1
|
Yang Z, Yu D, Gao F, Zhou D, Wu Y, Yang X, Chen J, Yang J, Shen M, Zhang Y, Wei L, Yan C. The Histone Lysine Demethylase KDM7A Contributes to Reward Memory via Fscn1-Induced Synaptic Plasticity in the Medial Prefrontal Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405352. [PMID: 39836528 PMCID: PMC11905110 DOI: 10.1002/advs.202405352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Lysine demethylase 7A (KDM7A) catalyzes the removal of dimethylation from histone H3 lysine 9 and lysine 27, both of which are associated with transcription repression. Previous study indicates that Kdm7a mRNA in the medial prefrontal cortex (mPFC) increases after drug exposure, yet its role in drug-related behaviors is largely unknown. In a morphine-conditioned place preference (CPP) paradigm, these findings reveal a specific increase of Kdm7a expression in the mPFC 7 days after drug withdrawal. Subsequently, these results demonstrate that knockdown of Kdm7a in the mPFC do not affect the acquisition of morphine-induced CPP, but it attenuate memory consolidation. To further explore Kdm7a-mediated transcriptomic changes, this work employs Nanopore direct RNA sequencing. Transcriptome profiling unveils several gene expression alterations impacted by KDM7A, which are enriched in relevant neural function categories. Notably, this work identifies and validates fascin actin-bundling protein 1 (Fscn1) as a downstream molecular target. Knockdown of Fscn1 has a similar impact on CPP to Kdm7a, along with corresponding decrease of dendritic spine density and neuronal activity in the mPFC. Additionally, silencing Kdm7a decreases enrichment of H3K9me2 and H3K27me2 at the Fscn1 promoter region, suggesting that KDM7A may act as a crucial regulator of transcriptional responses to morphine-related reward memory via Fscn1.
Collapse
Affiliation(s)
- Zhuo‐jin Yang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Dong‐yu Yu
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Fei‐fei Gao
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Dan‐ya Zhou
- Xinxiang Key Laboratory of Forensic ToxicologySchool of Forensic MedicineXinxiang Medical UniversityXinxiangHenan453003China
| | - Ya‐nan Wu
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Xi‐xi Yang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Jie Chen
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Jing‐si Yang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Meng‐qing Shen
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Yu‐xiang Zhang
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic ToxicologySchool of Forensic MedicineXinxiang Medical UniversityXinxiangHenan453003China
| | - Chun‐xia Yan
- College of Forensic MedicineKey Laboratory of National Health Commission for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| |
Collapse
|
2
|
Li CH, Chan MH, Liang SM, Chang YC, Hsiao M. Fascin-1: Updated biological functions and therapeutic implications in cancer biology. BBA ADVANCES 2022; 2:100052. [PMID: 37082587 PMCID: PMC10074911 DOI: 10.1016/j.bbadva.2022.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Filopodia are cellular protrusions that respond to a variety of stimuli. Filopodia are formed when actin is bound to the protein Fascin, which may play a crucial role in cellular interactions and motility during cancer metastasis. Significantly, the noncanonical features of Fascin-1 are gradually being clarified, including the related molecular network contributing to metabolic reprogramming, chemotherapy resistance, stemness ac-tivity, and tumor microenvironment events. However, the relationship between biological characteristics and pathological features to identify effective therapeutic strategies needs to be studied further. The pur-pose of this review article is to provide a broad overview of the latest molecular networks and multiomics research regarding fascins and cancer. It also highlights their direct and indirect effects on available cancer treatments. With this multidisciplinary approach, researchers and clinicians can gain the most relevant in-formation on the function of fascins in cancer progression, which may facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Corresponding authors.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding authors.
