, Bucher F, Sakimoto S, Paris LP, Aguilar E, Friedlander M. Angiogenesis and Eye Disease. Annu Rev Vis Sci 2015; 1:155-184. [DOI: 10.1146/annurev-vision-082114-035439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Peter D. Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
- The Lowy Medical Research Institute, La Jolla, California 92037
| | - Salome Murinello
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Michael I. Dorrell
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
- The Lowy Medical Research Institute, La Jolla, California 92037
- Department of Biology, Point Loma Nazarene University, San Diego, California 92106
| | - Lea Scheppke
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Felicitas Bucher
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Susumu Sakimoto
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Liliana P. Paris
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
- The Lowy Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
21
|
Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG. The ischemic environment drives microglia and macrophage function. Front Neurol 2015; 6:81. [PMID: 25904895 PMCID: PMC4389404 DOI: 10.3389/fneur.2015.00081] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
Cells of myeloid origin, such as microglia and macrophages, act at the crossroads of several inflammatory mechanisms during pathophysiology. Besides pro-inflammatory activity (M1 polarization), myeloid cells acquire protective functions (M2) and participate in the neuroprotective innate mechanisms after brain injury. Experimental research is making considerable efforts to understand the rules that regulate the balance between toxic and protective brain innate immunity. Environmental changes affect microglia/macrophage functions. Hypoxia can affect myeloid cell distribution, activity, and phenotype. With their intrinsic differences, microglia and macrophages respond differently to hypoxia, the former depending on ATP to activate and the latter switching to anaerobic metabolism and adapting to hypoxia. Myeloid cell functions include homeostasis control, damage-sensing activity, chemotaxis, and phagocytosis, all distinctive features of these cells. Specific markers and morphologies enable to recognize each functional state. To ensure homeostasis and activate when needed, microglia/macrophage physiology is finely tuned. Microglia are controlled by several neuron-derived components, including contact-dependent inhibitory signals and soluble molecules. Changes in this control can cause chronic activation or priming with specific functional consequences. Strategies, such as stem cell treatment, may enhance microglia protective polarization. This review presents data from the literature that has greatly advanced our understanding of myeloid cell action in brain injury. We discuss the selective responses of microglia and macrophages to hypoxia after stroke and review relevant markers with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site. We also cover the functional consequences of chronically active microglia and review pivotal works on microglia regulation that offer new therapeutic possibilities for acute brain injury.
Collapse
Affiliation(s)
- Stefano Fumagalli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy ; Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Carlo Perego
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Francesca Pischiutta
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| |
Collapse
|
22
|
p63 Expression in the Gerbil Hippocampus Following Transient Ischemia and Effect of Ischemic Preconditioning on p63 Expression in the Ischemic Hippocampus. Neurochem Res 2015; 40:1013-22. [PMID: 25777256 DOI: 10.1007/s11064-015-1556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 01/17/2023]
Abstract
p63 is a transcription factor of p53 gene family, which are involved in development, differentiation and cell response to stress; however, its roles in ischemic preconditioning (IPC) in the brain are not clear. In the present study, we investigated the effect of IPC on p63 immunoreactivity caused by 5 min of transient cerebral ischemia in gerbils. IPC was induced by subjecting the gerbils to 2 min of transie ischemia 1 day prior to 5 min of transient ischemia. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+)-sham-operated-group and IPC + ischemia-operated-group). The number of viable neurons in the stratum pyramidale of the hippocampal CA1 region (CA1) was significantly increased by IPC + ischemia-operated-group compared with that in the ischemia-operated-group 5 days after ischemic insult. We found that strong p63 immunoreactivity was detected in the CA1 pyramidal neurons in the sham-operated-group, and the immunoreactivity was decreased with time after ischemia-reperfusion. In addition, strong p63 immunoreactivity was newly expressed in microglial cells of the CA1 region from 2 days after ischemia-reperfusion. In all the IPC + sham-operated-groups, p63 immunoreactivity in the CA1 pyramidal neurons was similar to that in the sham-operated-group, and the immunoreactivity was well maintained in the IPC + ischemia-operated-groups after cerebral ischemia. In brief, our present findings show that IPC dramatically protected the reduction of p63 immunoreactivity in the pyramidal neurons of the CA1 region after ischemia-reperfusion, and this result suggests that the expression of p63 may be necessary for neurons to survive after transient cerebral ischemia.
