1
|
Saez-Calveras N, Brewster AL, Stuve O. The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: A review. Front Mol Neurosci 2022; 15:1017484. [PMID: 36311030 PMCID: PMC9606595 DOI: 10.3389/fnmol.2022.1017484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Animal models of multiple sclerosis (MS) have been extensively used to characterize the disease mechanisms in MS, as well as to identify potential pharmacologic targets for this condition. In recent years, the immune complement system has gained increased attention as an important effector in the pathogenesis of MS. Evidence from histological, serum, and CSF studies of patients supports an involvement of complement in both relapsing-remitting and progressive MS. In this review, we discuss the history and advances made on the use of MS animal models to profile the effects of the complement system in this condition. The first studies that explored the complement system in the context of MS used cobra venom factor (CVF) as a complement depleting agent in experimental autoimmune encephalomyelitis (EAE) Lewis rats. Since then, multiple mice and rat models of MS have revealed a role of C3 and the alternative complement cascade in the opsonization and phagocytosis of myelin by microglia and myeloid cells. Studies using viral vectors, genetic knockouts and pharmacologic complement inhibitors have also shown an effect of complement in synaptic loss. Antibody-mediated EAE models have revealed an involvement of the C1 complex and the classical complement as an effector of the humoral response in this disease. C1q itself may also be involved in modulating microglia activation and oligodendrocyte differentiation in these animals. In addition, animal and in vitro models have revealed that multiple complement factors may act as modulators of both the innate and adaptive immune responses. Finally, evidence gathered from mice models suggests that the membrane attack complex (MAC) may even exert protective roles in the chronic stages of EAE. Overall, this review summarizes the importance of MS animal models to better characterize the role of the complement system and guide future therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Parkland Hospital, Dallas, TX, United States
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
2
|
Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu SH, Selvan P, Gomez-Arboledas A, Petrisko TJ, Fonseca MI, Mortazavi A, Tenner AJ. Modulation of C5a-C5aR1 signaling alters the dynamics of AD progression. J Neuroinflammation 2022; 19:178. [PMID: 35820938 PMCID: PMC9277945 DOI: 10.1186/s12974-022-02539-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The complement system is part of the innate immune system that clears pathogens and cellular debris. In the healthy brain, complement influences neurodevelopment and neurogenesis, synaptic pruning, clearance of neuronal blebs, recruitment of phagocytes, and protects from pathogens. However, excessive downstream complement activation that leads to generation of C5a, and C5a engagement with its receptor C5aR1, instigates a feed-forward loop of inflammation, injury, and neuronal death, making C5aR1 a potential therapeutic target for neuroinflammatory disorders. C5aR1 ablation in the Arctic (Arc) model of Alzheimer's disease protects against cognitive decline and neuronal injury without altering amyloid plaque accumulation. METHODS To elucidate the effects of C5a-C5aR1 signaling on AD pathology, we crossed Arc mice with a C5a-overexpressing mouse (ArcC5a+) and tested hippocampal memory. RNA-seq was performed on hippocampus and cortex from Arc, ArcC5aR1KO, and ArcC5a+ mice at 2.7-10 months and age-matched controls to assess mechanisms involved in each system. Immunohistochemistry was used to probe for protein markers of microglia and astrocytes activation states. RESULTS ArcC5a+ mice had accelerated cognitive decline compared to Arc. Deletion of C5ar1 delayed or prevented the expression of some, but not all, AD-associated genes in the hippocampus and a subset of pan-reactive and A1 reactive astrocyte genes, indicating a separation between genes induced by amyloid plaques alone and those influenced by C5a-C5aR1 signaling. Biological processes associated with AD and AD mouse models, including inflammatory signaling, microglial cell activation, and astrocyte migration, were delayed in the ArcC5aR1KO hippocampus. Interestingly, C5a overexpression also delayed the increase of some AD-, complement-, and astrocyte-associated genes, suggesting the possible involvement of neuroprotective C5aR2. However, these pathways were enhanced in older ArcC5a+ mice compared to Arc. Immunohistochemistry confirmed that C5a-C5aR1 modulation in Arc mice delayed the increase in CD11c-positive microglia, while not affecting other pan-reactive microglial or astrocyte markers. CONCLUSION C5a-C5aR1 signaling in AD largely exerts its effects by enhancing microglial activation pathways that accelerate disease progression. While C5a may have neuroprotective effects via C5aR2, engagement of C5a with C5aR1 is detrimental in AD models. These data support specific pharmacological inhibition of C5aR1 as a potential therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | | | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Purnika Selvan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Maria I. Fonseca
