1
|
Tessari A, Soliman SHA, Orlacchio A, Capece M, Amann JM, Visone R, Carbone DP, Palmieri D, Coppola V. RANBP9 as potential therapeutic target in non-small cell lung cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6. [PMID: 34778565 PMCID: PMC8589326 DOI: 10.20517/2394-4722.2020.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.
Collapse
Affiliation(s)
- Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy.,Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Joseph M Amann
- Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rosa Visone
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
2
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|
3
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
4
|
Puverel S, Kiris E, Singh S, Klarmann KD, Coppola V, Keller JR, Tessarollo L. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 2018; 7:85109-85123. [PMID: 27835883 PMCID: PMC5341297 DOI: 10.18632/oncotarget.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Collapse
Affiliation(s)
- Sandrine Puverel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Vincenzo Coppola
- The Ohio State University, Department of Cancer, Biology and Genetics, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Zhang J, Cong X, Zhaoqiao J, Yang X, Li M, Chen H, Mi R, Jin G, Liu F, Huang BR. Ran binding protein 9 (RanBPM) binds IFN-λR1 in the IFN-λ signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1030-1039. [PMID: 28547582 DOI: 10.1007/s11427-017-9028-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/11/2017] [Indexed: 12/15/2022]
Abstract
Like the type I interferons (IFNs), the recently discovered cytokine IFN-λ displays antiviral, antiproliferative, and proapoptotic activities, mediated by a heterodimeric IFN-λ receptor complex composed of a unique IFN-λR1 chain and the IL-10R2 chain. However, the molecular mechanism of the IFN-λ-regulated pathway remains unclear. In this study, we newly identified RAN-binding protein M (RanBPM) as a binding partner of IFN-λR1. The interaction between RanBPM and IFN-λR1 was identified with a glutathione S-transferase pull-down assay and coimmunoprecipitation experiments. IFN-λ1 stimulates this interaction and affects the cellular distribution of RanBPM. However, the interaction between RanBPM and IFN-λR1 does not correlate with their conserved TRAF6-binding sites. Furthermore, we also found that RanBPM is a scaffolding protein with a modulatory function that regulates the activities of IFN-stimulated response elements. Therefore, RanBPM plays a novel role in the IFN-λ-regulated signaling pathway.
Collapse
Affiliation(s)
- Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Xiaojie Cong
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jiajie Zhaoqiao
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xia Yang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Li
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Hong Chen
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Ruifang Mi
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Biomedical Materials, Beijing, 100050, China.
| | - Bing-Ren Huang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
6
|
Das S, Suresh B, Kim HH, Ramakrishna S. RanBPM: a potential therapeutic target for modulating diverse physiological disorders. Drug Discov Today 2017; 22:1816-1824. [PMID: 28847759 DOI: 10.1016/j.drudis.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
7
|
Yang YC, Feng TH, Chen TY, Huang HH, Hung CC, Liu ST, Chang LK. RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 2015; 96:2336-2348. [DOI: 10.1099/vir.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tse-Yao Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| |
Collapse
|
8
|
Salemi LM, Loureiro SO, Schild-Poulter C. Characterization of RanBPM molecular determinants that control its subcellular localization. PLoS One 2015; 10:e0117655. [PMID: 25659156 PMCID: PMC4319831 DOI: 10.1371/journal.pone.0117655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022] Open
Abstract
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding.
Collapse
Affiliation(s)
- Louisa M. Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sandra O. Loureiro
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Zhang J, Ma W, Tian S, Fan Z, Ma X, Yang X, Zhao Q, Tan K, Chen H, Chen D, Huang BR. RanBPM interacts with TβRI, TRAF6 and curbs TGF induced nuclear accumulation of TβRI. Cell Signal 2013; 26:162-72. [PMID: 24103590 DOI: 10.1016/j.cellsig.2013.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β (TGF-β), a cytokine, and its receptors play a vital role during normal embryogenesis, cell proliferation, differentiation, apoptosis and migration. Ran-binding protein in the microtubule-organizing center (RanBPM) serves as a scaffold protein that has been shown to interact with many other proteins, such as MET, Axl/Sky, TRAF6, IFNR, TrKA and TrkB in addition to p75NTR. In the current study, we have identified RanBPM as a novel binding partner of TβRI by yeast two-hybrid assay. The TβRI and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM abrogated the interaction between TβRI and TRAF6. Furthermore, RanBPM could depress TGF-β induced TRAF6 ubiquitination, subsequent NF-κB signaling pathway, and block TGF-β induced TβRI nuclear accumulation. Taken together, our results reveal that RanBPM may modulate TGF-β-mediated downstream signaling and biological functions.
