1
|
Evans LC, Dailey-Krempel B, Lauar MR, Dayton A, Vulchanova L, Osborn JW. Renal interoception in health and disease. Auton Neurosci 2024; 255:103208. [PMID: 39128142 DOI: 10.1016/j.autneu.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Catheter based renal denervation has recently been FDA approved for the treatment of hypertension. Traditionally, the anti-hypertensive effects of renal denervation have been attributed to the ablation of the efferent sympathetic renal nerves. In recent years the role of the afferent sensory renal nerves in the regulation of blood pressure has received increased attention. In addition, afferent renal denervation is associated with reductions in sympathetic nervous system activity. This suggests that reductions in sympathetic drive to organs other than the kidney may contribute to the non-renal beneficial effects observed in clinical trials of catheter based renal denervation. In this review we will provide an overview of the role of the afferent renal nerves in the regulation of renal function and the development of pathophysiologies, both renal and non-renal. We will also describe the central projections of the afferent renal nerves, to give context to the responses seen following their ablation and activation. Finally, we will discuss the emerging role of the kidney as an interoceptive organ. We will describe the potential role of the kidney in the regulation of interoceptive sensitivity and in this context, speculate on the possible pathological consequences of altered renal function.
Collapse
Affiliation(s)
- Louise C Evans
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Brianna Dailey-Krempel
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - Mariana R Lauar
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America.
| |
Collapse
|
2
|
Pae EK, Harper RM. Intermittent hypoxia in neonatal rodents affects facial bone growth. PLoS One 2023; 18:e0282937. [PMID: 37819881 PMCID: PMC10566710 DOI: 10.1371/journal.pone.0282937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/02/2023] [Indexed: 10/13/2023] Open
Abstract
Preterm human infants often show periodic breathing (PB) or apnea of prematurity (AOP), breathing patterns which are accompanied by intermittent hypoxia (IH). We examined cause-effect relationships between transient IH and reduced facial bone growth using a rat model. Neonatal pups from 14 timed pregnant Sprague-Dawley rats were randomly assigned to an IH condition, with oxygen altering between 10% and 21% every 4 min for 1 h immediately after birth, or to a litter-matched control group. The IH pups were compared with their age- and sex-matched control groups in body weight (WT), size of facial bones and nor-epinephrine (NE) levels in blood at 3, 4, and 5-weeks. Markedly increased activity of osteoclasts in sub-condylar regions of 3-week-old IH-treated animals appeared, as well as increased numbers of sympathetic nerve endings in the same region of tissue sections. Male IH-pups showed significantly higher levels of NE levels in sera at 3, 4 as well as 5-week-old time points. NE levels in 4- and-5-week-old female pups did not differ significantly. Intercondylar Width, Mandible Length and Intermolar Width measures consistently declined after IH insults in 3- and 4-week-old male as well as female animals. Three-week-old male IH-pups only showed a significantly reduced (p < 0.05) body weight compared to those of 3-week controls. However, female IH-pups were heavier than age-matched controls at all 3 time-points. Trabecular bone configuration, size of facial bones, and metabolism are disturbed after an IH challenge 1 h immediately after birth. The findings raise the possibility that IH, introduced by breathing patterns such as PB or AOP, induce significantly impaired bone development and metabolic changes in human newborns. The enhanced NE outflow from IH exposure may serve a major role in deficient bone growth, and may affect bone and other tissue influenced by that elevation.