Collapse
|
23
|
Barakat R, Redzic Z. Differential cytokine expression by brain microglia/macrophages in primary culture after oxygen glucose deprivation and their protective effects on astrocytes during anoxia. Fluids Barriers CNS 2015; 12:6. [PMID: 25866619 PMCID: PMC4392752 DOI: 10.1186/s12987-015-0002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 12/23/2022] Open
Abstract
Background Activation of microglia/macrophages following cerebral ischemia may be beneficial or detrimental for the survival of brain cells, an ambiguity in effects that has been explained by findings that ischemia can induce transformation of resting monocytes/macrophages into two different inflammation-related phenotypes, termed M1 and M2. The extent to which this differentiation depends on paracrine signaling from other brain cells is not clear. This study explored if oxygen glucose deprivation (OGD) can trigger expression of phenotype-specific markers in rat microglia/macrophages in primary culture, in absence/low abundance of other brain cells. Time pattern of these changes was assessed and compared to time-pattern that has been revealed in vivo previously. Effects of phenotype-specific cytokines on viability of astrocytes in primary culture during anoxia were also explored. Methods Primary cultures of rat microglia/macrophages were exposed to 2h OGD and then incubated further under normal conditions; this was considered as a recovery period. Expression of mRNA for specific markers and secretion of phenotype-specific cytokines were explored at different time points by real time PCR and ELISA, respectively. Effects of cytokines that were secreted by microglia in primary culture after OGD on viability of astrocytes were determined. Results Expression and secretion of M2 phenotype-specific markers and/or cytokines after OGD increased early after OGD and then decreased in the later stages of the recovery period. Expression and secretion of M1 phenotype-specific markers and cytokines did not show a common time pattern, but there was a tendency for an increase during the recovery period. All M1 phenotype-specific and two out of the three tested M2 phenotype-specific cytokines revealed protective effects on astrocytes during near-anoxia by a marked reduction of apoptosis. Conclusions Time-pattern of expression/secretion of phenotype-specific markers suggested that polarization of the brain microglia/macrophages in vitro to M2 and M1 phenotypes were largely independent and likely dependent on signaling from other brain cells, respectively. Time-pattern of polarization to the M2 phenotype partially resembled time-pattern that has been seen in vivo. Effects of M1 phenotype-specific cytokines on primary culture of astrocytes were protective, thus largely opposite to effects that have been observed in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12987-015-0002-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rawan Barakat
- Department of Physiology, Faculty of Medicine, Kuwait University, Mail: P O Box 24923, Safat, 13110 Kuwait
| | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Mail: P O Box 24923, Safat, 13110 Kuwait
| |
Collapse
|
24
|
Song M, Jue SS, Cho YA, Kim EC. Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 2015; 93:973-83. [PMID: 25663284 DOI: 10.1002/jnr.23569] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
This study assesses the cytoprotective effects of human dental pulp stem cells (hDPSCs) and conditioned medium from hDPSCs (CM-hDPSCs) on ischemic human astrocytes (hAs) in vitro compared with human bone marrow-derived mesenchymal stem cells (hMSCs). Ischemia of hAs was induced by oxygen-glucose deprivation (OGD). CM-hDPSCs and hMSCs were collected after 48 hr of culture. Cell death was determined by 3-[4,5-dimethylthialzol-2-yl]-2,5-diphenyltetrazolium bromide and cellular ATP assays. The expression of glial fibrillary acidic protein (GFAP) and musashi-1 as markers of reactive astrogliosis was examined with immunochemical staining. mRNA expression and reactive oxygen species (ROS) were analyzed by RT-PCR and flow cytometry, respectively. OGD increased cytotoxicity in a time-dependent manner and decreased cellular ATP content concomitantly in hAs. Pretreatment and posttreatment with hDPSCs were associated with greater recovery from OGD-induced cytotoxicity in hAs compared with hMSCs. Similarly, CM-hDPSCs had a greater effect on OGD-induced cytotoxicity in a dose-dependent manner. Pre- and posttreatment with CM-hDPSCs or CM-hMSCs attenuated OGD-induced GFAP, nestin, and musashi-1 expression in hAs. Furthermore, treatment of cells with CM-hDPSCs and hMSCs blocked OGD-induced ROS production and interleukin-1ß upregulation. This study demonstrates for the first time that hDPSCs and CM-hDPSCs confer superior cytoprotection against cell death in an in vitro OGD model compared with hMSCs as shown by cell viability assay. Reactive gliosis, ROS production, and inflammatory mediators might contribute to this protective effect. Therefore, hDPSCs could represent an alternative source of cell therapy for ischemic stroke.
Collapse
Affiliation(s)
- Miyeoun Song
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Lee JC, Chen BH, Cho JH, Kim IH, Ahn JH, Park JH, Tae HJ, Cho GS, Yan BC, Kim DW, Hwang IK, Park J, Lee YL, Choi SY, Won MH. Changes in the expression of DNA-binding/differentiation protein inhibitors in neurons and glial cells of the gerbil hippocampus following transient global cerebral ischemia. Mol Med Rep 2014; 11:2477-85. [PMID: 25503067 PMCID: PMC4337738 DOI: 10.3892/mmr.2014.3084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022] Open
Abstract
Inhibitors of DNA-binding/differentiation (ID) proteins bind to basic helix-loop-helix (bHLH) transcription factors, including those that regulate differentiation and cell-cycle progression during development, and regulate gene transcription. However, little is known about the role of ID proteins in the brain under transient cerebral ischemic conditions. In the present study, we examined the effects of ischemia-reperfusion (I-R) injury on the immunoreactivity and protein levels of IDs 1–4 in the gerbil hippocampus proper Cornu Ammonis regions CA1–3 following 5 min of transient cerebral ischemia. Strong ID1 immunoreactivity was detected in the nuclei of pyramidal neurons in the hippocampal CA1–3 regions; immunoreactivity was significantly changed following I-R in the CA1 region, but not in the CA2/3 region. Five days following I-R, ID1 immunoreactivity was not detected in the CA1 pyramidal neurons. ID1 immunoreactivity was detected only in GABAergic interneurons in the ischemic CA1 region. Weak ID4 immunoreactivity was detected in non-pyramidal cells, and immunoreactivity was again only changed in the ischemic CA1 region. Five days following I-R, strong ID4 immunoreactivity was detected in non-pyramidal cells, which were identified as microglia, and not astrocytes, in the ischemic CA1 region. Furthermore, changes in the protein levels of ID1 and ID4 in the ischemic CA1 region studied by western blot were consistent with patterns of immunoreactivity. In summary, these results indicate that immunoreactivity and protein levels of ID1 and ID4 are distinctively altered following transient cerebral ischemia only in the CA1 region, and that the changes in ID1 and ID4 expression may relate to the ischemia-induced delayed neuronal death.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung‑Wonju National University, Gangneung, Gangwon 210‑702, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
26
|
Kim JY, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS Neurosci Ther 2014; 21:309-19. [PMID: 25475659 DOI: 10.1111/cns.12360] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/14/2022] Open
Abstract
As the resident immune cells of the central nervous system, microglia rapidly respond to brain insults, including stroke and traumatic brain injury. Microglial activation plays a major role in neuronal cell damage and death by releasing a variety of inflammatory and neurotoxic mediators. Their activation is an early response that may exacerbate brain injury and many other stressors, especially in the acute stages, but are also essential to brain recovery and repair. The full range of microglial activities is still not completely understood, but there is accumulating knowledge about their role following brain injury. We review recent progress related to the deleterious and beneficial effects of microglia in the setting of acute neurological insults and the current literature surrounding pharmacological interventions for intervention.
