1
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
2
|
Stella R, Bonadio RS, Cagnin S, Massimino ML, Bertoli A, Peggion C. Perturbations of the Proteome and of Secreted Metabolites in Primary Astrocytes from the hSOD1(G93A) ALS Mouse Model. Int J Mol Sci 2021; 22:ijms22137028. [PMID: 34209958 PMCID: PMC8268687 DOI: 10.3390/ijms22137028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose pathophysiology is largely unknown. Despite the fact that motor neuron (MN) death is recognized as the key event in ALS, astrocytes dysfunctionalities and neuroinflammation were demonstrated to accompany and probably even drive MN loss. Nevertheless, the mechanisms priming astrocyte failure and hyperactivation are still obscure. In this work, altered pathways and molecules in ALS astrocytes were unveiled by investigating the proteomic profile and the secreted metabolome of primary spinal cord astrocytes derived from transgenic ALS mouse model overexpressing the human (h)SOD1(G93A) protein in comparison with the transgenic counterpart expressing hSOD1(WT) protein. Here we show that ALS primary astrocytes are depleted of proteins-and of secreted metabolites-involved in glutathione metabolism and signaling. The observed increased activation of Nf-kB, Ebf1, and Plag1 transcription factors may account for the augmented expression of proteins involved in the proteolytic routes mediated by proteasome or endosome-lysosome systems. Moreover, hSOD1(G93A) primary astrocytes also display altered lipid metabolism. Our results provide novel insights into the altered molecular pathways that may underlie astrocyte dysfunctionalities and altered astrocyte-MN crosstalk in ALS, representing potential therapeutic targets to abrogate or slow down MN demise in disease pathogenesis.
Collapse
Affiliation(s)
- Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Raphael Severino Bonadio
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Stefano Cagnin
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | | | - Alessandro Bertoli
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| |
Collapse
|
3
|
Juncker M, Kim C, Reed R, Haas A, Schwartzenburg J, Desai S. ISG15 attenuates post-translational modifications of mitofusins and congression of damaged mitochondria in Ataxia Telangiectasia cells. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166102. [PMID: 33617986 DOI: 10.1016/j.bbadis.2021.166102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Mitophagy is defective in several neurodegenerative diseases, including Ataxia Telangiectasia (A-T). However, the molecular mechanism underlying defective mitophagy in A-T is unknown. Literature indicates that damaged mitochondria are transported to the perinuclear region prior to their removal via mitophagy. Our previous work has indicated that conjugation of SUMO2 (Small Ubiquitin-like Modifier 2) to mitofusins (Mfns) may be necessary for congression of mitochondria into SUMO2-/ubiquitin-/LC3-positive compact structures resembling mito-aggresomes at the perinuclear region in CCCP-treated HEK293 cells. Here, we demonstrate that Mfns are SUMOylated, and mitochondria are transported to the perinuclear region; however, mitochondria fail to congress into mito-aggresome-like structures in CCCP-treated A-T cells. Defect in mitochondrial congression is causally related to constitutively elevated ISG15 (Interferon-Stimulated Gene 15), an antagonist of the ubiquitin pathway, in A-T cells. Suppression of the ISG15 pathway restores mitochondrial congression, reduce oxidative stress, and level of unhealthy mitochondria, which is suggestive of restoration of mitophagy in A-T cells. ISG15 is also constitutively elevated and mitophagy is defective in Amytrophic Lateral Sclerosis (ALS). The constitutively elevated ISG15 pathway therefore appears to be a common unifying biochemical mechanism underlying defective mitophagy in neurodegenerative disorders thus, implying the broader significance of our findings, and suggest the potential role of ISG15 inhibitors in their treatment.