| |
Collapse
|
3
|
Gupta I, Vranic S, Al-Thawadi H, Al Moustafa AE. Fascin in Gynecological Cancers: An Update of the Literature. Cancers (Basel) 2021; 13:cancers13225760. [PMID: 34830909 PMCID: PMC8616296 DOI: 10.3390/cancers13225760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Fascin, an actin-binding protein, is upregulated in different types of human cancers. It is reportedly responsible for increasing the invasive and metastatic ability of cancer cells by reducing cell–cell adhesions. This review provides a brief overview of fascin and its interactions with other genes and oncoviruses to induce the onset and progression of cancer. Abstract Fascin is an actin-binding protein that is encoded by the FSCN1 gene (located on chromosome 7). It triggers membrane projections and stimulates cell motility in cancer cells. Fascin overexpression has been described in different types of human cancers in which its expression correlated with tumor growth, migration, invasion, and metastasis. Moreover, overexpression of fascin was found in oncovirus-infected cells, such as human papillomaviruses (HPVs) and Epstein-Barr virus (EBV), disrupting the cell–cell adhesion and enhancing cancer progression. Based on these findings, several studies reported fascin as a potential biomarker and a therapeutic target in various cancers. This review provides a brief overview of the FSCN1 role in various cancers with emphasis on gynecological malignancies. We also discuss fascin interactions with other genes and oncoviruses through which it might induce cancer development and progression.
Collapse
Affiliation(s)
- Ishita Gupta
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Semir Vranic
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Hamda Al-Thawadi
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Ala-Eddin Al Moustafa
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical Research Centre, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7817
| |
Collapse
|
4
|
Liu H, Zhang Y, Li L, Cao J, Guo Y, Wu Y, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics 2021; 20:240-264. [PMID: 33614909 PMCID: PMC7873579 DOI: 10.1016/j.omto.2020.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1) is a highly conserved actin-bundling protein that cross links F-actin microfilaments into tight, parallel bundles. Elevated FSCN1 levels have been reported in many types of human cancers and have been correlated with aggressive clinical progression, poor prognosis, and survival outcomes. The overexpression of FSCN1 in cancer cells has been associated with tumor growth, migration, invasion, and metastasis. Currently, FSCN1 is recognized as a candidate biomarker for multiple cancer types and as a potential therapeutic target. The aim of this study was to provide a brief overview of the FSCN1 gene and protein structure and elucidate on its actin-bundling activity and physiological functions. The main focus was on the role of FSCN1 and its upregulatory mechanisms and significance in cancer cells. Up-to-date studies on FSCN1 as a novel biomarker and therapeutic target for human cancers are reviewed. It is shown that FSCN1 is an unusual biomarker and a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
5
|
Bhushan G, Lim L, Bird I, Chothe SK, Nissly RH, Kuchipudi SV. Iminosugars With Endoplasmic Reticulum α-Glucosidase Inhibitor Activity Inhibit ZIKV Replication and Reverse Cytopathogenicity in vitro. Front Microbiol 2020; 11:531. [PMID: 32373079 PMCID: PMC7179685 DOI: 10.3389/fmicb.2020.00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/12/2020] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV), a vector-borne virus of the family Flaviviridae, continues to spread and remains a significant global public health threat. Currently, there are no approved vaccines or antivirals against ZIKV. We investigated the anti-ZIKV ability of three iminosugars with endoplasmic reticulum α-glucosidase inhibitor (ER-AGI) activity, namely deoxynojirimycin (DNJ), castanospermine, and celgosivir. None of the three iminosugars showed any significant cytotoxicity in Vero or human microglia CHME3 cells when applied for 72 h at concentrations up to 100 μM. Iminosugar treatment of Vero or CHME3 cells prior to ZIKV infection resulted in significant inhibition of ZIKV replication over 48 h. Reduction in ZIKV replication in iminosugar-treated cells was not associated with any significant change in the expression levels of key antiviral genes. Following infection with three different strains of ZIKV, iminosugar-treated Vero or CHME3 cells showed no cell death, whereas vehicle-treated control cells exhibited 50–60% cell death at 72 h post-infection (hpi). While there was no significant difference in apoptosis between iminosugar-treated and control cells, iminosugar-treated cells exhibited a substantial reduction of necrosis at 72 hpi following ZIKV infection. In summary, iminosugars with ER-AGI activity inhibit ZIKV replication and significantly reduce necrosis without altering the antiviral gene expression and apoptosis of infected human cells. The results of this study strongly suggest that iminosugars are promising anti-ZIKV antiviral agents and such warrant further in vivo studies.