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA USA
| |
Collapse
|
3
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
4
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
5
|
Hammond JW, Bellizzi MJ, Ware C, Qiu WQ, Saminathan P, Li H, Luo S, Ma SA, Li Y, Gelbard HA. Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun 2020; 87:739-750. [PMID: 32151684 PMCID: PMC8698220 DOI: 10.1016/j.bbi.2020.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease of the CNS characterized by both grey and white matter injury. Microglial activation and a reduction in synaptic density are key features of grey matter pathology that can be modeled with MOG35-55 experimental autoimmune encephalomyelitis (EAE). Complement deposition combined with microglial engulfment has been shown during normal development and in disease as a mechanism for pruning synapses. We tested whether there is excess complement production in the EAE hippocampus and whether complement-dependent synapse loss is a source of degeneration in EAE using C1qa and C3 knockout mice. We found that C1q and C3 protein and mRNA levels were elevated in EAE mice. Genetic loss of C3 protected mice from EAE-induced synapse loss, reduced microglial activation, decreased the severity of the EAE clinical score, and protected memory/freezing behavior after contextual fear conditioning. C1qa KO mice with EAE showed little to no change on these measurements compared to WT EAE mice. Thus, pathologic expression and activation of the early complement pathway, specifically at the level of C3, contributes to hippocampal grey matter pathology in the EAE.
Collapse
Affiliation(s)
- Jennetta W. Hammond
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Correspondence: Jennetta W. Hammond,
University of Rochester, Center for Neurotherapeutics Discovery, 601 Elmwood
Avenue, Box 645, Rochester, NY 14642, USA,
, Phone:
1-585-273-2872
| | - Matthew J. Bellizzi
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neuroscience, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Caroline Ware
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Wen Q. Qiu
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Priyanka Saminathan
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Microbiology and Immunology, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Herman Li
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Shaopeiwen Luo
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Stefanie A. Ma
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Yuanhao Li
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Harris A. Gelbard
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neuroscience, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| |
Collapse
|
6
|
Göbel K, Eichler S, Wiendl H, Chavakis T, Kleinschnitz C, Meuth SG. The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders-A Systematic Review. Front Immunol 2018; 9:1731. [PMID: 30105021 PMCID: PMC6077258 DOI: 10.3389/fimmu.2018.01731] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background The interaction of coagulation factors has been shown to go beyond their traditional roles in hemostasis and to affect the development of inflammatory diseases. Key molecular players, such as fibrinogen, thrombin, or factor XII have been mechanistically and epidemiologically linked to inflammatory disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), and colitis. Objectives To systematically review the evidence for a role of coagulation factors, especially factor XII, fibrinogen, and thrombin in inflammatory disorders like MS, RA, and bowel disorders. Methods A systematic literature search was done in the PubMed database to identify studies about coagulation factors in inflammatory diseases. Original articles and reviews investigating the role of the kallikrein–kinin and the coagulation system in mouse and humans were included. Results We identified 43 animal studies dealing with inflammatory disorders and factors of the kallikrein–kinin or the coagulation system. Different immunological influences are described and novel molecular mechanisms linking coagulation and inflammation are reported. Conclusion A number of studies have highlighted coagulation factors to tip the balance between hemostasis and thrombosis and between protection from infection and extensive inflammation. To optimize the treatment of chronic inflammatory disorders by these factors, further studies are necessary.