Collapse
Affiliation(s)
- Eung-Kwon Pae
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland, Baltimore, MA, United States of America
| | - Ronald M. Harper
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
3
|
Gozal D. Early life postnatal intermittent hypoxia: a case for (Mal)adaptive cardiorespiratory plasticity, inflammation, and epigenetics. Sleep 2023; 46:zsad065. [PMID: 36883695 PMCID: PMC10171623 DOI: 10.1093/sleep/zsad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- David Gozal
- Department of Child Health and Child Health Research Institute, MU Children’s Hospital, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Hering L, Rahman M, Potthoff SA, Rump LC, Stegbauer J. Role of α2-Adrenoceptors in Hypertension: Focus on Renal Sympathetic Neurotransmitter Release, Inflammation, and Sodium Homeostasis. Front Physiol 2020; 11:566871. [PMID: 33240096 PMCID: PMC7680782 DOI: 10.3389/fphys.2020.566871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
The kidney is extensively innervated by sympathetic nerves playing an important role in the regulation of blood pressure homeostasis. Sympathetic nerve activity is ultimately controlled by the central nervous system (CNS). Norepinephrine, the main sympathetic neurotransmitter, is released at prejunctional neuroeffector junctions in the kidney and modulates renin release, renal vascular resistance, sodium and water handling, and immune cell response. Under physiological conditions, renal sympathetic nerve activity (RSNA) is modulated by peripheral mechanisms such as the renorenal reflex, a complex interaction between efferent sympathetic nerves, central mechanism, and afferent sensory nerves. RSNA is increased in hypertension and, therefore, critical for the perpetuation of hypertension and the development of hypertensive kidney disease. Renal sympathetic neurotransmission is not only regulated by RSNA but also by prejunctional α2-adrenoceptors. Prejunctional α2-adrenoceptors serve as autoreceptors which, when activated by norepinephrine, inhibit the subsequent release of norepinephrine induced by a sympathetic nerve impulse. Deletion of α2-adrenoceptors aggravates hypertension ultimately by modulating renal pressor response and sodium handling. α2-adrenoceptors are also expressed in the vasculature, renal tubules, and immune cells and exert thereby effects related to vascular tone, sodium excretion, and inflammation. In the present review, we highlight the role of α2-adrenoceptors on renal sympathetic neurotransmission and its impact on hypertension. Moreover, we focus on physiological and pathophysiological functions mediated by non-adrenergic α2-adrenoceptors. In detail, we discuss the effects of sympathetic norepinephrine release and α2-adrenoceptor activation on renal sodium transporters, on renal vascular tone, and on immune cells in the context of hypertension and kidney disease.
Collapse
Affiliation(s)
- Lydia Hering
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian A Potthoff
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Kiernan EA, Wang T, Vanderplow AM, Cherukuri S, Cahill ME, Watters JJ. Neonatal Intermittent Hypoxia Induces Lasting Sex-Specific Augmentation of Rat Microglial Cytokine Expression. Front Immunol 2019; 10:1479. [PMID: 31333645 PMCID: PMC6615134 DOI: 10.3389/fimmu.2019.01479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Sleep disordered breathing (SDB) affects 3-5% of the pediatric population, including neonates who are highly susceptible due to an underdeveloped ventilatory control system, and REM-dominated sleep. Although pediatric SDB is associated with poor cognitive outcomes, very little research has focused on models of pediatric SDB, particularly in neonates. In adults and neonates, intermittent hypoxia (IH), a hallmark of SDB, recapitulates multiple physiological aspects of severe SDB, including neuronal apoptosis, sex-specific cognitive deficits, and neuroinflammation. Microglia, resident CNS immune cells, are important mediators of neurodevelopment and neuroinflammation, but to date, no studies have examined the molecular properties of microglia in the context of neonatal IH. Here, we tested the hypothesis that neonatal IH will enhance microglial inflammation and sex-specifically lead to long-term changes in working memory. To test this hypothesis, we exposed post-natal day (P1) neonates with dams to an established adult model of pathological IH consisting of 2 min cycles of 10.5% O2 followed by 21% O2, 8 h/day for 8 days. We then challenged the offspring with bacterial lipopolysaccharide (LPS) at P9 or at 6-8 weeks of age and immunomagnetically isolated microglia for gene expression analyses and RNA-sequencing. We also characterized neonatal CNS myeloid cell populations by flow cytometry analyses. Lastly, we examined working memory performance using a Y-maze in the young adults. Contrary to our hypothesis, we found that neonatal IH acutely augmented basal levels of microglial anti-inflammatory cytokines, attenuated microglial responses to LPS, and sex-specifically altered CNS myeloid populations. We identified multiple sex differences in basal neonatal microglial expression of genes related to chemotaxis, cognition, and aging. Lastly, we found that basal, but not LPS-induced, anti-inflammatory cytokines were augmented sex-specifically in the young adults, and that there was a significant interaction between sex and IH on basal working memory. Our results support the idea that neonates may be able to adapt to IH exposures that are pathological in adults. Further, they suggest that male and female microglial responses to IH are sex-specific, and that these sex differences in basal microglial gene expression may contribute to sexual dimorphisms in vulnerability to IH-induced cognitive disruption.