Collapse
Affiliation(s)
- Gitanjali Bhushan
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Levina Lim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ian Bird
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Mahdiannasser M, Haghpanah V, Damavandi E, Kabuli M, Tavangar SM, Larijani B, Ghadami M. Investigation of promoter methylation of FSCN1 gene and FSCN1 protein expression in differentiated thyroid carcinomas. Mol Biol Rep 2020; 47:2161-2169. [PMID: 32072403 DOI: 10.1007/s11033-020-05315-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023]
Abstract
FSCN1 gene encodes an actin-bundling protein, FSCN1, which is involved in formation of actin-based structures that contribute to cell migration. High levels of FSCN1 expression is observed in cells with extended membranes and protrusions. Moreover, up-regulation of FSCN1 has been reported in several epithelial carcinomas. Therefore, FSCN1 is thought to play a role in cell movement and invasion. However, the mechanism behind FSCN1 up-regulation is not known. We investigated the expression of FSCN1 using immunohistochemistry. Methylation-specific PCR was adopted to analyze the methylation status of FSCN1 promoter as a potential regulatory mechanism in FSCN1 expression. The samples included papillary thyroid carcinoma, follicular thyroid carcinoma and goiter samples (controls). Methylation of FSCN1 promoter was observed in 50% of follicular, 48.6% of papillary and 60% of controls. The promoter was unmethylated in 16.7% of follicular samples, 5.7% of papillary samples and 26.7% of controls. In the remaining 33.3% of follicular and 45.7% of papillary samples as well as 13.3% of controls, both methylated and unmethylated alleles were amplified, a condition referred to as semi-methylation. The results showed that FSCN1 promoter was significantly hypomethylated in papillary cases while the methylation status was not significantly altered in follicular cases. On the other hand, FSCN1 was expressed in only nine papillary samples. Regarding protein expression and methylation status, we suggest that hypomethylation of FSCN1 promoter in papillary thyroid carcinoma does not lead to overexpression of FSCN1 and that there might be other regulatory mechanisms involved in FSCN1 up-regulation.
Collapse
Affiliation(s)
- Mojdeh Mahdiannasser
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Poursina St, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Poursina St, District 6, Tehran, Tehran Province, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elia Damavandi
- Specialized Medical Genetic Center (SMGC) of ACECR, 4th floor, No 65, Aboureihan St, Enghelab Ave., Tehran, Iran.,Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Majid Kabuli
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Poursina St, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Jalal Al Ahmad Junction, Karegar Shomali St, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Poursina St, District 6, Tehran, Tehran Province, Iran
| | - Mohsen Ghadami
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Poursina St, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Poursina St, District 6, Tehran, Tehran Province, Iran. .,Cardiac Primary Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Qin L, Liu X, Liu S, Liu Y, Yang Y, Yang H, Chen Y, Chen L. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling. PLoS One 2017; 12:e0172214. [PMID: 28222113 PMCID: PMC5319751 DOI: 10.1371/journal.pone.0172214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Cortical dysplasia accounts for at least 14% of epilepsy cases, and is mostly seen in children. However, the understanding of molecular mechanisms and pathogenesis underlying cortical dysplasia is limited. The aim of this cross-sectional study is to identify potential key molecules in the mechanisms of cortical dysplasia by screening the proteins expressed in brain tissues of childhood cortical dysplasia patients with epilepsy using isobaric tags for relative and absolute quantitation-based tandem mass spectrometry compared to controls, and several differentially expressed proteins that are not reported to be associated with cortical dysplasia previously were selected for validation using real-time polymerase chain reaction, immunoblotting and immunohistochemistry. 153 out of 3340 proteins were identified differentially expressed between childhood cortical dysplasia patients and controls. And FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, and FABP3 were selected for validation and identified to be increased in childhood cortical dysplasia patients, while PRDX6 and PSAP were identified decreased. This is the first report on differentially expressed proteins in childhood cortical dysplasia. We identified differential expression of FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, FABP3, PRDX6 and PSAP in childhood cortical dysplasia patients, these proteins are involved in various processes and have various function. These results may provide new directions or targets for the research of childhood cortical dysplasia, and may be helpful in revealing molecular mechanisms and pathogenesis and/or pathophysiology of childhood cortical dysplasia if further investigated.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shiyong Liu
- Department of Neurosurgery, The Xinqiao Hospital of Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yixuan Yang
- Department of Infectious Disease, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hui Yang
- Department of Neurosurgery, The Xinqiao Hospital of Third Military Medical University, Chongqing, People’s Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
8
|
Ma Y, Machesky LM. Fascin1 in carcinomas: Its regulation and prognostic value. Int J Cancer 2015; 137:2534-44. [PMID: 25302416 DOI: 10.1002/ijc.29260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/01/2014] [Indexed: 01/06/2023]
Abstract
Previous cell biological studies demonstrate that the actin bundling protein fascin1 regulates cell motility, migration and invasion. Human studies demonstrate that fascin1 is upregulated in many epithelial cancers. This review gives a brief overview of the role of fascin1 in cell migration and invasion, but focuses mainly on the regulation and clinical relevance of fascin1 in epithelial cancers. Here, we propose fascin1 as a potent prognostic biomarker for breast, colorectal, esophageal cancers and head and neck squamous cell carcinomas. Fascin1 may also be an attractive drug target against these carcinomas in the future, but more studies are needed.