Collapse
Affiliation(s)
- Kerstin Göbel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Susann Eichler
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Laboratory Medicine, Institute for Clinical Chemistry, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Leung LLK, Morser J. Carboxypeptidase B2 and carboxypeptidase N in the crosstalk between coagulation, thrombosis, inflammation, and innate immunity. J Thromb Haemost 2018; 16:S1538-7836(22)02219-X. [PMID: 29883024 DOI: 10.1111/jth.14199] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Two basic carboxypeptidases, carboxypeptidase B2 (CPB2) and carboxypeptidase N (CPN) are present in plasma. CPN is constitutively active, whereas CPB2 circulates as a precursor, procarboxypeptidase B2 (proCPB2), that needs to be activated by the thrombin-thrombomodulin complex or plasmin bound to glycosaminoglycans. The substrate specificities of CPB2 and CPN are similar; they both remove C-terminal basic amino acids from bioactive peptides and proteins, thereby inactivating them. The complement cascade is a cascade of proteases and cofactors activated by pathogens or dead cells, divided into two phases, with the second phase only being triggered if sufficient C3b is present. Complement activation generates anaphylatoxins: C3a, which stimulates macrophages; and C5a, which is an activator and attractant for neutrophils. Pharmacological intervention with inhibitors has shown that CPB2 delays fibrinolysis, whereas CPN is responsible for systemic inactivation of C3a and C5a. Among mice genetically deficient in either CPB2 or CPN, in a model of hemolytic-uremic syndrome, Cpb2-/- mice had the worst disease, followed by Cpn-/- mice, with wild-type (WT) mice being the most protected. This model is driven by C5a, and shows that CPB2 is important in inactivating C5a. In contrast, when mice were challenged acutely with cobra venom factor, the reverse phenotype was observed; Cpn-/- mice had markedly worse disease than Cpb2-/- mice, and WT mice were resistant. These observations need to be confirmed in humans. Therefore, CPB2 and CPN have different roles. CPN inactivates C3a and C5a generated spontaneously, whereas proCPB2 is activated at specific sites, where it inactivates bioactive peptides that would overwhelm CPN.
Collapse
Affiliation(s)
- L L K Leung
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - J Morser
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
8
|
Michailidou I, Jongejan A, Vreijling JP, Georgakopoulou T, de Wissel MB, Wolterman RA, Ruizendaal P, Klar-Mohamad N, Grootemaat AE, Picavet DI, Kumar V, van Kooten C, Woodruff TM, Morgan BP, van der Wel NN, Ramaglia V, Fluiter K, Baas F. Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2018; 6:36. [PMID: 29724241 PMCID: PMC5932802 DOI: 10.1186/s40478-018-0536-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.
Collapse
|
9
|
An G, Li B, Liu X, Zhang M, Gao F, Zhao Y, An F, Zhang Y, Zhang C. Overexpression of complement component C5a accelerates the development of atherosclerosis in ApoE-knockout mice. Oncotarget 2018; 7:56060-56070. [PMID: 27517153 PMCID: PMC5302896 DOI: 10.18632/oncotarget.11180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In this study, we investigated the direct effect of C5a overexpression on atherosclerosis. METHODS AND RESULTS A recombinant adenovirus expressing mouse C5a (Ad-C5a) was constructed and injected intravenously into ApoE-/- mice. After 12 weeks of a high-fat diet, Ad-C5a injection produced more extensive lesions than control adenovirus, and its proathrosclerotic role was significantly blocked by C5a receptor antagonist. Immunohistochemical analysis showed enhanced macrophage infiltration in atherosclerotic regions with C5a overexpression. Trans-well assay revealed C5a receptor-dependent chemotaxis of C5a to macrophages. Furthermore, Ad-C5a overexpression promoted foam cell formation and lipid deposition but reduced collagen content. In addition, with Ad-C5a overexpression, the serum levels of interleukin 6 and tumor necrosis factor α were upregulated. CONCLUSIONS C5a overexpression could accelerate the development of atherosclerosis in ApoE-/- mice by promoting macrophage recruitment, foam cell formation and inflammatory activation. Furthermore, its proatherogetic role is mediated by the C5a receptor.