Collapse
Affiliation(s)
- Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
RanBPM is a multimodular scaffold protein that interacts with a great variety of molecules including nuclear, cytoplasmic, and membrane proteins. By building multiprotein complexes, RanBPM is thought to regulate various signaling pathways, especially in the immune and nervous system. However, the diversity of these interactions does not facilitate the identification of its precise mechanism of action, and therefore the physiological role of RanBPM still remains unclear. Recently, RanBPM has been shown to be critical for the fertility of both genders in mouse. Although mechanistically it is still unclear how RanBPM affects gametogenesis, the data collected so far suggest that it is a key player in this process. Here, we examine the RanBPM sterility phenotype in the context of other genetic mutations affecting mouse gametogenesis to investigate whether this scaffold protein affects the function of other known proteins whose deficiency results in similar sterility phenotypes.
Collapse
Affiliation(s)
- Sandrine Puverel
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA.
| | | |
Collapse
|
11
|
Abstract
Ran-binding protein M (RanBPM) is a nucleocytoplasmic protein of yet unknown function. We have previously shown that RanBPM inhibits expression of the anti-apoptotic factor Bcl-2 and promotes apoptosis induced by DNA damage. Here we show that the effects of RanBPM on Bcl-2 expression occur through a regulation of the ERK signaling pathway. Transient and stable down-regulation of RanBPM stimulated ERK phosphorylation, leading to Bcl-2 up-regulation, while re-expression of RanBPM reversed these effects. RanBPM was found to inhibit MEK and ERK activation induced by ectopic expression of active RasV12. Activation of ERK by active c-Raf was also prevented by RanBPM. Expression of RanBPM correlated with a marked decrease in the protein levels of ectopically expressed active c-Raf and also affected the expression of endogenous c-Raf. RanBPM formed a complex with both active c-Raf, consisting of the C-terminal kinase domain, and endogenous c-Raf in mammalian cells. In addition, RanBPM was found to decrease the binding of Hsp90 to c-Raf. Finally, we show that loss of RanBPM expression confers increased cell proliferation and cell migration properties to HEK293 cells. Altogether, these findings establish RanBPM as a novel inhibitor of the ERK pathway through an interaction with the c-Raf complex and a regulation of c-Raf stability, and provide evidence that RanBPM loss of expression results in constitutive activation of the ERK pathway and promotes cellular events leading to cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
12
|
Suresh B, Ramakrishna S, Baek KH. Diverse roles of the scaffolding protein RanBPM. Drug Discov Today 2011; 17:379-87. [PMID: 22094242 DOI: 10.1016/j.drudis.2011.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/08/2011] [Accepted: 10/31/2011] [Indexed: 11/27/2022]
Abstract
Ran-binding protein microtubule-organizing center (RanBPM) appears to function as a scaffolding protein in several signal transduction pathways. RanBPM is a crucial component of multiprotein complexes that regulate the cellular function by modulating and/or assembling with a wide range of proteins in different intracellular regions and thereby mediate diverse cellular functions. This suggests a role for RanBPM as a scaffolding protein. In this article, we have summarized the diverse functions of RanBPM and its interacting partners that have been investigated to date. Also, we have categorized the role of RanBPM into four divisions: RanBPM as a modulator/protein stabilizer, regulator of transcription activity, cell cycle and neurological functions.
Collapse
Affiliation(s)
- Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul 135-081, Republic of Korea
| | | | | |
Collapse
|
13
|
Wang L, Fu C, Cui Y, Xie Y, Yuan Y, Wang X, Chen H, Huang BR. The Ran-binding protein RanBPM can depress the NF-κB pathway by interacting with TRAF6. Mol Cell Biochem 2011; 359:83-94. [DOI: 10.1007/s11010-011-1002-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
|
14
|
Puverel S, Barrick C, Dolci S, Coppola V, Tessarollo L. RanBPM is essential for mouse spermatogenesis and oogenesis. Development 2011; 138:2511-21. [PMID: 21561988 DOI: 10.1242/dev.062505] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RanBPM is a recently identified scaffold protein that links and modulates interactions between cell surface receptors and their intracellular signaling pathways. RanBPM has been shown to interact with a variety of functionally unrelated proteins; however, its function remains unclear. Here, we show that RanBPM is essential for normal gonad development as both male and female RanBPM(-/-) mice are sterile. In the mutant testis there was a marked decrease in spermatogonia proliferation during postnatal development. Strikingly, the first wave of spermatogenesis was totally compromised, as seminiferous tubules of homozygous mutant animals were devoid of post-meiotic germ cells. We determined that spermatogenesis was arrested around the late pachytene-diplotene stages of prophase I; surprisingly, without any obvious defect in chromosome synapsis. Interestingly, RanBPM deletion led to a remarkably quick disappearance of all germ cell types at around one month of age, suggesting that spermatogonia stem cells are also affected by the mutation. Moreover, in chimeric mice generated with RanBPM(-/-) embryonic stem cells all mutant germ cells disappeared by 3 weeks of age suggesting that RanBPM is acting in a cell-autonomous way in germ cells. RanBPM homozygous mutant females displayed a premature ovarian failure due to a depletion of the germ cell pool at the end of prophase I, as in males. Taken together, our results highlight a crucial role for RanBPM in mammalian gametogenesis in both genders.