Collapse
Affiliation(s)
- Yafeng Ma
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW2170, New South Wales, Australia
| | - Laura M Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, Scotland, United Kingdom
| |
Collapse
|
9
|
Osanai M, Lee GH. The retinoic acid-metabolizing enzyme CYP26A1 upregulates fascin and promotes the malignant behavior of breast carcinoma cells. Oncol Rep 2015; 34:850-8. [PMID: 26058854 DOI: 10.3892/or.2015.4042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
The retinoic acid (RA)-metabolizing enzyme CYP26A1 has been shown to efficiently enhance the oncogenic potential of breast cancer, suggesting a potential oncogenic function. We previously demonstrated that CYP26A1 confers unique cell survival properties by modulating the expression of a variety of genes and identified a number of genes that drive the cells into the oncogenic state. Accumulating evidence suggested that fascin is overexpressed in various types of cancer, primarily leading to increased cell motility. Therefore, in the present study, we examined fascin, an actin-bundling protein, using immunohistochemical and SA-β-gal staining as well as TUNEL and colony forming assays. The results of the present study showed that the expression levels of fascin increased significantly in response to CYP26A1 overexpression and, conversely, treatment with all-trans RA downregulated the expression of fascin. In addition, primary breast carcinoma samples, particularly hormone receptor-negative carcinomas and CYP26A1-overexpressing cancers, expressed elevated levels of fascin. Notably, fascin contributed to the ability of breast carcinoma cells to escape premature senescence and exhibit enhanced cell apoptotic resistance, promoting anchorage-independent growth properties. Fascin also promoted cell motility and the invasiveness of CYP26A1-expressing breast carcinoma cells. These data suggest that fascin expression is modulated by the intracellular RA status regulated by the expression of CYP26A1 and plays a significant role in the malignant behavior of CYP26A1-expressing breast carcinoma cells. CYP26A1 exerts oncogenic functions during breast carcinogenesis. Therefore, CYP26A1-mediated oncogenic characteristics may be partially responsible for the elevated expression of fascin.