Collapse
Affiliation(s)
- Elizabeth A Kiernan
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Tao Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda M Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Sneha Cherukuri
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael E Cahill
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Zhu X, Wang P, Liu H, Zhan J, Wang J, Li M, Zeng L, Xu P. Changes and Significance of SYP and GAP-43 Expression in the Hippocampus of CIH Rats. Int J Med Sci 2019; 16:394-402. [PMID: 30911273 PMCID: PMC6428973 DOI: 10.7150/ijms.28359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Synaptophysin (SYP) and growth-associated binding protein 43 (GAP-43) have been shown to be closely related to hippocampal synaptic plasticity in recent years. They are important molecular markers associated with synaptic plasticity. However, the role of SYP and GAP-43 in chronic intermittent hypoxic injury of the central nervous system needs to be further clarified. In this study, 25 adult male sprague dawley (SD) rats were randomly divided into a normal control group (CON) and a chronic intermittent hypoxia group (CIH) with four time points as follows: 1 W, 2 W, 3 W, and 4 W. The behavioural changes (primarily learning and memory abilities) were observed by the Morris water maze in each group, consisting of 5 rats per group.The localization of SYP and GAP-43 in hippocampal CA1 neurons was observed, and the expression of SYP and GAP-43 in the hippocampus was detected by Western blotting. The results showed that the mean oxygen saturation of the tail artery in CIH rats was less than that in normal rats (P < 0.05). The escape latency of CIH rats was longer than that of normal rats, and the number of space exploration platform crossings was less than that of normal rats. SYP-positive stained cells were yellow or brown and were mainly expressed on the cell membrane, while the GAP-43-positive staining was brown and was mainly expressed on the cell membrane and in the cytoplasm. The expression of SYP in plasma decreased gradually at the four time points for the CIH group (P < 0.05), while the expression of GAP-43 in the CIH 1W group increased (P < 0.05) and decreased gradually in the CIH 2 W, CIH 3 W and CIH 4 W groups (P < 0.05).
Collapse
Affiliation(s)
- Xiankun Zhu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China, 563003
| | - Pei Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China, 563003
| | - Haijun Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China, 563003
| | - Jing Zhan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China, 563003
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China, 563003
| | - Mi Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China, 563003
| | - Ling Zeng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China, 563003
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China, 563003
| |
Collapse
|
9
|
Guan P, Lin XM, Yang SC, Guo YJ, Li WY, Zhao YS, Yu FY, Sun ZM, An JR, Ji ES. Hydrogen gas reduces chronic intermittent hypoxia-induced hypertension by inhibiting sympathetic nerve activity and increasing vasodilator responses via the antioxidation. J Cell Biochem 2018; 120:3998-4008. [PMID: 30259991 DOI: 10.1002/jcb.27684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022]
Abstract
Molecular hydrogen is reported to be used medically to ameliorate various systemic pathological conditions. This study aimed to investigate the effect of hydrogen (H2 ) gas on hypertension induced by intermittent hypoxia in rats. The adult rats were exposed to chronic intermittent hypoxia (CIH) 8 hours/day for 5 weeks and/or H 2 gas 2 hours/day. We found that the systolic and diastolic blood pressure (BP) increased significantly in rats exposed to intermittent hypoxia, both of which were markedly attenuated after H treatment. Furthermore, intermittent hypoxia exposure elevated renal sympathetic nerve activity, consistent with plasma norepinephrine. Additionally, H 2 gas significantly improved CIH-induced abnormal vascular relaxation. Nevertheless, inhalation of H 2 gas alone did not cause such changes. Moreover, H 2 gas-treated rats exposed to CIH showed a significant reduction in 8-hydroxy-2 deoxyguanosine content and increases in superoxide dismutase activity, indicating improved oxidative stress. Taken together, these results indicate that H 2 gas has significant effects on the reduction of BP without any side effects. Mechanistically, inhibition of sympathetic activity and reduction of systemic vascular resistance may participate in this process via the antioxidant activity of H 2 .