Collapse
Affiliation(s)
- Meredith Juncker
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Ryan Reed
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Arthur Haas
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Joshua Schwartzenburg
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Shyamal Desai
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Kabir MT, Uddin MS, Abdeen A, Ashraf GM, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Curr Top Med Chem 2021; 20:2025-2043. [PMID: 32552649 DOI: 10.2174/1568026620666200618114924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Several proteolytic systems including ubiquitin (Ub)-proteasome system (UPS), chaperonemediated autophagy (CMA), and macroautophagy are used by the mammalian cells to remove misfolded proteins (MPs). UPS mediates degradation of most of the MPs, where Ub-conjugated substrates are deubiquitinated, unfolded, and passed through the proteasome's narrow chamber, and eventually break into smaller peptides. It has been observed that the substrates that show a specific degradation signal, the KFERQ sequence motif, can be delivered to and go through CMA-mediated degradation in lysosomes. Macroautophagy can help in the degradation of substrates that are prone to aggregation and resistant to both the CMA and UPS. In the aforesaid case, cargoes are separated into autophagosomes before lysosomal hydrolase-mediated degradation. Even though the majority of the aggregated and MPs in the human proteome can be removed via cellular protein quality control (PQC), some mutant and native proteins tend to aggregate into β-sheet-rich oligomers that exhibit resistance to all identified proteolytic processes and can, therefore, grow into extracellular plaques or inclusion bodies. Indeed, the buildup of protease-resistant aggregated and MPs is a usual process underlying various protein misfolding disorders, including neurodegenerative diseases (NDs) for example Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. In this article, we have focused on the contribution of PQC in the degradation of pathogenic proteins in NDs.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Thompson AG, Gray E, Mäger I, Thézénas ML, Charles PD, Talbot K, Fischer R, Kessler BM, Wood M, Turner MR. CSF extracellular vesicle proteomics demonstrates altered protein homeostasis in amyotrophic lateral sclerosis. Clin Proteomics 2020; 17:31. [PMID: 32821252 PMCID: PMC7433176 DOI: 10.1186/s12014-020-09294-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Extracellular vesicles (EVs) released by neurons and glia reach the cerebrospinal fluid (CSF). Studying the proteome of CSF-derived EVs offers a novel perspective on the key intracellular processes associated with the pathogenesis of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and a potential source from which to develop biomarkers. Methods CSF EVs were extracted using ultrafiltration liquid chromatography from ALS patients and controls. EV size distribution and concentration was measured using nanoparticle tracking analysis and liquid chromatography-tandem mass spectrometry proteomic analysis performed. Results CSF EV concentration and size distribution did not differ between ALS and control groups, nor between a sub-group of ALS patients with or without an associated hexanucleotide repeat expansion (HRE) in C9orf72. Univariate proteomic analysis identified downregulation of the pentameric proteasome-like protein Bleomycin hydrolase in ALS patients, whilst Gene Ontology enrichment analysis demonstrated downregulation of proteasome core complex proteins (8/8 proteins, normalized enrichment ratio -1.77, FDR-adjusted p = 0.057) in the ALS group. The sub-group of ALS patients associated with the C9orf72 HRE showed upregulation in Ubiquitin-like modifying-activating protein 1 (UBA1) compared to non-C9orf72 cases. Conclusions Proteomic analysis of CSF EVs in ALS detects intracellular alterations in protein homeostatic mechanisms, previously only identified in pathological tissues. This supports the wider use of CSF EVs as a source of novel biomarkers reflecting key and potentially druggable pathological intracellular pathway alterations in ALS.