Collapse
Affiliation(s)
- Makoto Osanai
- Department of Pathology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Gang-Hong Lee
- Department of Pathology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
10
|
Case of 7p22.1 Microduplication Detected by Whole Genome Microarray (REVEAL) in Workup of Child Diagnosed with Autism. Case Rep Genet 2015; 2015:212436. [PMID: 25893121 PMCID: PMC4393924 DOI: 10.1155/2015/212436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/01/2015] [Accepted: 03/06/2015] [Indexed: 01/03/2023] Open
Abstract
Introduction. More than 60 cases of 7p22 duplications and deletions have been reported with over 16 of them occurring without concomitant chromosomal abnormalities. Patient and Methods. We report a 29-month-old male diagnosed with autism. Whole genome chromosome SNP microarray (REVEAL) demonstrated a 1.3 Mb interstitial duplication of 7p22.1 ->p22.1 arr 7p22.1 (5,436,367-6,762,394), the second smallest interstitial 7p duplication reported to date. This interval included 14 OMIM annotated genes (FBXL18, ACTB, FSCN1, RNF216, OCM, EIF2AK1, AIMP2, PMS2, CYTH3, RAC1, DAGLB, KDELR2, GRID2IP, and ZNF12). Results. Our patient presented features similar to previously reported cases with 7p22 duplication, including brachycephaly, prominent ears, cryptorchidism, speech delay, poor eye contact, and outburst of aggressive behavior with autism-like features. Among the genes located in the duplicated segment, ACTB gene has been proposed as a candidate gene for the alteration of craniofacial development. Overexpression of RNF216L has been linked to autism. FSCN1 may play a role in neurodevelopmental disease. Conclusion. Characterization of a possible 7p22.1 Duplication Syndrome has yet to be made. Recognition of the clinical spectrum in patients with a smaller duplication of 7p should prove valuable for determining the minimal critical region, helping delineate a better prediction of outcome and genetic counseling.
Collapse
|
11
|
Kraft R, Kahn A, Medina-Franco JL, Orlowski ML, Baynes C, López-Vallejo F, Barnard K, Maggiora GM, Restifo LL. A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions. Dis Model Mech 2012; 6:217-35. [PMID: 22917928 PMCID: PMC3529353 DOI: 10.1242/dmm.008243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The actin-bundling protein fascin is a key mediator of tumor invasion and metastasis and its activity drives filopodia formation, cell-shape changes and cell migration. Small-molecule inhibitors of fascin block tumor metastasis in animal models. Conversely, fascin deficiency might underlie the pathogenesis of some developmental brain disorders. To identify fascin-pathway modulators we devised a cell-based assay for fascin function and used it in a bidirectional drug screen. The screen utilized cultured fascin-deficient mutant Drosophila neurons, whose neurite arbors manifest the 'filagree' phenotype. Taking a repurposing approach, we screened a library of 1040 known compounds, many of them FDA-approved drugs, for filagree modifiers. Based on scaffold distribution, molecular-fingerprint similarities, and chemical-space distribution, this library has high structural diversity, supporting its utility as a screening tool. We identified 34 fascin-pathway blockers (with potential anti-metastasis activity) and 48 fascin-pathway enhancers (with potential cognitive-enhancer activity). The structural diversity of the active compounds suggests multiple molecular targets. Comparisons of active and inactive compounds provided preliminary structure-activity relationship information. The screen also revealed diverse neurotoxic effects of other drugs, notably the 'beads-on-a-string' defect, which is induced solely by statins. Statin-induced neurotoxicity is enhanced by fascin deficiency. In summary, we provide evidence that primary neuron culture using a genetic model organism can be valuable for early-stage drug discovery and developmental neurotoxicity testing. Furthermore, we propose that, given an appropriate assay for target-pathway function, bidirectional screening for brain-development disorders and invasive cancers represents an efficient, multipurpose strategy for drug discovery.