Collapse
Affiliation(s)
- Jong-Youl Kim
- Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
27
|
Chen X, Zhou H, Gong Y, Wei S, Zhang M. Early spatiotemporal characterization of microglial activation in the retinas of rats with streptozotocin-induced diabetes. Graefes Arch Clin Exp Ophthalmol 2014; 253:519-25. [PMID: 25023148 DOI: 10.1007/s00417-014-2727-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 05/22/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Microglial activation has been recognized as a neuropathological feature in diabetic retinopathy. But the early spatiotemporal characterization of microglial activation in the retina and the optic nerve of diabetic animals has not been fully investigated. The purpose of this study was to investigate early sequential changes of microglia in the retinas of rats with streptozotocin-induced diabetes. Microglia in the optic nerves of rats with streptozotocin-induced diabetes were also studied. METHODS In 4-week, 8-week, and 12-week diabetic and normal control rats, microglial activation in the retinas and optic nerves was evaluated by immunolabeling with OX-42 antibody. Density, proportion of activation, and laminar distribution of retinal microglia were quantified. The retinal mRNA level of Iba-1, a microglial-specific marker, was measured by real-time PCR. RESULTS The density of retinal microglia was not different between diabetic and control rats, but the proportion of activated microglia increased significantly in diabetic rats at each time point. The proportion of microglia increased obviously in the nerve fiber layer and the ganglion cell layer while decreasing in the inner plexiform layer in 12-week diabetic rats. Moreover, retinal Iba-1 mRNA expression increased in 8-week and 12-week diabetic rats. Processes of microglia in the optic nerves of control rats were aligned with the long axis of nerve fibers, while the alignment was disturbed in diabetic rats. CONCLUSIONS Morphology, proportion of activation, distribution, and mRNA expression of retinal microglia changed characteristically with the progression of the disease in early-stage diabetic rats.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Ophthalmology, Chinese PLA General Hospital, 28, Fuxing Road, 100853, Beijing, China
| | | | | | | | | |
Collapse
|
28
|
Upregulation of EHD2 after intracerebral hemorrhage in adult rats. J Mol Neurosci 2014; 54:171-80. [PMID: 24664435 DOI: 10.1007/s12031-014-0271-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
EHD2, a member of the Eps15 homology domain (EH domain) family, is important for protein interactions during vesicular trafficking. Previous studies have proved that EHD2 can regulate trafficking from the plasma membrane in the process of endocytosis. However, its function in central nervous system diseases is still with limited understanding. In this frame, we found that EHD2 expression was upregulated in the perihematomal caudate in adult rats after intracerebral hemorrhage (ICH). Double immunofluorescence staining revealed that EHD2 was colocalized with neurons and activated microglias after ICH. Besides, we detected that neuronal apoptosis markers (TUNEL and caspase-3), and microglial activation marker (CD68), also known as a marker of macrophage, were colocated with EHD2. The vitro study also indicated that EHD2 was linked with neuronal apoptosis and microglial phagocytosis. All our findings suggested that EHD2 might be involved in the pathophysiology of ICH.