Collapse
Affiliation(s)
- Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Imre Mäger
- Department of Paediatrics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Marie-Laëtitia Thézénas
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Mathew Wood
- Department of Paediatrics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| |
Collapse
|
6
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
7
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
8
|
Chaves-Filho AB, Pinto IFD, Dantas LS, Xavier AM, Inague A, Faria RL, Medeiros MHG, Glezer I, Yoshinaga MY, Miyamoto S. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci Rep 2019; 9:11642. [PMID: 31406145 PMCID: PMC6691112 DOI: 10.1038/s41598-019-48059-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons leading to muscle paralysis and death. While a link between dysregulated lipid metabolism and ALS has been proposed, lipidome alterations involved in disease progression are still understudied. Using a rodent model of ALS overexpressing mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A), we performed a comparative lipidomic analysis in motor cortex and spinal cord tissues of SOD1-G93A and WT rats at asymptomatic (~70 days) and symptomatic stages (~120 days). Interestingly, lipidome alterations in motor cortex were mostly related to age than ALS. In contrast, drastic changes were observed in spinal cord of SOD1-G93A 120d group, including decreased levels of cardiolipin and a 6-fold increase in several cholesteryl esters linked to polyunsaturated fatty acids. Consistent with previous studies, our findings suggest abnormal mitochondria in motor neurons and lipid droplets accumulation in aberrant astrocytes. Although the mechanism leading to cholesteryl esters accumulation remains to be established, we postulate a hypothetical model based on neuroprotection of polyunsaturated fatty acids into lipid droplets in response to increased oxidative stress. Implicated in the pathology of other neurodegenerative diseases, cholesteryl esters appear as attractive targets for further investigations.
Collapse
Affiliation(s)
| | | | - Lucas Souza Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Andre Machado Xavier
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Lucas Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Yukio Yoshinaga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Desai S, Juncker M, Kim C. Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases. Exp Biol Med (Maywood) 2018; 243:554-562. [PMID: 29316798 DOI: 10.1177/1535370217752351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitophagy is a cellular process by which dysfunctional mitochondria are degraded via autophagy. Increasing empirical evidence proposes that this mitochondrial quality-control mechanism is defective in neurons of patients with various neurodegenerative diseases such as Ataxia Telangiectasia, Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Accumulation of defective mitochondria and the production of reactive oxygen species due to defective mitophagy have been identified as causes underlying neurodegenerative disease pathogenesis. However, the reason mitophagy is defective in most neurodegenerative diseases is unclear. Like mitophagy, defects in the ubiquitin/26S proteasome pathway have been linked to neurodegeneration, resulting in the characteristic protein aggregates often seen in neurons of affected patients. Although initiation of mitophagy requires a functional ubiquitin pathway, whether defects in the ubiquitin pathway are causally responsible for defective mitophagy is not known. In this mini-review, we introduce mitophagy and ubiquitin pathways and provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway. We will then briefly review empirical evidence supporting mitophagy defects in neurodegenerative diseases. The review will conclude with a discussion of the constitutively elevated expression of ubiquitin-like protein Interferon-Stimulated Gene 15 (ISG15), an antagonist of the ubiquitin pathway, as a potential cause of defective mitophagy in neurodegenerative diseases. Impact statement Neurodegenerative diseases place an enormous burden on patients and caregivers globally. Over six million people in the United States alone suffer from neurodegenerative diseases, all of which are chronic, incurable, and with causes unknown. Identifying a common molecular mechanism underpinning neurodegenerative disease pathology is urgently needed to aid in the design of effective therapies to ease suffering, reduce economic cost, and improve the quality of life for these patients. Although the development of neurodegeneration may vary between neurodegenerative diseases, they have common cellular hallmarks, including defects in the ubiquitin-proteasome system and mitophagy. In this review, we will provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway and discuss the potential of targeting mitophagy and ubiquitin pathways for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shyamal Desai
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Juncker
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 2016; 121:903-917. [DOI: 10.1016/j.ejmech.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
|
11
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
12
|
Zhang FF, Morioka N, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes. Biochem Biophys Res Commun 2015. [PMID: 26212436 DOI: 10.1016/j.bbrc.2015.07.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state.
Collapse
Affiliation(s)
- Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Tomoya Kitamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
13
|
Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015; 47:e147. [PMID: 25766616 PMCID: PMC4351408 DOI: 10.1038/emm.2014.117] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.