Collapse
Affiliation(s)
- Robert Kraft
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pavlica S, Milosevic J, Keller M, Schulze M, Peinemann F, Piscioneri A, De Bartolo L, Darsow K, Bartel S, Lange HA, Bader A. Erythropoietin enhances cell proliferation and survival of human fetal neuronal progenitors in normoxia. Brain Res 2012; 1452:18-28. [DOI: 10.1016/j.brainres.2012.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/10/2012] [Accepted: 02/17/2012] [Indexed: 12/11/2022]
|
13
|
Proteomic characterization in the hippocampus of prenatally stressed rats. J Proteomics 2012; 75:1764-70. [DOI: 10.1016/j.jprot.2011.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 12/12/2022]
|
14
|
Hashimoto Y, Kim DJ, Adams JC. The roles of fascins in health and disease. J Pathol 2011; 224:289-300. [DOI: 10.1002/path.2894] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 02/06/2023]
|
15
|
Lu XF, Li EM, Du ZP, Xie JJ, Guo ZY, Gao SY, Liao LD, Shen ZY, Xie D, Xu LY. Specificity protein 1 regulates fascin expression in esophageal squamous cell carcinoma as the result of the epidermal growth factor/extracellular signal-regulated kinase signaling pathway activation. Cell Mol Life Sci 2010; 67:3313-29. [PMID: 20502940 PMCID: PMC11115853 DOI: 10.1007/s00018-010-0382-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/10/2010] [Accepted: 04/21/2010] [Indexed: 02/05/2023]
Abstract
The overexpression of fascin in human carcinomas is associated with aggressive clinical phenotypes and poor prognosis. However, the molecular mechanism underlying the increased expression of fascin in cancer cells is largely unknown. Here, we identified a Sp1 binding element located at -70 to -60 nts of the FSCN1 promoter and validated that Sp1 specifically bound to this element in esophageal carcinoma cells. Fascin expression was enhanced by Sp1 overexpression and blocked by Sp1 RNAi knockdown. Specific inhibition of ERK1/2 decreased phosphorylation levels of Sp1, and thus suppressed the transcription of the FSCN1, resulting in the down-regulation of fascin. Stimulation with EGF could enhance fascin expression via activating the ERK1/2 pathway and increasing phosphorylation levels of Sp1. These data suggest that FSCN1 transcription may be subjected to the regulation of the EGF/EGFR signaling pathway and can be used as a viable biomarker to predict the efficacy of EGFR inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiao-Feng Lu
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Ze-Peng Du
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Zhang-Yan Guo
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Shu-Ying Gao
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Zhong-Ying Shen
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Dong Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| |
Collapse
|
16
|
Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol 2010; 42:1614-7. [PMID: 20601080 DOI: 10.1016/j.biocel.2010.06.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/02/2023]
Abstract
Fascin is a 55 kDa actin-bundling protein and is an important regulatory element in the maintenance and stability of parallel bundles of filamentous actin in a variety of cellular contexts. Regulation of fascin function is under the control of a number of different signalling pathways that act in concert to spatially regulate the actin-binding properties of this protein. The ability of fascin to bind and bundle actin plays a central role in the regulation of cell adhesion, migration and invasion. Fascin has received considerable attention recently as an emerging key prognostic marker of metastatic disease. Studies are now underway to better understand the precise regulation of this protein in the context of tumour progression and to investigate fascin as a potential therapeutic target for a number of forms of cancer.
Collapse
|
17
|
Tang ZL, Zhang XJ, Yang SL, Mu YL, Cui WT, Ao H, Li K. The chromosomal localization, expression pattern and polymorphism analysis of porcine FSCN1 gene differently expressed from LongSAGE library. Mol Biol Rep 2009; 37:2361-7. [PMID: 19688270 DOI: 10.1007/s11033-009-9742-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/05/2009] [Indexed: 01/11/2023]
Abstract
Fascin homologue 1 (FSCN1) has established roles in cell adhesion, motility, and cell-cell interactions. Our LongSAGE analysis suggested that FSCN1 was potentially differentially expressed in prenatal pig skeletal muscle. We have cloned the genomic DNA and mRNA sequence of FSCN1 gene and mapped it to SSC3p16-p17. The FSCN1 gene was differently expressed during prenatal skeletal muscle development and exhibited different expression pattern between Tongcheng and Landrace pigs. In Tongcheng pigs, FSCN1 expression was similar at 33 and 65 days post conception (dpc), and then sharply increased to a peak at 90 dpc. In Landrace pigs, however, expression increased between 33 and 65 dpc, peaked at 65 dpc, and was down-regulated thereafter. Significantly different expression levels between Tongcheng and Landrace were observed at 65 and 90 dpc. In postnatal pigs, it was strongly expressed only in the brain, but weakly in skeletal muscle and other tissues. We initially identified 32 SNPs through genomic DNA of FSCN1 gene. Association analysis suggested that the 6840(C/T) mutation was significantly associated with the age at market weight (AGE) (p = 0.0004), average day gain from birth to market (ADG1) (p = 0.0002), and average day gain at testing period (ADG2) (p < 0.0001). Our study suggested that FSCN1 gene plays an in prenatal skeletal muscle development and was a candidate gene for meat production trait.