Collapse
Affiliation(s)
- Sandrine Puverel
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
15
|
Suresh B, Ramakrishna S, Kim YS, Kim SM, Kim MS, Baek KH. Stability and function of mammalian lethal giant larvae-1 oncoprotein are regulated by the scaffolding protein RanBPM. J Biol Chem 2010; 285:35340-9. [PMID: 20829363 DOI: 10.1074/jbc.m110.156836] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved lethal giant larvae (Lgl) tumor suppressor gene has an essential role in establishing apical-basal cell polarity, cell proliferation, differentiation, and tissue organization. However, the precise molecular mechanism by which the Lgl carries out its function remains obscure. In the current study, we have identified Ran-binding protein M (RanBPM) as a novel binding partner of Mgl-1, a mammalian homolog of Drosophila tumor suppressor protein lethal (2) giant larvae (L(2)gl) by yeast two-hybrid screening. RanBPM seems to act as a scaffolding protein with a modulatory function with respect to Mgl-1. The Mgl-1 and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM resulted in inhibition of Mgl-1 degradation, and thereby extended the half-life of Mgl-1. Furthermore, the ability of Mgl-1 activity in cell migration and colony formation assay was enhanced by RanBPM. Taken together, our findings reveal that RanBPM plays a novel role in regulating Mgl-1 stability and contributes to its biological function as a tumor suppressor.
Collapse
Affiliation(s)
- Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul 135-081, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH. Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol 2010; 30:939-46. [PMID: 20405200 PMCID: PMC11498764 DOI: 10.1007/s10571-010-9523-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 04/08/2010] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative movement disorder characterized by the selective loss of nigrostriatal dopaminergic neurons. However, the molecular pathways leading to the dopaminergic neuron degeneration have remained obscure until recently. Reports demonstrated that reduction of brain-derived neurotrophic factor (BDNF) was involved in the etiology and pathogenesis of PD, but its mechanism has not been elucidated. alpha-Synuclein has a causal role in Parkinson's disease, and could interfere with transcriptional regulation of dopamine neurons. In this study, alpha-synuclein overexpression was found to decrease the expression of BDNF, and also to suppress the transactivation of nuclear factors of activated T-cells (NFAT) and cAMP response element binding protein (CREB), both of which regulate BDNF expression. Furthermore, overexpressed alpha-synuclein could associate with protein kinase C (PKC) and impair its activity. Meanwhile glycogen synthase kinase-3beta (GSK3beta) was activated and extracellular signal-regulated protein kinase (ERK) activity was inhibited by overexpression of alpha-synuclein; both of them were downstream kinases of PKC. Therefore, the impaired PKC signal pathway caused by alpha-synuclein overexpression might account at least partially for the down-regulation of BDNF.