Collapse
|
29
|
Park CW, Lee JC, Ahn JH, Lee DH, Cho GS, Yan BC, Park JH, Kim IH, Lee HY, Won MH, Cho JH. Neuronal damage using fluoro-Jade B histofluorescence and gliosis in the gerbil septum submitted to various durations of cerebral ischemia. Cell Mol Neurobiol 2013; 33:991-1001. [PMID: 23893372 PMCID: PMC11497893 DOI: 10.1007/s10571-013-9967-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Abstract
The extent of neuronal damage/death in some brain regions is highly correlated to duration time of transient ischemia. In the present study, we carried out neuronal degeneration/death and glial changes in the septum 4 days after 5, 10, 15, and 20 min of transient cerebral ischemia using gerbils. To examine neuronal damage, Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining was used. F-J B positive ((+)) cells were detected in the septo-hippocampal nucleus (SHN) of the septum only in the 20 min ischemia-group; the mean number of F-J B(+) neurons was 14.9 ± 2.5/400 μm(2) in a section. Gliosis of astrocytes and microglia was examined using anti-glial fibrillary acidic protein (GFAP) and anti-ionized calcium-binding adapter molecule 1 (Iba-1), respectively. In all the ischemia-groups, GFAP- and Iba-1-immunoreactive astrocytes and microglia, respectively, were increased in number, and apparently tended to be increased in their immunoreactivity. Especially, in the 20 min ischemia-group, the number and immunoreactivity of Iba-immunoreactive microglia was highest and strongest in the ischemic SHN 4 days after ischemia-reperfusion. In brief, our findings showed that neuronal damage/death in the SHN occurred and gliosis was apparently increased in the 20 min ischemia-group at 4 days after ischemia-reperfusion.
Collapse
Affiliation(s)
- Chan Woo Park
- Department of Emergency Medicine, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Dae Hwan Lee
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan, 712-714 South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul, 136-705 South Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, 225001 China
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Hui Young Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
30
|
Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J Vasc Res 2013; 50:445-57. [PMID: 24107797 PMCID: PMC4309372 DOI: 10.1159/000354227] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/05/2013] [Indexed: 01/31/2023] Open
Abstract
Mild cognitive impairment is a well-documented consequence of whole brain radiation therapy (WBRT) that affects 40-50% of long-term brain tumor survivors. The exact mechanisms for the decline in cognitive function after WBRT remain elusive and no treatment or preventative measures are available for use in the clinic. Here, we review recent findings indicating how changes in the neurovascular unit may contribute to the impairments in learning and memory. In addition to affecting neuronal development, WBRT induces profound capillary rarefaction within the hippocampus - a region of the brain important for learning and memory. Therapeutic strategies such as hypoxia, which restore the capillary density, result in the rescue of cognitive function. In addition to decreasing vascular density, WBRT impairs vasculogenesis and/or angiogenesis, which may also contribute to radiation-induced cognitive decline. Further studies aimed at uncovering the specific mechanisms underlying these WBRT-induced changes in the cerebrovasculature are essential for developing therapies to mitigate the deleterious effects of WBRT on cognitive function.
Collapse
Affiliation(s)
- Junie P. Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicole Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yong Woo Lee
- School of Biomedical Engineering and Sciences Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
31
|
Neuronal damage and gliosis in the somatosensory cortex induced by various durations of transient cerebral ischemia in gerbils. Brain Res 2013; 1510:78-88. [PMID: 23528266 DOI: 10.1016/j.brainres.2013.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 12/13/2022]
Abstract
Although many studies regarding ischemic brain damage in the gerbil have been reported, studies on neuronal damage according to various durations of ischemia-reperfusion (I-R) have been limited. In this study, we examined neuronal damage/death and glial changes in the somatosensory cortex 4 days after 5, 10 and 15 min of transient cerebral ischemia using the gerbil. To examine neuronal damage, we used Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining as well as cresyl violet (CV) staining and neuronal nuclei (NeuN, neuronal marker) immunohistochemistry. In the somatosensory cortex, some CV and NeuN positive (+) neurons were slightly decreased only in layers III and VI in the 5 min ischemia-group, and the number of CV+ and NeuN+ neurons were decreased with longer ischemic time. The F-J B histofluorescence staining showed a clear neuronal damage in layers III and VI, and the number of F-J B+ neurons was increased with time of ischemia-reperfusion: in the 15 min ischemia-group, the number of F-J B+ neurons was much higher in layer III than in layer VI. In addition, we immunohistochemically examined gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti-ionized calcium-binding adapter molecule 1 (Iba-1) antibody, respectively. In the 5 min ischemia-group, GFAP+ astrocytes and Iba-1+ microglia were distinctively increased in number, and their immunoreactivity was stronger than that in the sham-group. In the 10 and 15 min ischemia-groups, numbers of GFAP+ and Iba-1+ glial cells were much more increased with time of ischemia-reperfusion; in the 15 min ischemia-group, their distribution patterns of GFAP+ and Iba-1+ glial cells were similar to those in the 10 min ischemia-group. Our fining indicates that neuronal death/damage and gliosis of astrocytes and microglia were apparently increased with longer time of ischemia-reperfusion.
Collapse
|
32
|
Swardfager W, Winer DA, Herrmann N, Winer S, Lanctôt KL. Interleukin-17 in post-stroke neurodegeneration. Neurosci Biobehav Rev 2013; 37:436-47. [PMID: 23370232 DOI: 10.1016/j.neubiorev.2013.01.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/10/2012] [Accepted: 01/20/2013] [Indexed: 12/15/2022]
Abstract
Stroke is a leading cause of physical disability with neurodegenerative sequelae such as dementia and depression causing significant excess morbidity. Stroke severity can be exacerbated by apoptotic cell death in ischemic tissue, of which inflammatory activity is a key determinant. Studies have identified harmful and beneficial sets of T lymphocytes that infiltrate the brain post-stroke and their activation signals, suggesting that they might be targeted for therapeutic benefit. Animal models and human studies implicate interleukin(IL)-17 and its congeners (e.g. IL-23, IL-21) as mediators of tissue damage in the delayed phase of the inflammatory cascade and the involvement of T lymphocytes in propagating IL-17 release. In this review, we highlight the current understanding of IL-17 secreting cells, including sets of CD4(+) αβ and CD4(-) γδ T lymphocytes, as potentially important mediators of brain pathology post-stroke. Interactions between the IL-17 axis and innate pathways, positive feedback mechanisms that prolong or amplify IL-17, and IL-17 regulatory pathways may offer intervention targets to enhance recovery, prevent long-term decline, and improve quality of life.