Collapse
Affiliation(s)
- Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiao-Meng Lin
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Sheng-Chang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ya-Jing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wen-Ya Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fu-Yang Yu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi-Min Sun
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ji-Ren An
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
10
|
Beharry KD, Cai CL, Valencia GB, Valencia AM, Lazzaro DR, Bany-Mohammed F, Aranda JV. Neonatal Intermittent Hypoxia, Reactive Oxygen Species, and Oxygen-Induced Retinopathy. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 3:12-25. [PMID: 29951586 DOI: 10.20455/ros.2017.805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most of the major morbidities in the preterm newborn are caused by or are associated with oxygen-induced injuries and are aptly called "oxygen radical diseases in neonatology or ORDIN". These include bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, intraventricular hemorrhage, necrotizing enterocolitis and others. Relative hyperoxia immediately after birth, immature antioxidant systems, biomolecular events favoring oxidative stress such as iron availability and the role of hydrogen peroxide as a key molecular mediator of these events are reviewed. Potential therapeutic strategies such as caffeine, antioxidants, non-steroidal anti-inflammatory drugs, and others targeted to these critical sites may help prevent oxidative radical diseases in the newborn resulting in improved neonatal outcomes.
Collapse
Affiliation(s)
- Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Arwin M Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Summerlin Hospital Medical Center, Valley Healthcare System, Las Vegas, NV 89135, USA
| | - Douglas R Lazzaro
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| | - Fayez Bany-Mohammed
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of California, Irvine, CA 92868, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| |
Collapse
|
11
|
McKay JAA, McCulloch CL, Querido JS, Foster GE, Koehle MS, Sheel AW. The effect of consistent practice of yogic breathing exercises on the human cardiorespiratory system. Respir Physiol Neurobiol 2016; 233:41-51. [PMID: 27453559 DOI: 10.1016/j.resp.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 07/09/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
The purpose of this investigation was to quantify the cardiovascular, respiratory, and cerebrovascular effects of two common yogic breathing exercises (YBE): bhastrika and chaturbhuj; and to determine the effect of their consistent practice on chemosensitivity. The first study was cross-sectional and compared experienced yogic breathers (YB) with matched controls; whereas the second was a 10-week longitudinal training study. The results support four major findings. First chaturbhuj resulted in a hypoxic stimulus in experienced YB compared to control [end-tidal oxygen tension (PETO2), YB: 77.5±5.7mmHg, P<0.05; control: 94.3±12.0mmHg]. Second, performance of chaturbhuj resulted in cyclic oscillations of mean arterial pressure (MAP), heart rate (HR), and middle cerebral artery velocity (MCAv) consistent with the phases of respiration. Third, post training, performance of bhastrika reduced PETO2 (end breath-hold: 90.8 8±12.1mmHg) compared to rest (100.1±7.4, P<0.05); it also resulted in significantly increased MAP at end breath-hold (96.7±13.0mmHg) compared to rest (83.0±6.6mmHg, P<0.05) and significantly increased mean MCAv (end breath-hold: 87.4±23.0cm/s, P<0.05; rest: 55.8±26.3cm/s). Fourth, experienced YB had lower central chemosensitivity than controls (YB: 3.4±0.4; control: 4.6±1.2L/min/mmHg; P<0.05). In conclusion, YBE significantly alter end-tidal gases, resulting in complex oscillations of cardiovascular and cerebrovascular variables, and if practiced consistently, may reduce chemosensitivity.
Collapse
Affiliation(s)
- Joshua A A McKay
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Cara L McCulloch
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.
| | - Jordan S Querido
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Glen E Foster
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Michael S Koehle
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Division of Sports Medicine, University of British Columbia, Vancouver, BC, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Vitelli O, Del Pozzo M, Baccari G, Rabasco J, Pietropaoli N, Barreto M, Villa MP. Autonomic imbalance during apneic episodes in pediatric obstructive sleep apnea. Clin Neurophysiol 2016; 127:551-555. [DOI: 10.1016/j.clinph.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 11/26/2022]
|
13
|
Mechanism of sympathetic activation and blood pressure elevation in humans and animals following acute intermittent hypoxia. PROGRESS IN BRAIN RESEARCH 2014; 209:131-46. [PMID: 24746046 DOI: 10.1016/b978-0-444-63274-6.00007-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep apnea is associated with repeated episodes of hypoxemia, causing marked increase in sympathetic nerve activity and blood pressure. Considerable evidence suggests that intermittent hypoxia (IH) resulting from apnea is the primary stimulus for sympathetic overactivity in sleep apnea patients. Several IH protocols have been developed either in animals or in humans to investigate mechanisms underlying the altered autonomic regulation of the circulation. Most of these protocols involve several days (10-40 days) of IH exposure, that is, chronic intermittent hypoxia (CIH). Recent data suggest that a single session of IH exposure, that is, acute intermittent hypoxia (AIH), is already capable of increasing tonic sympathetic nerve output (sympathetic long-term facilitation, LTF) and altering chemo- and baroreflexes with or without elevation of blood pressure. This indicates that IH alters the autonomic neurocirculatory at a very early time point, although the mechanisms underlying this neuroplasticity have not been explored in detail. The purpose of this chapter is to briefly review the effects of AIH on sympathetic LTF and alteration of autonomic reflexes in comparison with the studies from CIH studies. We will also discuss the potential central and peripheral mechanism underlying sympathetic LTF.