Collapse
Affiliation(s)
- Yuhe Yuan
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Jiandong Sun
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Ming Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Jinfeng Hu
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Xiaoliang Wang
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
- Xuanwu District, Beijing, 100050 China
| | - Guohua Du
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Nai-Hong Chen
- Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| |
Collapse
|
17
|
Scantlebury N, Zhao XL, Rodriguez Moncalvo VG, Camiletti A, Zahanova S, Dineen A, Xin JH, Campos AR. The Drosophila gene RanBPM functions in the mushroom body to regulate larval behavior. PLoS One 2010; 5:e10652. [PMID: 20498842 PMCID: PMC2871054 DOI: 10.1371/journal.pone.0010652] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In vertebrates, Ran-Binding Protein in the Microtubule Organizing Center (RanBPM) appears to function as a scaffolding protein in a variety of signal transduction pathways. In Drosophila, RanBPM is implicated in the regulation of germ line stem cell (GSC) niche organization in the ovary. Here, we addressed the role of RanBPM in nervous system function in the context of Drosophila larval behavior. METHODOLOGY/PRINCIPAL FINDINGS We report that in Drosophila, RanBPM is required for larval feeding, light-induced changes in locomotion, and viability. RanBPM is highly expressed in the Kenyon cells of the larval mushroom body (MB), a structure well studied for its role in associative learning in Drosophila and other insects. RanBPM mutants do not display major disruption in nervous system morphology besides reduced proliferation. Expression of the RanBPM gene in the Kenyon cells is sufficient to rescue all behavioral phenotypes. Through genetic epistasis experiments, we demonstrate that RanBPM participates with the Drosophila orthologue of the Fragile X Mental Retardation Protein (FMRP) in the development of neuromuscular junction (NMJ). CONCLUSIONS/SIGNIFICANCE We demonstrate that the RanBPM gene functions in the MB neurons for larval behavior. Our results suggest a role for this gene in an FMRP-dependent process. Taken together our findings point to a novel role for the MB in larval behavior.
Collapse
Affiliation(s)
- Nadia Scantlebury
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Xiao Li Zhao
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | - Alison Camiletti
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Stacy Zahanova
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Aidan Dineen
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ji-Hou Xin
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ana Regina Campos
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Yin YX, Sun ZP, Huang SH, Zhao L, Geng Z, Chen ZY. RanBPM contributes to TrkB signaling and regulates brain-derived neurotrophic factor-induced neuronal morphogenesis and survival. J Neurochem 2010; 114:110-21. [PMID: 20403074 DOI: 10.1111/j.1471-4159.2010.06745.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tropomyosin-related kinase (Trk) B is a receptor tyrosine kinase for brain-derived neurotrophic factor (BDNF) which plays a critical role in neuronal survival, differentiation and morphogenesis. Ran-binding protein in the microtubule-organizing center (RanBPM) is a cytosolic scaffold protein that has been shown to interact with protein-tyrosine kinase receptor MET, Axl/Sky, and TrkA in addition to the pan-neurotrophin receptor pan-neurotrophin receptor 75 kDa. In this study, we report RanBPM is a novel TrkB-interacting protein that contributes to BDNF-induced MAPK and Akt activation together with neuronal morphogenesis and survival. Over-expression of RanBPM in PC1210 cells (PC12 cells stably over-expressing TrkB) can significantly enhance BDNF-induced MAPK and Akt activation. Moreover, RanBPM can promote BDNF-induced hippocampal neuronal morphogenesis and enhance BDNF-mediated trophic effects after serum deprivation, while siRNA knock down of RanBPM in cells has the opposite effects. Together, these results suggest that RanBPM may modulate TrkB-mediated downstream signaling and biological functions.
Collapse
Affiliation(s)
- Yu-Xia Yin
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
19
|
Ly TK, Wang J, Pereira R, Rojas KS, Peng X, Feng Q, Cerione RA, Wilson KF. Activation of the Ran GTPase is subject to growth factor regulation and can give rise to cellular transformation. J Biol Chem 2009; 285:5815-26. [PMID: 20028979 DOI: 10.1074/jbc.m109.071886] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the small GTPase Ran is best known for its roles in nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation, recent studies have demonstrated the overexpression of Ran in multiple tumor types and that its expression is correlated with a poor patient prognosis, providing evidence for the importance of this GTPase in cell growth regulation. Here we show that Ran is subject to growth factor regulation by demonstrating that it is activated in a serum-dependent manner in human breast cancer cells and, in particular, in response to heregulin, a growth factor that activates the Neu/ErbB2 tyrosine kinase. The heregulin-dependent activation of Ran requires mTOR (mammalian target of rapamycin) and stimulates the capped RNA binding capability of the cap-binding complex in the nucleus, thus influencing gene expression at the level of mRNA processing. We further demonstrate that the excessive activation of Ran has important consequences for cell growth by showing that a novel, activated Ran mutant is sufficient to transform NIH-3T3 cells in an mTOR- and epidermal growth factor receptor-dependent manner and that Ran-transformed cells form tumors in mice.
Collapse
Affiliation(s)
- Thi K Ly
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tucker CL, Peteya LA, Pittman AMC, Zhong J. A genetic test for yeast two-hybrid bait competency using RanBPM. Genetics 2009; 182:1377-9. [PMID: 19487565 PMCID: PMC2728874 DOI: 10.1534/genetics.109.103069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022] Open
Abstract
We describe a simple genetic test for assessing the competency of Gal4-based baits prior to a yeast two-hybrid screen, which allows determination of whether a bait protein is expressed appropriately for an interaction to be detected. The novel test, based on interaction with the protein RanBPM, is easier and more predictive than other methods such as Western blotting, allowing identification of approximately 80% of incompetent baits prior to screening.