Collapse
Affiliation(s)
- Walter Swardfager
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
33
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) was first identified as a survival factor for midbrain dopaminergic neurons, but additional studies provided evidences for a role as a trophic factor for other neurons of the central and peripheral nervous systems. GDNF regulates cellular activity through interaction with glycosyl-phosphatidylinositol-anchored cell surface receptors, GDNF family receptor-α1, which might signal through the transmembrane Ret tyrosine receptors or the neural cell adhesion molecule, to promote cell survival, neurite outgrowth, and synaptogenesis. The neuroprotective effect of exogenous GDNF has been shown in different experimental models of focal and global brain ischemia, by local administration of the trophic factor, using viral vectors carrying the GDNF gene and by transplantation of GDNF-expressing cells. These different strategies and the mechanisms contributing to neuroprotection by GDNF are discussed in this review. Importantly, neuroprotection by GDNF was observed even when administered after the ischemic injury.
Collapse
Affiliation(s)
- Emília P Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | | | | | | |
Collapse
|
34
|
Wasielewski B, Jensen A, Roth-Härer A, Dermietzel R, Meier C. Neuroglial activation and Cx43 expression are reduced upon transplantation of human umbilical cord blood cells after perinatal hypoxic-ischemic injury. Brain Res 2012; 1487:39-53. [PMID: 22796290 DOI: 10.1016/j.brainres.2012.05.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 05/31/2012] [Indexed: 12/15/2022]
Abstract
Glial cells play a crucial role in the pathomechanism of perinatal hypoxic-ischemic brain injury (HI) and are involved in the maintenance of a chronic state of inflammation that causes delayed neuronal damage. Activation of astrocytes is one factor prolonging brain damage and contributing to the formation of a glial scar that limits neuronal plasticity. In this context, the major astrocytic gap junction protein Connexin 43 (Cx43) has been ascribed various functions including regulation of astrocytic migration and proliferation. Here, we investigate glial responses like microglia/macrophages and astrocytic activation in a rat model of neonatal HI and characterize changes of these parameters upon transplantation of human umbilical cord blood cells (hUCB). As an alleviation of motor function in lesioned rats has previously been described in transplanted animals, we analyze the putative correlation between motor function and glial activation over time. The lesion-induced impairment of motor function, assessed by forelimb use bias, muscle strength and distal spasticity, was alleviated upon transplantation of hUCB short and long term. HI induced an acute inflammatory reaction with activation of microglia/macrophages and reactive astrogliosis associated with perilesional upregulation of Cx43 that slowly declined during the chronic post-ischemic phase. hUCB transplantation accelerated the regression of inflammatory events, narrowed the perilesional astrocytic wall and led to a downregulation of the investigated astrocytic proteins. Thus, in the immature brain, hUCB may indirectly reduce secondary cell death upon hypoxia-ischemia and facilitate post-ischemic plasticity through the attenuation of reactive gliosis. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Bianca Wasielewski
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, D-44801 Bochum, Germany
| | | | | | | | | |
Collapse
|
35
|
Ekerbiçer N, Inan S, Tarakç F, Barut T, Gürpınar T, Ozbek M. Effects of acute treatment with dexamethasone on hemodynamic and histopathological changes in rats. Biotech Histochem 2012; 87:385-96. [DOI: 10.3109/10520295.2012.672651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Srivastava K, Bath PMW, Bayraktutan U. Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke. Cell Mol Neurobiol 2012; 32:319-36. [PMID: 22198555 PMCID: PMC11498629 DOI: 10.1007/s10571-011-9777-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022]
Abstract
Impairment of endothelial nitric oxide synthase (eNOS) activity is implicated in the pathogenesis of endothelial dysfunction in many diseases including ischaemic stroke. The modulation of eNOS during and/or following ischaemic injury often represents a futile compensatory mechanism due to a significant decrease in nitric oxide (NO) bioavailability coupled with dramatic increases in the levels of reactive oxygen species that further neutralise NO. However, applications of a number of therapeutic agents alone or in combination have been shown to augment eNOS activity under a variety of pathological conditions by potentiating the expression and/or activity of Akt/eNOS/NO pathway components. The list of these therapeutic agents include NO donors, statins, angiotensin-converting enzyme inhibitors, calcium channel blockers, phosphodiesterase-3 inhibitors, aspirin, dipyridamole and ellagic acid. While most of these compounds exhibit anti-platelet properties and are able to up-regulate eNOS expression in endothelial cells and platelets, others suppress eNOS uncoupling and tetrahydrobiopterin (an eNOS stabiliser) oxidation. As the number of therapeutic molecules that modulate the expression and activity of eNOS increases, further detailed research is required to reveal their mode of action in preventing and/or reversing the endothelial dysfunction.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Division of Stroke, Clinical Sciences Building, Nottingham City Hospital Campus, The University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
37
|