Collapse
|
14
|
Abstract
The introduction of combined antiretroviral therapy (cART) has dramatically reduced the risk of central nervous system opportunistic infection and severe dementia secondary to HIV infection in the last two decades. However, a milder form of HIV-associated neurocognitive disorder (HAND) remains prevalent in the cART era and has a significant impact on patients' quality of life. In this review, we outline updated research findings on investigating and monitoring cognitive impairment in HAND patients. The outcomes of recent research on the pathogenesis of HAND and how it overlaps with neurodegenerative diseases are discussed. Lastly, there is a brief discussion of the results of clinical trials using a brain-penetrating cART regimen.
Collapse
|
15
|
Mühling T, Duda J, Weishaupt JH, Ludolph AC, Liss B. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca(2+) transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice. Front Cell Neurosci 2014; 8:353. [PMID: 25452714 PMCID: PMC4231948 DOI: 10.3389/fncel.2014.00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 12/13/2022] Open
Abstract
Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS), a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs) from a common ALS mouse model, the endstage superoxide dismutase SOD1G93A transgenic mouse, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT) positive hMNs from wildtype (WT) and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1, and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na+/Ca2+ exchanger NCX1 were also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a neuroprotective strategy for ALS.
Collapse
Affiliation(s)
- Tobias Mühling
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | - Johanna Duda
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | | | | | - Birgit Liss
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| |
Collapse
|
16
|
Jansen AHP, Reits EAJ, Hol EM. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front Mol Neurosci 2014; 7:73. [PMID: 25152710 PMCID: PMC4126450 DOI: 10.3389/fnmol.2014.00073] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal function and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS function in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell function might provide essential information in unraveling mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne H P Jansen
- Department of Cell Biology and Histology, Academic Medical Center Amsterdam, Netherlands
| | - Eric A J Reits
- Department of Cell Biology and Histology, Academic Medical Center Amsterdam, Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands ; Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Netherlands
| |
Collapse
|
17
|
Valori CF, Brambilla L, Martorana F, Rossi D. The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 2014; 71:287-97. [PMID: 23912896 PMCID: PMC11113174 DOI: 10.1007/s00018-013-1429-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia-neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Chiara F. Valori
- Department of Neuropathology, German Center for Neurodegenerative Diseases (DZNE), Paul-Ehrlich-Strasse 17, 72076, Tübingen, Germany
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
18
|
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70:4729-45. [PMID: 23864030 PMCID: PMC4172456 DOI: 10.1007/s00018-013-1415-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/06/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient's life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression.
Collapse
Affiliation(s)
- Rachna S. Pandya
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Wei Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Robert Bowser
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Robert M. Friedlander
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
19
|
Mendonça DMF, Pizzati L, Mostacada K, de S Martins SC, Higashi R, Ayres Sá L, Moura Neto V, Chimelli L, Martinez AMB. Neuroproteomics: an insight into ALS. Neurol Res 2013; 34:937-43. [PMID: 23146297 DOI: 10.1179/1743132812y.0000000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown aetiology. Diagnosis is made through physical examination, electrophysiological findings, and by excluding other conditions. There is not a single biomarker that concludes the diagnosis. The aim of this study was to investigate differentially expressed proteins in cerebrospinal fluid (CSF) of ALS patients compared to control subjects, with the purpose to identify a panel of possible biomarkers for the disease. The differentially expressed spots/proteins were submitted to two-dimensional (2D) electrophoresis and recognized with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Parkin-like and many iron and zinc binding were some of the proteins found in ALS CSF. Parkin is a ligase involved in ubiquitin-proteasome pathway and mutations in the parkin gene are the most common cause of recessive familial Parkinson's disease. Iron and zinc are involved with many important metabolic processes and are related to neurodegenerative disease. Common features of ALS comprise failure of the ubiquitin-proteasome system and increased levels of metal ions in the brain. Therefore, the identification of these proteins can be a significant step in ALS research. These and other identified proteins are discussed in this study.