Collapse
|
14
|
Gozal D, Hakim F, Kheirandish-Gozal L. Chemoreceptors, baroreceptors, and autonomic deregulation in children with obstructive sleep apnea. Respir Physiol Neurobiol 2012; 185:177-85. [PMID: 22954503 DOI: 10.1016/j.resp.2012.08.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 11/17/2022]
Abstract
Obstructive sleep apnea (OSA) is highly prevalent sleep disorder of breathing in both adults and children that is fraught with substantial cardiovascular morbidities, the latter being attributable to a complex interplay between intermittent hypoxia (IH), episodic hypercapnia, recurrent large intra-thoracic pressure swings, and sleep disruption. Alterations in autonomic nervous system function could underlie the perturbations in cardiovascular, neurocognitive, immune, endocrine and metabolic functions that affect many of the patients suffering from OSA. Although these issues have received substantial attention in adults, the same has thus far failed to occur in children, creating a quasi misperception that children are protected. Here, we provide a critical overview of the evidence supporting the presence of autonomic nervous system (ANS) perturbations in children with OSA, draw some parallel assessments to known mechanisms in rodents and adult humans, particularly, peripheral and central chemoreceptor and baroreceptor pathways, and suggest future research directions.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Comer Children's Hospital, The University of Chicago, Chicago, IL, USA.
| | | | | |
Collapse
|
15
|
Hakim F, Gozal D, Kheirandish-Gozal L. Sympathetic and catecholaminergic alterations in sleep apnea with particular emphasis on children. Front Neurol 2012; 3:7. [PMID: 22319509 PMCID: PMC3268184 DOI: 10.3389/fneur.2012.00007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/10/2012] [Indexed: 01/04/2023] Open
Abstract
Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA) is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.
Collapse
Affiliation(s)
- Fahed Hakim
- Department of Pediatrics, Comer Children's Hospital, The University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
16
|
Abstract
The clinical syndrome of obstructive sleep apnea (OSAS) in children is a distinct, yet somewhat overlapping disorder with the condition that occurs in adults, such that the clinical manifestations, polysomnographic findings, diagnostic criteria and treatment approaches need to be considered in an age-specific manner. Childhood OSAS has now become widely recognized as a frequent disorder and as a major public health problem. Pediatric OSAS, particularly when obesity is concurrently present, is associated with substantial end-organ morbidities and increased healthcare utilization. Although adenotonsillectomy (T&A) remains the first line of treatment, evidence in recent years suggests that the outcomes of this surgical procedure may not be as favorable as expected, such that post-T&A polysomnographic evaluation may be needed, especially in high-risk patient groups. In addition, incorporation of nonsurgical approaches for milder forms of the disorder and for residual OSAS after T&A is now being investigated.
Collapse
Affiliation(s)
- Riva Tauman
- Sleep Disorders Center, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv 64239, Israel.