Wang X, Mitra N, Cruz P, Deng L, Varki N, Angata T, Green ED, Mullikin J, Hayakawa T, Varki A. Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol 2012; 29:2073-86. [PMID: 22383531 DOI: 10.1093/molbev/mss077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported a human-specific gene conversion of SIGLEC11 by an adjacent paralogous pseudogene (SIGLEC16P), generating a uniquely human form of the Siglec-11 protein, which is expressed in the human brain. Here, we show that Siglec-11 is expressed exclusively in microglia in all human brains studied-a finding of potential relevance to brain evolution, as microglia modulate neuronal survival, and Siglec-11 recruits SHP-1, a tyrosine phosphatase that modulates microglial biology. Following the recent finding of a functional SIGLEC16 allele in human populations, further analysis of the human SIGLEC11 and SIGLEC16/P sequences revealed an unusual series of gene conversion events between two loci. Two tandem and likely simultaneous gene conversions occurred from SIGLEC16P to SIGLEC11 with a potentially deleterious intervening short segment happening to be excluded. One of the conversion events also changed the 5' untranslated sequence, altering predicted transcription factor binding sites. Both of the gene conversions have been dated to ~1-1.2 Ma, after the emergence of the genus Homo, but prior to the emergence of the common ancestor of Denisovans and modern humans about 800,000 years ago, thus suggesting involvement in later stages of hominin brain evolution. In keeping with this, recombinant soluble Siglec-11 binds ligands in the human brain. We also address a second-round more recent gene conversion from SIGLEC11 to SIGLEC16, with the latter showing an allele frequency of ~0.1-0.3 in a worldwide population study. Initial pseudogenization of SIGLEC16 was estimated to occur at least 3 Ma, which thus preceded the gene conversion of SIGLEC11 by SIGLEC16P. As gene conversion usually disrupts the converted gene, the fact that ORFs of hSIGLEC11 and hSIGLEC16 have been maintained after an unusual series of very complex gene conversion events suggests that these events may have been subject to hominin-specific selection forces.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stress and social isolation increase vulnerability to stroke. Exp Neurol 2012; 233:33-9. [DOI: 10.1016/j.expneurol.2011.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/24/2011] [Indexed: 01/18/2023]
|
39
|
Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 2011; 8:174. [PMID: 22152337 PMCID: PMC3251548 DOI: 10.1186/1742-2094-8-174] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/10/2011] [Indexed: 01/18/2023] Open
Abstract
Background Emerging evidence indicates that, similarly to what happens for peripheral macrophages, microglia can express different phenotypes depending on microenvironmental signals. In spite of the large literature on inflammation after ischemia, information on M/M phenotype marker expression, their colocalization and temporal evolution in the injured brain is lacking. The present study investigates the presence of microglia/macrophage phenotype markers, their temporal expression, whether they are concomitantly expressed by the same subpopulation, or they are expressed at distinct phases or locations in relation to the ischemic lesion. Methods Volume of ischemic lesion, neuronal counts and TUNEL staining were assessed in C57Bl/6 mice at 6-12-24-48 h and 7d after permanent occlusion of the middle cerebral artery. At the same time points, the expression, distribution in the lesioned area, association with a definite morphology and coexpression of the microglia/macrophage markers CD11b, CD45, CD68, Ym1, CD206 were assessed by immunostaining and confocal microscopy. Results The results show that: 1) the ischemic lesion induces the expression of selected microglia/macrophage markers that develop over time, each with a specific pattern; 2) each marker has a given localization in the lesioned area with no apparent changes during time, with the exception of CD68 that is confined in the border zone of the lesion at early times but it greatly increases and invades the ischemic core at 7d; 3) while CD68 is expressed in both ramified and globular CD11b cells, Ym1 and CD206 are exclusively expressed by globular CD11b cells. Conclusions These data show that the ischemic lesion is accompanied by activation of specific microglia/macrophage phenotype that presents distinctive spatial and temporal features. These different states of microglia/macrophages reflect the complexity of these cells and their ability to differentiate towards a multitude of phenotypes depending on the surrounding micro-environmental signals that can change over time. The data presented in this study provide a basis for understanding this complex response and for developing strategies resulting in promotion of a protective inflammatory phenotype.
Collapse
Affiliation(s)
- Carlo Perego
- Laboratory of Inflammation and Nervous System Diseases, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | |
Collapse
|
40
|
David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011; 12:388-99. [PMID: 21673720 DOI: 10.1038/nrn3053] [Citation(s) in RCA: 1055] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages from the peripheral circulation and those derived from resident microglia are among the main effector cells of the inflammatory response that follows spinal cord trauma. There has been considerable debate in the field as to whether the inflammatory response is good or bad for tissue protection and repair. Recent studies on macrophage polarization in non-neural tissues have shed much light on their changing functional states. In the context of this literature, we discuss the activation of macrophages and microglia following spinal cord injury, and their effects on repair. Harnessing their anti-inflammatory properties could pave the way for new therapeutic strategies for spinal cord trauma.