Collapse
Affiliation(s)
- Guipeng An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Bo Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Xiaoman Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yuxia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| |
Collapse
|
10
|
Stahel PF, Barnum SR. The role of the complement system in CNS inflammatory diseases. Expert Rev Clin Immunol 2014; 2:445-56. [DOI: 10.1586/1744666x.2.3.445] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Gong B, Pan Y, Zhao W, Knable L, Vempati P, Begum S, Ho L, Wang J, Yemul S, Barnum S, Bilski A, Gong BY, Pasinetti GM. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer's disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol Immunol 2013; 56:619-29. [DOI: 10.1016/j.molimm.2013.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
|
12
|
Hu X, Wetsel RA, Ramos TN, Mueller-Ortiz SL, Schoeb TR, Barnum SR. Carboxypeptidase N-deficient mice present with polymorphic disease phenotypes on induction of experimental autoimmune encephalomyelitis. Immunobiology 2013; 219:104-8. [PMID: 24028840 DOI: 10.1016/j.imbio.2013.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/08/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Carboxypeptidase N (CPN) is a member of the carboxypeptidase family of enzymes that cleave carboxy-terminal lysine and arginine residues from a large number of biologically active peptides and proteins. These enzymes are best known for their roles in modulating the activity of kinins, complement anaphylatoxins and coagulation proteins. Although CPN makes important contributions to acute inflammatory events, little is known about its role in autoimmune disease. In this study we used CPN(-/-) mice in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Unexpectedly, we observed several EAE disease phenotypes in CPN(-/-) mice compared to wild type mice. The majority of CPN(-/-) mice died within five to seven days after disease induction, before displaying clinical signs of disease. The remaining mice presented with either mild EAE or did not develop EAE. In addition, CPN(-/-) mice injected with complete or incomplete Freund's adjuvant died within the same time frame and in similar numbers as those induced for EAE. Overall, the course of EAE in CPN(-/-) mice was significantly delayed and attenuated compared to wild type mice. Spinal cord histopathology in CPN(-/-) mice revealed meningeal, but not parenchymal leukocyte infiltration, and minimal demyelination. Our results indicate that CPN plays an important role in EAE development and progression and suggests that multiple CPN ligands contribute to the disease phenotypes we observed.
Collapse
Affiliation(s)
- Xianzhen Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rick A Wetsel
- Brown Foundation Institute of Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Theresa N Ramos
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stacey L Mueller-Ortiz
- Brown Foundation Institute of Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott R Barnum
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
13
|
Zimmermann J, Krauthausen M, Hofer MJ, Heneka MT, Campbell IL, Müller M. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia. PLoS One 2013; 8:e57307. [PMID: 23468966 PMCID: PMC3584143 DOI: 10.1371/journal.pone.0057307] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/20/2013] [Indexed: 01/13/2023] Open
Abstract
Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45(high)/CD11b(+) population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.
Collapse
Affiliation(s)
| | | | - Markus J. Hofer
- Department of Neuropathology, University Clinic of Marburg and Giessen, Marburg, Germany
| | - Michael T. Heneka
- Department of Neurology, Universitätsklinikum Bonn, Bonn, Germany
- Clinical Neuroscience Unit, University of Bonn, Bonn, Germany
| | - Iain L. Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Marcus Müller
- Department of Neurology, Universitätsklinikum Bonn, Bonn, Germany
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
14
|
CNS-specific expression of C3a and C5a exacerbate demyelination severity in the cuprizone model. Mol Immunol 2010; 48:219-30. [PMID: 20813409 DOI: 10.1016/j.molimm.2010.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/03/2010] [Accepted: 08/10/2010] [Indexed: 12/18/2022]
Abstract
Demyelination in the central nervous system (CNS) is known to involve several immune effector mechanisms, including complement proteins. Local production of complement by glial cells in the brain can be both harmful and protective. To investigate the roles of C3a and C5a in demyelination and remyelination pathology we utilized the cuprizone model. Transgenic mice expressing C3a or C5a under the control of the glial fibrillary acidic protein (GFAP) promoter had exacerbated demyelination and slightly delayed remyelination in the corpus callosum compared to WT mice. C3a and C5a transgenic mice had increased cellularity in the corpus callosum due to increase activation and/or migration of microglia. Oligodendrocytes migrated to the corpus callosum in higher numbers during early remyelination events in C3a and C5a transgenic mice, thus enabling these mice to remyelinate as effectively as WT mice by the end of the 10 week study. To determine the effects of C3a and/or C5a on individual glial subsets, we created murine recombinant C3a and C5a proteins. When microglia and mixed glial cultures were stimulated with C3a and/or C5a, we observed an increase in the production of proinflammatory cytokines and chemokines. In contrast, astrocytes had decreased cytokine and chemokine production in the presence of C3a and/or C5a. We also found that the MAPK pathway proteins JNK and ERK1/2 were activated in glia upon stimulation with C3a and C5a. Overall, our findings show that although C3a and C5a production in the brain play a negative role during demyelination, these proteins may aid in remyelination.