Collapse
Affiliation(s)
- Zh L Tang
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459:113-7. [PMID: 19270680 PMCID: PMC2756583 DOI: 10.1038/nature07861] [Citation(s) in RCA: 552] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/02/2009] [Indexed: 12/31/2022]
Abstract
Acetylation within the globular core domain of histone H3 on lysine 56 (H3K56) has recently been shown to have a critical role in packaging DNA into chromatin following DNA replication and repair in budding yeast. However, the function or occurrence of this specific histone mark has not been studied in multicellular eukaryotes, mainly because the Rtt109 enzyme that is known to mediate acetylation of H3K56 (H3K56ac) is fungal-specific. Here we demonstrate that the histone acetyl transferase CBP (also known as Nejire) in flies and CBP and p300 (Ep300) in humans acetylate H3K56, whereas Drosophila Sir2 and human SIRT1 and SIRT2 deacetylate H3K56ac. The histone chaperones ASF1A in humans and Asf1 in Drosophila are required for acetylation of H3K56 in vivo, whereas the histone chaperone CAF-1 (chromatin assembly factor 1) in humans and Caf1 in Drosophila are required for the incorporation of histones bearing this mark into chromatin. We show that, in response to DNA damage, histones bearing acetylated K56 are assembled into chromatin in Drosophila and human cells, forming foci that colocalize with sites of DNA repair. Furthermore, acetylation of H3K56 is increased in multiple types of cancer, correlating with increased levels of ASF1A in these tumours. Our identification of multiple proteins regulating the levels of H3K56 acetylation in metazoans will allow future studies of this critical and unique histone modification that couples chromatin assembly to DNA synthesis, cell proliferation and cancer.
Collapse
Affiliation(s)
- Chandrima Das
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora Colorado 80045, USA
| | | | | | | |
Collapse
|
19
|
Fascin-1 promoter activity is regulated by CREB and the aryl hydrocarbon receptor in human carcinoma cells. PLoS One 2009; 4:e5130. [PMID: 19340314 PMCID: PMC2661145 DOI: 10.1371/journal.pone.0005130] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/12/2009] [Indexed: 01/26/2023] Open
Abstract
Background Fascin is an actin-bundling protein that is absent from most normal epithelia yet is upregulated in multiple forms of human carcinoma, where its expression correlates clinically with a poor prognosis. How fascin-1 transcription is activated in carcinoma cells is largely unknown, although the hypothesis of regulation by β-catenin signaling has received attention. The question is important because of the clinical significance of fascin expression in human carcinomas. Methodology/Principal Findings Through comparative genomics we made an unbiased analysis of the DNA sequence of the fascin-1 promoter region from six mammalian species. We identified two regions in which highly conserved motifs are concentrated. Luciferase promoter reporter assays for the human fascin-1 promoter were carried out in fascin-positive and -negative human breast and colon carcinoma cells, and in human dermal fibroblasts that are constitutively fascin-positive. In all fascin-positive cells, the region −219/+114 that contains multiple highly conserved motifs had strong transcriptional activity. The region −2953/−1582 appeared to contain repressor activity. By examining the effects of single or multiple point mutations of conserved motifs within the −219/+114 region on transcriptional reporter activity, we identified for the first time that the conserved CREB and AhR binding motifs are major determinants of transcriptional activity in human colon carcinoma cells. Chromatin immunoprecipitations for CREB, AhR or β-catenin from extracts from fascin-positive or -negative human colon carcinoma cells identified that CREB and AhR specifically associate with the −219/+114 region of the FSCN1 promoter in fascin-positive colon carcinoma cells. An association of β-catenin was not specific to fascin-positive cells. Conclusion Upregulation of fascin-1 in aggressive human carcinomas appears to have a multi-factorial basis. The data identify novel roles for CREB and AhR as major, specific regulators of FSCN-1 transcription in human carcinoma cells but do not support the hypothesis that β-catenin signaling has a central role.