Collapse
Affiliation(s)
- D M F Mendonça
- Departamento de Biociências, Universidade Federal de Sergipe, Sergipe, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brambilla L, Martorana F, Rossi D. Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 2012; 7:28-36. [PMID: 23093800 DOI: 10.4161/pri.22512] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Growing evidence indicates that astrocytes cannot be just considered as passive supportive cells deputed to preserve neuronal activity and survival, but rather they are involved in a striking number of active functions that are critical to the performance of the central nervous system (CNS). As a consequence, it is becoming more and more evident that the peculiar properties of these cells can actively contribute to the extraordinary functional complexity of the brain and spinal cord. This new perception of the functioning of the CNS opens up a wide range of new possibilities to interpret various physiological and pathological events, and moves the focus beyond the neuronal compartment toward astrocyte-neuron interactions. With this in mind, here we provide a synopsis of the activities astrocytes perform in normal conditions, and we try to discuss what goes wrong with these cells in specific pathological conditions, such as Alzheimer Disease, prion diseases and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
| | | | | |
Collapse
|
21
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
22
|
Wallis N, Zagami CJ, Beart PM, O'Shea RD. Combined excitotoxic-oxidative stress and the concept of non-cell autonomous pathology of ALS: insights into motoneuron axonopathy and astrogliosis. Neurochem Int 2012; 61:523-30. [PMID: 22421531 DOI: 10.1016/j.neuint.2012.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/09/2012] [Accepted: 02/22/2012] [Indexed: 12/14/2022]
Abstract
Non-cell autonomous pathology is widely accepted to determine the demise of motoneurons (MNs) in amyotrophic lateral sclerosis (ALS) with astrocytes, GFAP and glutamate transport suggested to play roles in reactive astrogliosis. Previously we described actions of excitotoxicity and oxidative stress to produce differential injury of motoneurons and astrocytes, respectively, and our goal here was to define patterns of MN injury and astrogliosis during a combined excitotoxic-oxidative injury since such a paradigm more closely models disease pathology. Using an in vitro neuronal-glial culture of embryonic mouse spinal cord, we demonstrate that glutamate transport activity was maintained or increased initially, despite a loss of cellular viability, induced by exposure to combinations of excitotoxic [(S)-5-fluorowillardiine (FW)] and oxidative [3-morpholinosydnonimine (SIN-1)] insults over 48 h. Under these conditions, injury was slow in time course and apoptotic-like as shown by the patterns of annexin V and propidium iodide (PI) labelling. Immunocytochemistry for SMI-32 revealed that injury produced time- and insult-dependent reductions in the size of MN arbours, axonal dieback and appreciable neuritic blebbing. These changes were preceded by early hypertrophy of GFAP-positive astrocytes, and followed by more delayed stellation and eventual gliotoxicity. Alterations to EAAT2 immunolabelling were similar to those found for GFAP being initially maintained and then eventually reduced at 48 h. Image analysis of immunocytochemical data confirmed the differential time-dependent changes found with SMI-32, GFAP and EAAT2. Axonopathy and blebbing of MNs was frequently associated with areas of low GFAP immunoreactivity. The exact profile of changes to MNs and astrocytes was context-dependent and sensitive to subtle changes in the mix of excitotoxic-oxidative insults. Overall our findings are consistent with the concepts that the nature, extent and time-course of astrogliosis are insult-dependent, and that discrete pro-survival and destructive components of astrogliosis are likely to determine the precise profile of MN injury in non-cell autonomous pathology of ALS.