Collapse
|
15
|
Deletion of both the C3a and C5a receptors fails to protect against experimental autoimmune encephalomyelitis. Neurosci Lett 2009; 467:234-6. [PMID: 19850104 DOI: 10.1016/j.neulet.2009.10.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease in which inflammation, leukocyte infiltration, and ultimately, demyelination occur as a result of innate and adaptive immune-mediated mechanisms. The pathophysiological role of the complement system, a major component of innate immunity, in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for MS has been extensively examined. Previous studies from our lab have shown that the complement receptor for the anaphylatoxin C3a, but not for C5a plays an important role in EAE. Based on the important contributions of the complement anaphylatoxin receptors to other inflammatory conditions in the CNS, we reasoned that deletion of both receptors may reveal underlying interactions between them that are important to EAE pathology. We performed EAE in C3aR/C5aR double knockout mice (C3aR/C5aR(-/-)) and observed delayed onset of disease but no attenuation of disease severity compared to wild type mice. Interestingly there was trend toward greater infiltration of CD4(+), but not CD8(+) T cells, in C3aR/C5aR(-/-) mice with EAE, suggesting altered trafficking of these cells. Antigen-specific T cells isolated from C3aR/C5aR(-/-) mice during acute EAE produced elevated levels of TNF-alpha, but markedly reduced levels of IFN-gamma and IL-12 compared to wild type mice. It remains unclear how the changes in these disease parameters contribute to the loss of the protective effect seen in C3aR(-/-) mice, however our data indicate a level of cross-modulation between the C3aR and C5aR during EAE.
Collapse
|
16
|
Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med 2009; 12:179-92. [PMID: 19763906 DOI: 10.1007/s12017-009-8085-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/25/2009] [Indexed: 12/28/2022]
Abstract
The complement system is a pivotal component of the innate immune system which protects the host from infection and injury. Complement proteins can be induced in all cell types within the central nervous system (CNS), where the pathway seems to play similar roles in host defense. Complement activation produces the C5 cleavage fragment C5a, a potent inflammatory mediator, which recruits and activates immune cells. The primary cellular receptor for C5a, the C5a receptor (CD88), has been reported to be on all CNS cells, including neurons and glia, suggesting a functional role for C5a in the CNS. A second receptor for C5a, the C5a-like receptor 2 (C5L2), is also expressed on these cells; however, little is currently known about its potential role in the CNS. The potent immune and inflammatory actions of complement activation are necessary for host defense. However, if over-activated, or left unchecked it promotes tissue injury and contributes to brain disease pathology. Thus, complement activation, and subsequent C5a generation, is thought to play a significant role in the progression of CNS disease. Paradoxically, complement may also exert a neuroprotective role in these diseases by aiding in the elimination of aggregated and toxic proteins and debris which are a principal hallmark of many of these diseases. This review will discuss the expression and known roles for complement in the CNS, with a particular focus on the pro-inflammatory end-product, C5a. The possible overarching role for C5a in diseases of the CNS is reviewed, and the therapeutic potential of blocking C5a/CD88 interaction is evaluated.
Collapse
Affiliation(s)
- Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, 4072, Australia.
| | | | | | | | | |
Collapse
|
17
|
Ingram G, Hakobyan S, Robertson NP, Morgan BP. Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clin Exp Immunol 2008; 155:128-39. [PMID: 19040603 DOI: 10.1111/j.1365-2249.2008.03830.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system with a poorly defined and complex immunopathogenesis. Although initiated by reactive T cells, persistent inflammation is evident throughout the disease course. A contribution from complement has long been suspected, based on the results of pathological and functional studies which have demonstrated complement activation products in MS brain and biological fluids. However, the extent and nature of complement activation and its contribution to disease phenotype and long-term outcome remain unclear. Furthermore, functional polymorphisms in components and regulators of the complement system which cause dysregulation, and are known to contribute to other autoimmune inflammatory disorders, have not been investigated to date in MS in any detail. In this paper we review evidence from pathological, animal model and human functional and genetic studies, implicating activation of complement in MS. We also evaluate the potential of complement components and regulators and their polymorphic variants as biomarkers of disease, and suggest appropriate directions for future research.
Collapse
Affiliation(s)
- G Ingram
- Department of Neurosciences, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
18
|
Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem 2008; 107:1169-87. [PMID: 18786171 DOI: 10.1111/j.1471-4159.2008.05668.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.