Collapse
|
20
|
Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G, Laé M, Louvard D, Ben-Ze'ev A, Robine S. Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 2007; 67:6844-53. [PMID: 17638895 DOI: 10.1158/0008-5472.can-07-0929] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells become metastatic by acquiring a motile and invasive phenotype. This step requires remodeling of the actin cytoskeleton and the expression of exploratory, sensory organelles known as filopodia. Aberrant beta-catenin-TCF target gene activation plays a major role in colorectal cancer development. We identified fascin1, a key component of filopodia, as a target of beta-catenin-TCF signaling in colorectal cancer cells. Fascin1 mRNA and protein expression were increased in primary cancers in a stage-dependent manner. Fascin1 was exclusively localized at the invasive front of tumors also displaying nuclear beta-catenin. Forced expression of fascin1 in colorectal cancer cells increased their migration and invasion in cell cultures and caused cell dissemination and metastasis in vivo, whereas suppression of fascin1 expression by small interfering RNA reduces cell invasion. Although expression of fascin1 in primary tumors correlated with the presence of metastases, fascin1 was not expressed in metastases. Our studies show that fascin1 expression is tightly regulated during development of colon cancer metastases and is a novel target of beta-catenin-TCF signaling. We propose that transient up-regulation of fascin1 in colorectal cancer promotes the acquisition of migratory and invasive phenotypes that lead to metastasis. Moreover, the expression of fascin1 is down-regulated when tumor cells reach their metastatic destination where migration ceases and proliferation is enhanced. Although metastasis to vital organs is often the cause of mortality, only limited success has been attained in developing effective therapeutics against metastatic disease. We propose that genes involved in cell migration and invasion, such as fascin1, could serve as novel targets for metastasis prevention.
Collapse
Affiliation(s)
- Danijela Vignjevic
- UMR 144 Centre National de la Recherche Scientifique and Department of Pathology, Institut Curie, 25 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kraft R, Escobar MM, Narro ML, Kurtis JL, Efrat A, Barnard K, Restifo LL. Phenotypes of Drosophila brain neurons in primary culture reveal a role for fascin in neurite shape and trajectory. J Neurosci 2006; 26:8734-47. [PMID: 16928862 PMCID: PMC6674370 DOI: 10.1523/jneurosci.2106-06.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Subtle cellular phenotypes in the CNS may evade detection by routine histopathology. Here, we demonstrate the value of primary culture for revealing genetically determined neuronal phenotypes at high resolution. Gamma neurons of Drosophila melanogaster mushroom bodies (MBs) are remodeled during metamorphosis under the control of the steroid hormone 20-hydroxyecdysone (20E). In vitro, wild-type gamma neurons retain characteristic morphogenetic features, notably a single axon-like dominant primary process and an arbor of short dendrite-like processes, as determined with microtubule-polarity markers. We found three distinct genetically determined phenotypes of cultured neurons from grossly normal brains, suggesting that subtle in vivo attributes are unmasked and amplified in vitro. First, the neurite outgrowth response to 20E is sexually dimorphic, being much greater in female than in male gamma neurons. Second, the gamma neuron-specific "naked runt" phenotype results from transgenic insertion of an MB-specific promoter. Third, the recessive, pan-neuronal "filagree" phenotype maps to singed, which encodes the actin-bundling protein fascin. Fascin deficiency does not impair the 20E response, but neurites fail to maintain their normal, nearly straight trajectory, instead forming curls and hooks. This is accompanied by abnormally distributed filamentous actin. This is the first demonstration of fascin function in neuronal morphogenesis. Our findings, along with the regulation of human Fascin1 (OMIM 602689) by CREB (cAMP response element-binding protein) binding protein, suggest FSCN1 as a candidate gene for developmental brain disorders. We developed an automated method of computing neurite curvature and classifying neurons based on curvature phenotype. This will facilitate detection of genetic and pharmacological modifiers of neuronal defects resulting from fascin deficiency.
Collapse
Affiliation(s)
- Robert Kraft
- Arizona Research Laboratories Division of Neurobiology
| | | | | | | | | | - Kobus Barnard
- Department of Computer Science, and
- Interdisciplinary Program in Cognitive Science, University of Arizona, Tucson, Arizona 85721, and
| | - Linda L. Restifo
- Arizona Research Laboratories Division of Neurobiology
- Interdisciplinary Program in Cognitive Science, University of Arizona, Tucson, Arizona 85721, and
- Department of Neurology, Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|