Collapse
Affiliation(s)
- Nicole Wallis
- Molecular Neuropharmacology, Florey Neuroscience Institutes, Parkville, Australia
| | | | | | | |
Collapse
|
23
|
Accumulation of wildtype and ALS-linked mutated VAPB impairs activity of the proteasome. PLoS One 2011; 6:e26066. [PMID: 21998752 PMCID: PMC3187839 DOI: 10.1371/journal.pone.0026066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/19/2011] [Indexed: 11/19/2022] Open
Abstract
Cellular homeostasis relies on a tight control of protein synthesis, folding and degradation, in which the endoplasmic reticulum (ER) quality control and the ubiquitin proteasome system (UPS) have an instrumental function. ER stress and aberrant accumulation of misfolded proteins represent a pathological signature of amyotrophic lateral sclerosis (ALS), a fatal paralytic disorder caused by the selective degeneration of motoneurons in the brain and spinal cord. Mutations in the ER-resident protein VAPB have been associated with familial forms of the disease. ALS-linked mutations cause VAPB to form cytoplasmic aggregates. We previously demonstrated that viral-mediated expression of both wildtype and mutant human VAPB (hVAPB) leads to an ER stress response that contributes to the selective death of motoneurons. However, the mechanisms behind ER stress, defective UPS and hVAPB-associated motoneuron degeneration remain elusive. Here, we show that the overexpression of wildtype and mutated hVAPB, which is found to be less stable than the wildtype protein, leads to the abnormal accumulation of ubiquitin and ubiquitin-like protein conjugates in non-human primate cells. We observed that overexpression of both forms of hVAPB elicited an ER stress response. Treatment of wildtype and mutated hVAPB expressing cells with the ER stress inhibitor salubrinal diminished the burden of ubiquitinated proteins, suggesting that ER stress contributes to the impairment of proteasome function. We also found that both wildtype and mutated hVAPB can associate with the 20S proteasome, which was found to accumulate at the ER with wildtype hVAPB or in mutant hVAPB aggregates. Our results suggest that ER stress and corruption of the proteasome function might contribute to the aberrant protein homeostasis associated with hVAPB.
Collapse
|
24
|
Mendonça DMF, Martins SCS, Higashi R, Muscara MN, Neto VM, Chimelli L, Martinez AMB. Neurofilament heavy subunit in cerebrospinal fluid: a biomarker of amyotrophic lateral sclerosis? ACTA ACUST UNITED AC 2011; 12:144-7. [PMID: 21198418 DOI: 10.3109/17482968.2010.542002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objectives of this study were to investigate the presence of the three neurofilament subunits, ubiquitin, proteasome and 3-nitrotyrosine, in CSF samples of ALS patients. CSF samples were obtained by lumbar puncture from 10 ALS patients and six controls. All samples were analysed by Western blotting. Results revealed that neurofilament heavy subunit was identified in 70% of ALS cases and we conclude that this subunit may be a promising biomarker for clinical diagnosis of ALS.
Collapse
|
25
|
Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2010; 69:346-55. [PMID: 20448480 DOI: 10.1097/nen.0b013e3181d44992] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) lumen causes a cellular stress response termed the unfolded protein response. Although ER stress has been implicated in various neurodegenerative diseases, the morphological features of aggregated proteins in ER lumina that may cause neurodegeneration have not been well characterized. We examined anterior horn neurons using immunohistochemistry and electron microscopy in 12 sporadic amyotrophic lateral sclerosis (ALS) patients and 12 controls. Approximately 2.6% of both normal-appearing and degenerated motor neurons in ALS cases were immunostained for the ER chaperone protein glucose-regulated protein 78, and approximately 0.1% of these neurons was glucose-regulated protein 78 positive in controls (p = 0.0004). Amyotrophic lateral sclerosis cases also tended to have glucose-regulated protein 78-positive motor neurons more frequently than control cases (p = 0.08). By electron microscopy,neurons in ALS patients showed accumulations of amorphous and granular material suggestive of misfolded or unfolded proteins in dilated predominantly normal-appearing ER. There were also wavy membranous structures extending from the ER membranes that lacked membrane-bound ribosomes, electron-dense material resembling Bunina bodies, Hirano bodies, honeycomb-like structures, and membrane-particle complexes associated with the ER in these neurons. Control sample neurons demonstrated none of these features. These ER alterations suggest that the unfolded protein response is activated in motor neurons in ALS patients and provide the first morphological evidence that ER stress may be involved in the neurodegeneration of motor neurons in early stages of sporadic ALS.