Collapse
|
19
|
Zhou J, Fonseca MI, Pisalyaput K, Tenner AJ. Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease. J Neurochem 2008; 106:2080-92. [PMID: 18624920 DOI: 10.1111/j.1471-4159.2008.05558.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease resulting in progressive cognitive decline. Amyloid plaque deposits consisting specifically of beta-amyloid peptides that have formed fibrils displaying beta-pleated sheet conformation are associated with activated microglia and astrocytes, are colocalized with C1q and other complement activation products, and appear at the time of cognitive decline in AD. Amyloid precursor protein (APP) transgenic mouse models of AD that lack the ability to activate the classical complement pathway display less neuropathology than do the APPQ+/+ mice, consistent with the hypothesis that complement activation and the resultant inflammation may play a role in the pathogenesis of AD. Further investigation of the presence of complement proteins C3 and C4 in the brain of these mice demonstrate that both C3 and C4 deposition increase with age in APPQ+/+ transgenic mice, as expected with the age-dependent increase in fibrillar beta-amyloid deposition. In addition, while C4 is predominantly localized on the plaques and/or associated with oligodendrocytes in APPQ+/+ mice, little C4 is detected in APPQ-/- brains consistent with a lack of classical complement pathway activation because of the absence of C1q in these mice. In contrast, plaque and cell associated C3 immunoreactivity is seen in both animal models and, surprisingly, is higher in APPQ-/- than in APPQ+/+ mice, providing evidence for alternative pathway activation. The unexpected increase in C3 levels in the APPQ-/- mice coincident with decreased neuropathology provides support for the hypothesis that complement can mediate protective events as well as detrimental events in this disease. Finally, induced expression of C3 in a subset of astrocytes suggests the existence of differential activation states of these cells.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Molecular Biology and Biochemistry, Institute for Brain Aging and Dementia, Center for Immunology, University of California, Irvine, California 92697-3900, USA
| | | | | | | |
Collapse
|
20
|
Mukherjee P, Thomas S, Pasinetti GM. Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo. J Neuroinflammation 2008; 5:5. [PMID: 18230183 PMCID: PMC2246107 DOI: 10.1186/1742-2094-5-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 01/29/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The complement system is thought to be involved in the pathogenesis of numerous neurological diseases. We previously reported that pre-treatment of murine cortico-hippocampal neuronal cultures with the complement derived anaphylatoxin C5a, protects against glutamate mediated apoptosis. Our present study with C5a receptor knock out (C5aRKO) mice corroborates that the deficiency of C5a renders C5aRKO mouse more susceptible to apoptotic injury in vivo. In this study we explored potential upstream mechanisms involved in C5a mediated neuroprotection in vivo and in vitro. METHODS Based on evidence suggesting that reduced expression of glutamate receptor subunit 2 (GluR2) may influence apoptosis in neurons, we studied the effect of human recombinant C5a on GluR2 expression in response to glutamate neurotoxicity. Glutamate analogs were injected into C5aRKO mice or used to treat in vitro neuronal culture and GluR2 expression were assessed in respect with cell death. RESULTS In C5aRKO mice we found that the neurons are more susceptible to excitotoxicity resulting in apoptotic injury in the absence of the C5a receptor compared to WT control mice. Our results suggest that C5a protects against apoptotic pathways in neurons in vitro and in vivo through regulation of GluR2 receptor expression. CONCLUSION Complement C5a neuroprotects through regulation of GluR2 receptor subunit.
Collapse
Affiliation(s)
- Piali Mukherjee
- Department of Psychiatry, Mount Sinai School of Medicine, 1 Gustav L,, Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
21
|
Bogestål YR, Barnum SR, Smith PLP, Mattisson V, Pekny M, Pekna M. Signaling through C5aR is not involved in basal neurogenesis. J Neurosci Res 2008; 85:2892-7. [PMID: 17551982 DOI: 10.1002/jnr.21401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complement system, an important part of the innate immune system, provides protection against invading pathogens, in part through its proinflammatory activities. Although most complement proteins are synthesized locally in the brain and the relevant complement receptors are expressed on resident brain cells, little is known about brain-specific role(s) of the complement system. C3a and C5a, complement-derived peptides with anaphylatoxic properties, have been implicated in noninflammatory functions, such as tissue regeneration and neuroprotection. Recently, we have shown that signaling through C3a receptor (C3aR) is involved in the regulation of neurogenesis. In the present study, we assessed basal neurogenesis in mice lacking C5a receptor (C5aR(-/-)) and mice expressing C3a and C5a, respectively in the CNS under the control of glial fibrillary acidic protein (GFAP) promoter (C3a/GFAP and C5a/GFAP, respectively) and thus without the requirement for complement activation. We did not observe any difference among C5aR(-/-), C3a/GFAP and C5a/GFAP mice and their respective controls in the number of newly formed neuroblasts and newly formed neurons in the subventricular zone (SVZ) of lateral ventricles and hippocampal dentate gyrus, the two neurogenic niches in the adult brain, or the olfactory bulb, the final destination of new neurons formed in the SVZ. Our results indicate that signaling through C5aR is not involved in basal neurogenesis in adult mice and that basal neurogenesis in adult C3a/GFAP and C5a/GFAP mice is not altered.