Collapse
Affiliation(s)
- Chandra L Tucker
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | |
Collapse
|
21
|
Kurisetty VV, Johnston PG, Johnston N, Erwin P, Crowe P, Fernig DG, Campbell FC, Anderson IP, Rudland PS, El-Tanani MK. RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene 2008; 27:7139-7149. [PMID: 18794800 DOI: 10.1038/onc.2008.325] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 07/11/2008] [Accepted: 07/30/2008] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) is a phosphorylated glycoprotein that binds to alpha v-containing integrins and is important in malignant transformation and cancer. Previously, we have utilized suppressive subtractive hybridization between mRNAs isolated from the Rama 37 (R37) rat mammary cell line and a subclone rendered invasive and metastatic by stable transfection with an expression vector for OPN to identify RAN GTPase (RAN) as the most overexpressed gene, in addition to that of OPN. Here we show that transfection of noninvasive R37 cells with an expression vector for RAN resulted in increased anchorage-independent growth, cell attachment and invasion through Matrigel in vitro, and metastasis in syngeneic rats. This induction of a malignant phenotype was induced independently of the expression of OPN, and was reversed by specifically reducing the expression of RAN using small-interfering RNAs. By using a combination of mutant protein and inhibitors, it was found that RAN signal transduction occurred through the c-Met receptor and PI3 kinase. This study therefore identifies RAN as a novel effector of OPN-mediated malignant transformation and some of its downstream signaling events in a mammary epithelial model of cancer invasion/metastasis.
Collapse
Affiliation(s)
- V V Kurisetty
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 2008; 379:231-42. [PMID: 18455188 DOI: 10.1016/j.jmb.2008.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) expresses the immediate-early protein Rta to activate the transcription of EBV lytic genes and the lytic cycle. We show that RanBPM acts as a binding partner of Rta in yeast two-hybrid analysis. The binding was confirmed by glutathione-S-transferase pull-down assay. A coimmunoprecipitation experiment and confocal microscopy revealed that RanBPM and Rta interact in vivo and colocalize in the nucleus. The interaction appears to involve the SPRY domain in RanBPM and the region between amino acid residues 416 to 476 in Rta. The interaction promotes the transactivation activity of Rta in activating the transcription of BMLF1 and p21 in transient transfection assays. Additionally, RanBPM interacts with SUMO-E2 (Ubc9) to promote sumoylation of Rta by SUMO-1. This fact explains why the expression of RanBPM enhances the transactivation activity of Rta. Taken together, the present results indicate a new role of RanBPM in regulating a viral protein that is critical to EBV lytic activation.
Collapse
|
23
|
Haase A, Nordmann C, Sedehizade F, Borrmann C, Reiser G. RanBPM, a novel interaction partner of the brain-specific protein p42IP4/centaurin α-1. J Neurochem 2008; 105:2237-48. [DOI: 10.1111/j.1471-4159.2008.05308.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Godbout R, Li L, Liu RZ, Roy K. Role of DEAD box 1 in retinoblastoma and neuroblastoma. Future Oncol 2008; 3:575-87. [PMID: 17927523 DOI: 10.2217/14796694.3.5.575] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Analysis of hereditary and nonhereditary retinoblastoma led to the formulation of the two-hit hypothesis of cancer in the early 1970s. The two-hit hypothesis was validated in the 1980s when both copies of the RB1 gene were shown to be mutated in hereditary and nonhereditary retinoblastoma. However, consistent genetic abnormalities other than RB1 mutations suggest that additional events may be required for the formation of these malignant tumors. For example, MYCN amplification has long been known to occur in both retinoblastoma and neuroblastoma tumors and is strongly associated with poor prognosis in neuroblastoma. The DEAD box gene, DEAD box 1 (DDX1), is often coamplified with MYCN in both these childhood tumors. Here, we examine possible roles for DDX1 overexpression in retinoblastoma and neuroblastoma.
Collapse
Affiliation(s)
- Roseline Godbout
- Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | |
Collapse
|
25
|
Palgova IV, Korobko EV, Korobko IV. Multiadaptor proteins of the 4.1 family and RanBP9 as potential interaction partners for VARP, a Rab21 GTPase guanine nucleotide exchange factor. Mol Biol 2007. [DOI: 10.1134/s0026893307060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|