Collapse
|
26
|
Wobbler mice modeling motor neuron disease display elevated transactive response DNA binding protein. Neuroscience 2009; 158:745-50. [DOI: 10.1016/j.neuroscience.2008.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/14/2008] [Accepted: 10/16/2008] [Indexed: 12/12/2022]
|
27
|
|
28
|
Marques SA, Mostacada K, Martinez AMB. Immunoelectron microscopy reveals the presence of neurofilament proteins in retinal terminals undergoing dark degeneration. Brain Res 2008; 1222:201-6. [PMID: 18586229 DOI: 10.1016/j.brainres.2008.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/14/2008] [Accepted: 05/17/2008] [Indexed: 11/30/2022]
Abstract
After nerve crushing or section, the distal stump undergoes morphological changes described as Wallerian degeneration (WD). Immediately after nerve injury, early ultrastructural alterations occur in the terminal boutons, a process known as terminal degeneration (TD), which occurs before degeneration of the axon and leads to electrophysiological impairment. In this study we investigated the presence of neurofilament (NF) proteins in TD and compared the results with degeneration in the optic nerve. Young adult Wistar rats were submitted to bilateral enucleation and perfused after 24 h, 48 h and 1 week. Optic nerves (ON) and superior colliculus (SC) segments were processed for electron microscopy (EM) and immunoelectron microscopy (IEM) for NF subunits. Analysis of ultrathin sections of SC, at 24 h, revealed terminals undergoing TD. At 48 h and 1 week after enucleation, there was a clear increase in the number of degenerating terminals. The cytoarchitecture of the optic nerve did not change considerably at 24 h, but it was progressively altered at 48 h and 1 week after enucleation, when we observed intense astrogliosis, and most fibers exhibited dark degeneration (DD). The IEM for the NF subunits of normal ON showed gold particles located along the filaments, but we did not observe labeling for neurofilament proteins in normal retinal terminals. However, 48 h after lesion, we observed immunogold particles for the NF proteins in fibers undergoing DD and on terminals undergoing TD. Therefore, we can conclude that NF proteins participate in the process of TD, and this event occurs before complete axonal degeneration, suggesting different mechanisms for TD and DD.
Collapse
Affiliation(s)
- Suelen Adriani Marques
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
29
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
30
|
Yao X, Liu J, McCabe JT. Alterations of cerebral cortex and hippocampal proteasome subunit expression and function in a traumatic brain injury rat model. J Neurochem 2007; 104:353-63. [PMID: 17944870 DOI: 10.1111/j.1471-4159.2007.04970.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following cellular stress or tissue injury, the proteasome plays a critical role in protein degradation and signal transduction. The present study examined the beta-subunit expression of constitutive proteasomes (beta1, beta2, and beta5), immunoproteasomes (beta1i, beta2i, and beta5i) and the 11S proteasome activator, PA28alpha, in the rat CNS after traumatic brain injury (TBI). Concomitant measures assessed changes in proteasome activities. Quantitative real time PCR results indicated that beta1 and beta2 mRNA levels were not changed, while beta5 mRNA levels were significantly decreased in injured CNS following TBI. However, beta1i, beta2i, beta5i, and PA28alpha mRNA levels were significantly increased in the injured CNS. Western blotting studies found that beta1, beta2, beta5, beta2i, and beta5i subunit protein levels remained unchanged in the injured CNS, but beta1i and PA28alpha protein levels were significantly elevated in ipsilateral cerebral cortex and hippocampus. Proteasome activity assays found that peptidyl glutamyl peptide hydrolase-like and chymotrypsin-like activity were significantly reduced in the CNS after TBI, and that trypsin-like proteasome activity was increased in the injured cerebral cortex. Our results demonstrated that both proteasome composition and function in the CNS were affected by trauma. Treatments that preserve proteasome function following CNS injury may be beneficial as an approach to cerebral neuroprotection.
Collapse
Affiliation(s)
- Xianglan Yao
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.
| | | | | |
Collapse
|