Collapse
Affiliation(s)
- Yalda Rahpeymai Bogestål
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
Szalai AJ, Hu X, Adams JE, Barnum SR. Complement in experimental autoimmune encephalomyelitis revisited: C3 is required for development of maximal disease. Mol Immunol 2007; 44:3132-6. [PMID: 17353050 PMCID: PMC1986644 DOI: 10.1016/j.molimm.2007.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
Complement per se has been shown to play an important role in demyelinating disease but controversy remains regarding the role of C3 in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In this study, we used C3(-/-) mice to confirm previous findings that C3 is required for full development of EAE. Furthermore, C3(+/-) mice (with serum C3 levels 50% that of wild-type mice) developed EAE with a severity intermediate between wild-type and C3(-/-) mice. Importantly transfer of wild-type encephalitogenic T cells to C3(-/-) mice resulted in attenuated EAE. C3(-/-) mice with EAE had fewer CD4(+) and CD8(+) T cells in the CNS and 50% fewer of these cells produced IFN-gamma compared to wild-type mice. When treated with anti-CD3 antibody, CD4(+) T cells from wild-type and C3(-/-) mice had similar activation profiles as judged by IFN-gamma production and CD25 and CD69 expression, indicating there is no gross or intrinsic defect in T cells from C3(-/-) mice. T cells from primed C3(-/-) mice proliferated comparably to that of control T cells on re-stimulation with MOG peptide. Our results confirm a requirement for C3 for maximal development of EAE and suggest that receptors for C3-derived activation fragments might be a viable therapeutic target for prevention and treatment demyelinating disease.
Collapse
Affiliation(s)
- Alexander J. Szalai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xianzhen Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jillian E. Adams
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott R. Barnum
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
- *Corresponding Author: Dr. Scott R. Barnum, Department of Microbiology, University of Alabama at Birmingham, 845 19 St. S., BBRB/842, Birmingham, AL 35294. E-mail address:
| |
Collapse
|
23
|
Barnum SR, Szalai AJ. Complement and demyelinating disease: no MAC needed? ACTA ACUST UNITED AC 2006; 52:58-68. [PMID: 16443278 DOI: 10.1016/j.brainresrev.2005.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/09/2005] [Accepted: 12/15/2005] [Indexed: 12/22/2022]
Abstract
It has long been accepted that the complement system participates in the onset, evolution, and exacerbation of demyelinating disease, and it is widely suspected that this is accomplished mainly via destruction of nervous tissue by membrane attack complex (MAC)-mediated lysis of oligodendrocytes and neurons. However, recent studies using mutant mice indicate the MAC may not be so important. For example, mice lacking C5 and mice lacking the C5a receptor both develop experimental autoimmune encephalomyelitis (EAE) with the same frequency and intensity as their wild type counterparts. Also, transgenic mice that express C5a exclusively in the central nervous system (CNS) develop EAE that is not remarkably different from that in non-transgenic littermates. Since C5 is required for formation of the MAC, development of fulminant EAE in the absence of this complement protein demonstrates that non-complement-mediated mechanisms of CNS damage are operating. Paradoxically, mice lacking C3, mice lacking the C3a receptor, and mice lacking the complement receptor type 3 develop attenuated EAE, while mice that express C3a exclusively in the CNS develop severe and often fulminant EAE. Based on these newer data, we posit that C3-derived biologically active fragments, rather than C5 and the MAC, are central players in the pathophysiology of complement in EAE.
Collapse
Affiliation(s)
- Scott R Barnum
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|