| | | |
Collapse
|
17
|
Autonomic alterations and endothelial dysfunction in pediatric obstructive sleep apnea. Sleep Med 2010; 11:714-20. [DOI: 10.1016/j.sleep.2009.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 12/06/2009] [Accepted: 12/12/2009] [Indexed: 11/21/2022]
|
18
|
Xing T, Pilowsky PM. Acute intermittent hypoxia in rat in vivo elicits a robust increase in tonic sympathetic nerve activity that is independent of respiratory drive. J Physiol 2010; 588:3075-88. [PMID: 20566662 DOI: 10.1113/jphysiol.2010.190454] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acute intermittent hypoxia (AIH) elicits long-term increases in respiratory and sympathetic outflow (long-term facilitation, LTF). It is still unclear whether sympathetic LTF is totally dependent on changes in respiration, even though respiratory drive modulates sympathetic nerve activity (SNA). In urethane-anaesthetized, vagotomized mechanically ventilated Sprague-Dawley rats, we investigated the effect of ten 45 s episodes of 10% O2-90% N(2) on splanchnic sympathetic nerve activity (sSNA) and phrenic nerve activity (PNA). We then tested whether or not hypoxic sympathetic chemoreceptor and baroreceptor reflexes were changed 60 min after AIH. We found that 17 animals manifested a sustained increase of sSNA (+51.2+/-4.7%) 60 min after AIH, but only 10 of these rats also expressed phrenic LTF compared with the time controls (rats not exposed to hypoxia, n=5). Inspiratory triggered averages of integrated sSNA showed respiratory modulation of SNA regardless of whether or not phrenic LTF had developed. The hypoxic chemoreceptor reflex was enhanced by 60 min after the development of AIH (peak change from 76.9+/-13.9 to 159.5+/-24.9%). Finally, sympathetic baroreceptor reflex sensitivity increased after sympathetic LTF was established (Gainmax from 1.79+/-0.18 to 2.60+/-0.28% mmHg1). Our findings indicate that respiratory-sympathetic coupling does contribute to sympathetic LTF, but that an additional tonic increase of sympathetic tone is also present that is independent of the level of PNA. Sympathetic LTF is not linked to the change in baroreflex function, since the baroreflex appears to be enhanced rather than impaired, but does play an important role in the enhancement of the hypoxic chemoreflex.
Collapse
Affiliation(s)
- Tao Xing
- Australian School of Advanced Medicine, Macquarie University F10A, NSW 2109, Australia
| | | |
Collapse
|
19
|
Soukhova GK, Nozdrachev AD, Gozal D. Neonatal intermittent hypoxia and hypertension. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s002209300902008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Abstract
PURPOSE OF REVIEW To delineate some of the major morbid phenotypes that have emerged in pediatric obstructive sleep apnea (OSA), address new concepts in our understanding of OSA-associated morbidities, and elaborate on innovative therapeutic schemes that may improve outcomes for this condition. In addition, the conceptual framework whereby a childhood condition such as OSA can be linked to specific adult diseases will be presented. RECENT FINDINGS OSA in children is a frequent condition that affects up to 3% of nonobese, otherwise healthy children. In recent years, increased awareness of OSA and changes in obesity rates in children have contributed to significant changes in disease prevalence and clinical presentation, such that distinct morbidity-related phenotypes have become apparent. Furthermore, oxidative stress and systemic inflammatory pathways are mechanistically involved in the pathophysiology of OSA-associated morbidity. Adenotonsillectomy, the treatment of choice for pediatric OSA, may not be as efficacious as previously thought. Alternative nonsurgical therapies have started to emerge and may become an essential component of treatment. SUMMARY Pediatric OSA, particularly when obesity is concurrently present, is associated with substantial end-organ morbidities that primarily but not exclusively affect central nervous and cardiovascular systems. These morbidities are pathophysiologically mediated by inflammatory and free radical mediators. Although adenotonsillectomy remains the first line of treatment, more critical assessment of its role is needed, and incorporation of nonsurgical approaches to pediatric OSA seems warranted.
Collapse
|
21
|
Soukhova-O'Hare GK, Ortines RV, Gu Y, Nozdrachev AD, Prabhu SD, Gozal D. Postnatal Intermittent Hypoxia and Developmental Programming of Hypertension in Spontaneously Hypertensive Rats. Hypertension 2008; 52:156-62. [DOI: 10.1161/hypertensionaha.108.110296] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obstructive and central apneas during sleep are associated with chronic intermittent hypoxia (CIH) and increased cardiovascular morbidity. Spontaneously hypertensive rats exposed to CIH during postnatal days 4 to 30 develop exaggerated hypertension as adults. We hypothesized that reactive oxygen species and altered L-Ca
2+
channel activity may underlie the postnatal programming of exaggerated blood pressure and cardiac remodeling. Newborn male spontaneously hypertensive rats were exposed to CIH (10% and 21% O
2
alternating every 90 seconds, 12 h/d, for postnatal days 4 to 30) or normoxia (room air). In each condition, spontaneously hypertensive rats received daily (SC) 1 of 3 treatments:
l
-calcium channel blocker nifedipine (5 mg/kg), superoxide dismutase mimetic MnTMPyP pentachloride (10 mg/kg), or vehicle (polyethylene glycol). Blood pressure was evaluated monthly for 6 months after birth, and echocardiographic assessments were conducted at 6 months of age. CIH vehicle-treated rats presented higher systolic blood pressure (187±5 mm Hg) as compared with normoxic vehicle treated controls (163±2 mm Hg;
P
<0.001). Postnatal CIH elicited marked increases in left ventricular wall thickness in a pattern of concentric hypertrophy with augmented systolic contractility. The treatment with nifedipine in the CIH group attenuated blood pressure (159±2 mm Hg;
P
<0.001) and normalized left ventricular wall thickness and systolic function, whereas the treatment with SOD mimetic decreased blood pressure (165±2 mm Hg;
P
<0.001) and reduced left ventricular wall thickness without changes in the systolic function. We conclude that Ca
2+
and reactive oxygen species–mediated signaling during intermittent hypoxia are critical mechanisms underlying postnatal programming of an increased severity of hypertension and hypertrophic cardiac remodeling in a genetically susceptible rodent model.