Collapse
Affiliation(s)
- Samuel David
- The Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, Quebec, Canada, H3G 1A4.
| | | |
Collapse
|
41
|
Du F, Wu XM, Gong Q, He X, Ke Y. Hyperthermia conditioned astrocyte-cultured medium protects neurons from ischemic injury by the up-regulation of HIF-1 alpha and the increased anti-apoptotic ability. Eur J Pharmacol 2011; 666:19-25. [PMID: 21620821 DOI: 10.1016/j.ejphar.2011.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 01/08/2023]
Abstract
It has been demonstrated that conditioned medium from astrocytes challenged by in vitro ischemia (oxygen-glucose deprivation, OGD) improved neuronal survival. In addition, preconditioning stimuli can be cross-tolerant, safeguarding against other types of injury. We therefore hypothesized that hyperthermia-conditioned astrocyte-cultured medium (ACM) might also have protective effect on neurons against ischemic injury. The cultured-media, named 38ACM and 40ACM respectively, were collected after astrocytes had been incubated at 38 °C or 40 °C for 6h, followed by incubation at 37 °C for 24h. It was found that ischemia for 6h induced a significant reduction in the number of neuronal cells and cell-viability, and an increase in lactate dehydrogenase (LDH) release and the percentage of apoptotic nuclei in neurons. Pre-treatment with 38ACM or 40ACM for 24h significantly diminished ischemia injury, enhanced cell viability, reduced LDH release and reversed apoptosis. Western blot analysis showed that treatment with 38ACM or 40ACM for 24h led to a significant increase in hypoxia-inducible factor-1 (HIF-1) alpha expression. The EMSA demonstrated that the ACM increased the binding activity of HIF-1 in ischemic neurons. The data implied that hyperthermia-conditioned ACM protects neurons from ischemic injury by up-regulating HIF-1 alpha, and the increased binding activity of HIF-1 and anti-apoptotic ability.
Collapse
Affiliation(s)
- Fang Du
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
42
|
Colloquium paper: uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8939-46. [PMID: 20445087 DOI: 10.1073/pnas.0914634107] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Darwinian evolution of humans from our common ancestors with nonhuman primates involved many gene-environment interactions at the population level, and the resulting human-specific genetic changes must contribute to the "Human Condition." Recent data indicate that the biology of sialic acids (which directly involves less than 60 genes) shows more than 10 uniquely human genetic changes in comparison with our closest evolutionary relatives. Known outcomes are tissue-specific changes in abundant cell-surface glycans, changes in specificity and/or expression of multiple proteins that recognize these glycans, and novel pathogen regimes. Specific events include Alu-mediated inactivation of the CMAH gene, resulting in loss of synthesis of the Sia N-glycolylneuraminic acid (Neu5Gc) and increase in expression of the precursor N-acetylneuraminic acid (Neu5Ac); increased expression of alpha2-6-linked Sias (likely because of changed expression of ST6GALI); and multiple changes in SIGLEC genes encoding Sia-recognizing Ig-like lectins (Siglecs). The last includes binding specificity changes (in Siglecs -5, -7, -9, -11, and -12); expression pattern changes (in Siglecs -1, -5, -6, and -11); gene conversion (SIGLEC11); and deletion or pseudogenization (SIGLEC13, SIGLEC14, and SIGLEC16). A nongenetic outcome of the CMAH mutation is human metabolic incorporation of foreign dietary Neu5Gc, in the face of circulating anti-Neu5Gc antibodies, generating a novel "xeno-auto-antigen" situation. Taken together, these data suggest that both the genes associated with Sia biology and the related impacts of the environment comprise a relative "hot spot" of genetic and physiological changes in human evolution, with implications for uniquely human features both in health and disease.
Collapse
|
43
|
Lee CH, Moon SM, Yoo KY, Choi JH, Park OK, Hwang IK, Sohn Y, Moon JB, Cho JH, Won MH. Long-term changes in neuronal degeneration and microglial activation in the hippocampal CA1 region after experimental transient cerebral ischemic damage. Brain Res 2010; 1342:138-49. [PMID: 20423705 DOI: 10.1016/j.brainres.2010.04.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 01/01/2023]
Abstract
Delayed neuronal death following transient cerebral ischemia is mixed with apoptosis and necrosis, and the activation of microglia are activated after the ischemic insult. In the present study, we examined the long-term changes in neuronal degeneration and microglial activation in the gerbil hippocampal CA1 region after 5min of transient cerebral ischemia using specific markers for neuronal damage and microliosis. Transient ischemia-induced neuronal death was shown in CA1 pyramidal cells 4days after ischemia/reperfusion (I/R). However, neuronal degeneration of the pyramidal cells were observed up to 45days in the CA1 region after I/R. Microglial activation was also observed in the CA1 region after I/R. Isolectin B4- (IB4) immunoreactive ((+)) microglia appeared in the CA1 region 4days after I/R. On the other hand, ionized calcium-binding adapter molecule 1 (Iba-1)(+) microglia was markedly increased after I/R, and peaked at 15days after I/R. Thereafter, Iba-1 immunoreactivity was decreased with time-dependant manner in the ischemic CA1 region. These results indicate that neuronal degeneration of CA1 pyramidal cells may last about 45days in the CA1 region after ischemic damage, and microglial activation may be diverse according to their function, such as phagocytosis, after I/R.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Plasma interleukin-1beta concentration is associated with stroke in sickle cell disease. Cytokine 2009; 49:39-44. [PMID: 19900820 DOI: 10.1016/j.cyto.2009.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 05/11/2009] [Accepted: 10/06/2009] [Indexed: 12/15/2022]
Abstract
The pathogenesis of sickle cell disease (HbSS), which has numerous complications including stroke, involves inflammation resulting in alteration of plasma inflammatory protein concentration. We investigated HbSS children with abnormal cerebral blood flow detected by trans-cranial Doppler ultrasound (TCD) who participated in the multi-center stroke prevention (STOP) study, to determine if plasma inflammatory protein concentration is associated with the outcome of stroke. Thirty-nine plasma samples from HbSS participants with elevated TCD who had no stroke, HbSS-NS (n=13) or had stroke, HbSS-S (n=13), HbSS steady-state controls (n=7) and controls with normal hemoglobin, HbAA (n=6), were analyzed simultaneously for 27 circulating inflammatory proteins. Logistic regression and receiver operating characteristics curve analysis of stroke on plasma inflammatory mediator concentration, adjusted for age and gender, demonstrated that interleukin-1beta (IL-1beta) was protective against stroke development (HbSS-NS=19, 17-23, HbSS-S=17, 16-19 pg/mL, median and 25th-75th percentile; odds ratio=0.59, C.I.=0.36-0.96) and was a good predictor of stroke (area under curve=0.852). This result demonstrates a strong association of systemic inflammation with stroke development in HbSS via moderately increased plasma IL-1beta concentration, which is furthermore associated with a decreased likelihood of stroke in HbSS.