Collapse
Affiliation(s)
- Galia K. Soukhova-O'Hare
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Roger V. Ortines
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Yan Gu
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Alexander D. Nozdrachev
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - Sumanth D. Prabhu
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| | - David Gozal
- From the Kosair Children’s Hospital Research Institute (G.K.S-O., D.G.), Department of Pediatrics, Institute of Molecular Cardiology (R.V.O., Y.G., S.D.P.), Department of Medicine, and Department of Pharmacology and Toxicology (D.G.), University of Louisville, Ky; Department of General Physiology (G.K.S-O., A.D.N.), St Petersburg State University, St Petersburg, Russia; Medical Service (S.D.P.), and the Louisville Veterans’ Affairs Medical Center, Louisville, Ky
| |
Collapse
|
22
|
Ojeda NB, Johnson WR, Dwyer TM, Alexander BT. Early renal denervation prevents development of hypertension in growth-restricted offspring. Clin Exp Pharmacol Physiol 2007; 34:1212-6. [PMID: 17880379 PMCID: PMC2840392 DOI: 10.1111/j.1440-1681.2007.04754.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Low birth weight is associated with an increased risk for the development of hypertension. Our laboratory uses a model of reduced uterine perfusion in the pregnant rat that results in intrauterine growth-restricted (IUGR) offspring that develop hypertension at a prepubertal age. Although hypertension develops in both prepubertal male and female IUGR offspring, only male IUGR offspring remain hypertensive after puberty. We reported previously that bilateral renal denervation abolishes hypertension in adult male IUGR offspring, indicating an important role for the renal nerves in the maintenance of established IUGR-induced hypertension. We also reported that angiotensin-converting enzyme inhibition abolishes hypertension in adult male IUGR offspring. However, activation of the renin-angiotensin system does not occur in male IUGR offspring until after puberty, or after the development of established IUGR-induced hypertension. Therefore, the mechanisms involved in the development of IUGR-induced hypertension may differ from those involved in the maintenance of established IUGR-induced hypertension. Thus, the purpose of the present study was to determine whether the renal nerves play a causative role in the early development of IUGR-induced hypertension in prepubertal IUGR offspring. 2. Intrauterine growth-restricted and control offspring were subjected to either bilateral renal denervation or sham denervation, respectively, at 4 weeks of age. Mean arterial pressure (MAP) was determined at 6 weeks of age in conscious, chronically instrumented animals. Adequacy of renal denervation was verified by renal noradrenaline content. 3. Whereas renal denervation had no effect on MAP in control offspring (103 +/- 2 vs 102 +/- 3 mmHg for sham vs denervated, respectively), it reduced blood pressure in growth-restricted offspring (114 +/- 3 vs 104 +/- 1 mmHg for sham vs denervated, respectively; P < 0.01). Renal noradrenaline content was significantly reduced in denervated animals relative to sham operated rats. 4. Thus, the data indicate a role for the renal nerves in the aetiology of IUGR-induced hypertension and suggest that the renal nerves may participate in the early development of hypertension in IUGR offspring in addition to established hypertension observed in adult male IUGR offspring.