Collapse
|
45
|
Montero M, González B, Zimmer J. Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Res 2009; 1291:140-52. [DOI: 10.1016/j.brainres.2009.06.097] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
|
46
|
Molecules involve in the self-protection of neurons against glucose–oxygen–serum deprivation (GOSD)-induced cell damage. Brain Res Bull 2009; 79:169-76. [DOI: 10.1016/j.brainresbull.2009.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/13/2009] [Accepted: 02/13/2009] [Indexed: 11/18/2022]
|
47
|
Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2008; 85:352-70. [DOI: 10.1189/jlb.0608385] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
48
|
Li JJ, Lu J, Kaur C, Sivakumar V, Wu CY, Ling EA. Effects of hypoxia on expression of transforming growth factor-β1 and its receptors I and II in the amoeboid microglial cells and murine BV-2 cells. Neuroscience 2008; 156:662-72. [DOI: 10.1016/j.neuroscience.2008.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/24/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
|
49
|
Chu LF, Wang WT, Ghanta VK, Lin CH, Chiang YY, Hsueh CM. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway. Brain Res 2008; 1239:24-35. [PMID: 18804095 DOI: 10.1016/j.brainres.2008.08.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/08/2008] [Accepted: 08/24/2008] [Indexed: 02/03/2023]
Abstract
Conditioned medium (CM) collected from cultures of ischemic microglia, astrocytes, and neurons were protective to astrocytes under the in vitro ischemic condition (deprivation of oxygen, glucose and serum). Molecular and signaling pathway(s) responsible for the CMs protective activity were investigated. Results showed that CMs from the ischemic microglia (MCM), astrocytes (ACM) and neurons (NCM) contained glial cell line-derived neurotrophic factor (GDNF), which protects astrocytes against the in vitro ischemia. Expression of extra cellular signal-regulated kinase (ERK1/2) and nuclear factor-kappa B (NF-kB) by GDNF led to the inhibition of apoptosis of the ischemic astrocytes in a caspase 3-independent manner. However, CMs- and GDNF-mediated protection of the ischemic astrocytes was protein kinase B (Akt) independent. These results provided mechanistic data regarding how GDNF- and CMs-mediated protection of the ischemic astrocytes is taking place. These observations provide information for the use of GDNF and GDNF containing CMs in the control of cerebral ischemia.
Collapse
Affiliation(s)
- Lan-Feng Chu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Varki A. Multiple changes in sialic acid biology during human evolution. Glycoconj J 2008; 26:231-45. [PMID: 18777136 PMCID: PMC7087641 DOI: 10.1007/s10719-008-9183-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 08/09/2008] [Accepted: 08/18/2008] [Indexed: 12/13/2022]
Abstract
Humans are genetically very similar to “great apes”, (chimpanzees, bonobos, gorillas and orangutans), our closest evolutionary relatives. We have discovered multiple genetic and biochemical differences between humans and these other hominids, in relation to sialic acids and in Siglecs (Sia-recognizing Ig superfamily lectins). An inactivating mutation in the CMAH gene eliminated human expression of N-glycolylneuraminic acid (Neu5Gc) a major sialic acid in “great apes”. Additional human-specific changes have been found, affecting at least 10 of the <60 genes known to be involved in the biology of sialic acids. There are potential implications for unique features of humans, as well as for human susceptibility or resistance to disease. Additionally, metabolic incorporation of Neu5Gc from animal-derived materials occurs into biotherapeutic molecules and cellular preparations - and into human tissues from dietary sources, particularly red meat and milk products. As humans also have varying and sometime high levels of circulating anti-Neu5Gc antibodies, there are implications for biotechnology products, and for some human diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ajit Varki
- Center for Academic Research and Training in Anthropogeny, Department of Medicine, University of California, San Diego, 9500 Gilman Dr MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|