Collapse
Affiliation(s)
- Norma B Ojeda
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | |
Collapse
|
23
|
Gu H, Lin M, Liu J, Gozal D, Scrogin KE, Wurster R, Chapleau MW, Ma X, Cheng ZJ. Selective impairment of central mediation of baroreflex in anesthetized young adult Fischer 344 rats after chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 2007; 293:H2809-18. [PMID: 17693540 DOI: 10.1152/ajpheart.00358.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Baroreflex control of heart rate (HR) is impaired after chronic intermittent hypoxia (CIH). However, the location and nature of this response remain unclear. We examined baroreceptor afferent, vagal efferent, and central components of the baroreflex circuitry. Fischer 344 (F344) rats were exposed to room air (RA) or CIH for 35-50 days and were then anesthetized with isoflurane, ventilated, and catheterized for measurement of mean arterial blood pressure (MAP) and HR. Baroreceptor function was characterized by measuring percent changes of integrated aortic depressor nerve (ADN) activity (Int ADNA) relative to the baseline value in response to sodium nitroprusside- and phenylephrine-induced changes in MAP. Data were fitted to a sigmoid logistic function curve. HR responses to electrical stimulation of the left ADN and the right vagus nerve were assessed under ketamine-acepromazine anesthesia. Compared with RA controls, CIH significantly increased maximum baroreceptor gain or maximum slope, maximum Int ADNA, and Int ADNA range (maximum - minimum Int ADNA), whereas other parameters of the logistic function were unchanged. In addition, CIH increased the maximum amplitude of bradycardic response to vagal efferent stimulation and decreased the time from stimulus onset to peak response. In contrast, CIH significantly reduced the maximum amplitude of bradycardic response to left ADN stimulation and increased the time from stimulus onset to peak response. Therefore, CIH decreased central mediation of the baroreflex but augmented baroreceptor afferent function and vagal efferent control of HR.
Collapse
Affiliation(s)
- He Gu
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin M, Liu R, Gozal D, Wead WB, Chapleau MW, Wurster R, Cheng ZJ. Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice. Am J Physiol Heart Circ Physiol 2007; 293:H997-1006. [PMID: 17384123 DOI: 10.1152/ajpheart.01124.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic intermittent hypoxia (CIH) leads to increased sympathetic nerve activity and arterial hypertension. In this study, we tested the hypothesis that CIH impairs baroreflex (BR) control of heart rate (HR) in mice, and that decreased cardiac chronotropic responsiveness to vagal efferent activity contributes to such impairment. C57BL/6J mice were exposed to either room air (RA) or CIH (6-min alternations of 21% O(2) and 5.7% O(2), 12 h/day) for 90 days. After the treatment period, mice were anesthetized (Avertin) and arterial blood pressure (ABP) was measured from the femoral artery. Mean ABP (MABP) was significantly increased in mice exposed to CIH (98.7 +/- 2.5 vs. RA: 78.9 +/- 1.4 mmHg, P < 0.001). CIH increased HR significantly (584.7 +/- 8.9 beats/min; RA: 518.2 +/- 17.9 beats/min, P < 0.05). Sustained infusion of phenylephrine (PE) at different doses (0.1-0.4 microg/min) significantly increased MABP in both CIH and RA mice, but the ABP-mediated decreases in HR were significantly attenuated in mice exposed to CIH (P < 0.001). In contrast, decreases in HR in response to electrical stimulation of the left vagus nerve (30 microA, 2-ms pulses) were significantly enhanced in mice exposed to CIH compared with RA mice at low frequencies. We conclude that CIH elicits a sustained impairment of baroreflex control of HR in mice. The blunted BR-mediated bradycardia occurs despite enhanced cardiac chronotropic responsiveness to vagal efferent stimulation. This suggests that an afferent and/or a central defect is responsible for the baroreflex impairment following CIH.
Collapse
Affiliation(s)
- Min Lin
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, 4000 Central Florida Parkway, Orlando, FL 32816, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The prevalence and severity of obesity in children and adolescent is dramatically increasing worldwide with a corresponding increase in the prevalence of obesity-associated morbidities particularly those involving OSAS and metabolic and cardiovascular sequelae. Obstructive sleep apnea and obesity hypoventilation syndrome are important and serious consequences of obesity, and may in fact mediate components of the association between obesity and metabolic and cardiovascular morbidities, most likely via potentiation of inflammatory cascades. It is anticipated that the increased prevalence of obesity in children and adolescents in our society will be accompanied by a steady increase in the incidence of OSAS. In this review, we will examine our current understanding of sleep-disordered breathing and associated morbidities in obese children, and summarize the range of therapeutic modalities currently available for this high-risk population.
Collapse
Affiliation(s)
- Riva Tauman
- Kosair Children's Hospital Research Institute, and Division of Pediatric Sleep, Medicine, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|